Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39339438

RESUMEN

A unique compound (compound 1) with structural features including an unprecedented tridentate-bridging coordination mode of permanganate ions and an eight-coordinated (rhombohedral) κ1-chlorido and tridentate permanganato ligand in a potassium complex containing coordination polymer (CoIII(NH3)6]n[(K(κ1-Cl)2(µ2,2',2″-(κ3-O,O',O″-MnO4)2)n∞) with isolated regular octahedral hexamminecobalt(III) cation was synthesized with a yield of >90%. The structure was found to be stabilized by mono and bifurcated N-H∙∙∙Cl and N-H∙∙∙O (bridging and non-bridging) hydrogen bonds. Detailed spectroscopic (IR, far-IR, and Raman) studies and correlation analysis were performed to assign all vibrational modes. The existence of a resonance Raman effect of compound 1 was also observed. The thermal decomposition products at 500 °C were found to be tetragonal nano-CoMn2O4 spinel with 19-25 nm crystallite size and KCl. The decomposition intermediates formed in toluene at 110 °C showed the presence of a potassium- and chloride-containing intermediates combined into KCl during aqueous leaching, together with the formation of cobalt(II) nitrate hexahydrate. This means that the CoIII-CoII redox reaction and the complete decomposition of the permanganate ions occurred in the first decomposition step, with a partial oxidation of ammonia into nitrate ions.

2.
Small ; 19(12): e2206248, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642819

RESUMEN

P2-type Na2/3 Ni1/3 Mn1/2 Ti1/6 O2 (NMTNO) cathode is a preeminent electrode material for Na-ion batteries owing to its open prismatic framework, air-moisture stability, inexpensiveness, appealing capacity, environmental benignity, and Co-free composition. However, the poor cycling stability, sluggish Na-ion kinetics induced in bulk-sized cathode particles, cracking, and exfoliation in the crystallites remain a setback. To outmaneuver these, a designing strategy of a mechanically robust, hexagonal nano-crystallites of P2-type Na2/3 Ni1/3 Mn1/2 Ti1/6 O2 (NMTNOnano ) electrode via quick, energy-efficient, and low-cost microwave-irradiated synthesis is proposed. For the first time, employing a unified experimental and theoretical approach with fracture mechanics analysis, the mechanism behind the enhanced performance, better structural stability, and lower diffusion-induced stress of NMTNOnano compared to micro-sized Na2/3 Ni1/3 Mn1/2 Ti1/6 O2 is unveiled and the electrochemical shock map is predicted. The NMTNOnano cathode provides 94.8% capacity retention after 100 cycles at 0.1 C with prolonged performance for 1000 cycles at 0.5 C. The practical viability of this cathode, tested in a full cell against a hard carbon anode delivered 85.48% capacity retention at 0.14 mA cm-2 after 200 cycles. This work bridges the gap in correlating the microstructural and electrochemical properties through experimental, theoretical (DFT), and fracture mechanics analysis, thereby tailoring efficient cathode with lower diffusion-induced stress for high-energy Na-ion batteries.

3.
Environ Sci Pollut Res Int ; 30(44): 98609-98618, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35796931

RESUMEN

Glass-ceramics with novel composition xZrO2.7P2O5.19CaO.24Na2O.(50-x)B2O3 (x = 0, 2, 4, 6, and 8 mol%) have been synthesized using melt quench technique. The synthesized compositions were characterized and analyzed by X-ray diffraction, field emission scanning electron microscopy, infrared absorption, and impedance spectroscopy. X-ray diffraction profiles of prepared samples confirm the existence of phases corresponding to Na3Ca6(PO4)5 crystal (with crystallite size ~ 23 nm). Infrared absorbance spectra reveal the presence of phosphate and borate units (PO3, PO4, BO3, BO4) in the glass matrix. Different dielectric parameters such as dielectric loss, electric modulus, and tangent loss were evaluated. Their variations with temperature and frequency confirm the non- Debye relaxation behavior of prepared samples. A phenomenal description of the capacitive behavior was studied by considering the circuit having a parallel combination of constant phase element and bulk resistance. The conduction is found to be governed by overlapping large polaron tunneling (OLPT) and follow OLPT model. The results indicate that ZrO2 substituted alkali phosphoborate glass-ceramics can be used as eco-friendly and safe dielectric materials.


Asunto(s)
Álcalis , Circonio , Circonio/química , Impedancia Eléctrica , Espectroscopía Dieléctrica , Cerámica/química
4.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35630866

RESUMEN

Herein, we report the mechanistic investigation of the formation of nickel (Ni) nanocrystallites during the formation of amorphous silicon nitride at a temperature as low as 400 °C, using perhydropolysilazane (PHPS) as a preformed precursor and further coordinated by nickel chloride (NiCl2); thus, forming the non-noble transition metal (TM) as a potential catalyst and the support in an one-step process. It was demonstrated that NiCl2 catalyzed dehydrocoupling reactions between Si-H and N-H bonds in PHPS to afford ternary silylamino groups, which resulted in the formation of a nanocomposite precursor via complex formation: Ni(II) cation of NiCl2 coordinated the ternary silylamino ligands formed in situ. By monitoring intrinsic chemical reactions during the precursor pyrolysis under inert gas atmosphere, it was revealed that the Ni-N bond formed by a nucleophilic attack of the N atom on the Ni(II) cation center, followed by Ni nucleation below 300 °C, which was promoted by the decomposition of Ni nitride species. The latter was facilitated under the hydrogen-containing atmosphere generated by the NiCl2-catalyzed dehydrocoupling reaction. The increase of the temperature to 400 °C led to the formation of a covalently-bonded amorphous Si3N4 matrix surrounding Ni nanocrystallites.

5.
Materials (Basel) ; 15(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269081

RESUMEN

KMeY(PO4)2:5% Eu3+ phosphates have been synthesized by a novel hydrothermal method. Spectroscopic, structural, and morphological properties of the obtained samples were investigated by X-ray, TEM, Raman, infrared, absorption, and luminescence studies. The microscopic analysis of the obtained samples showed that the mean diameter of synthesized crystals was about 15 nm. The KCaY(PO4)2 and KSrY(PO4)2 compounds were isostructural and they crystallized in a rhabdophane-type hexagonal structure with the unit-cell parameters a = b ≈ 6.90 Å, c ≈ 6.34 Å, and a = b ≈ 7.00 Å, c ≈ 6.42 Å for the Ca and Sr compound, respectively. Spectroscopic investigations showed intense 5D0 → 7F4 transitions connected with D2 site symmetry of Eu3+ ions. Furthermore, for the sample annealed at 500 °C, europium ions were located in two optical sites, on the surface of grains and in the bulk. Thermal treatment of powders at high temperature provided better grain crystallinity and only one position of dopant in the crystalline structure. The most intense emission was possessed by the KSrY(PO4)2:5% Eu3+ sample calcinated at 500 °C.

6.
Front Chem ; 9: 757680, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760871

RESUMEN

One of the most investigated properties of porous crystalline metal-organic frameworks (MOFs) is their potential flexibility to undergo large changes in unit cell size upon guest adsorption or other stimuli, referred to as "breathing". Computationally, such phase transitions are usually investigated using periodic boundary conditions, where the system's volume can be controlled directly. However, we have recently shown that important aspects like the formation of a moving interface between the open and the closed pore form or the free energy barrier of the first-order phase transition and its size effects can best be investigated using non-periodic nanocrystallite (NC) models [Keupp et al. (Adv. Theory Simul., 2019, 2, 1900117)]. In this case, the application of pressure is not straightforward, and a distance constraint was used to mimic a mechanical strain enforcing the reaction coordinate. In contrast to this prior work, a mediating particle bath is used here to exert an isotropic hydrostatic pressure on the MOF nanocrystallites. The approach is inspired by the mercury nanoporosimetry used to compress flexible MOF powders. For such a mediating medium, parameters are presented that require a reasonable additional numerical effort and avoid unwanted diffusion of bath particles into the MOF pores. As a proof-of-concept, NCs of pillared-layer MOFs with different linkers and sizes are studied concerning their response to external pressure exerted by the bath. By this approach, an isotropic pressure on the NC can be applied in analogy to corresponding periodic simulations, without any bias for a specific mechanism. This allows a more realistic investigation of the breathing phase transformation of a MOF NC and further bridges the gap between experiment and simulation.

7.
ACS Nano ; 15(6): 10107-10118, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34124885

RESUMEN

Transition metal dichalcogenides are regarded as promising anode materials for potassium-ion batteries (PIBs) because of their high theoretical capacities. However, due to the large atomic radius of K+, the structural damage caused by the huge volume expansion upon potassiation is much more severe than that of their lithium counterparts. In this research, a stress-dispersed structure with Co3Se4 nanocrystallites orderly anchored on graphene sheets is achieved through a two-step hydrothermal treatment to alleviate the structural deterioration. The ability to reduce the contact stress by the well-dispersed Co3Se4 nanocrystallites during K+ intercalation, together with the highly conductive graphene matrix, provides a more reliable and efficient anode architecture than its two agminated counterparts. Given these advantages, the optimized electrode delivers excellent cycling stability (301.8 mA h g-1 after 500 cycles at 1 A g-1), as well as an outstanding rate capacity (203.8 mA h g-1 at 5 A g-1). Further in situ and ex situ characterizations and density functional theory calculations elucidate the potassium storage mechanism of Co3Se4 during the conversion reaction and reveal the fast electrochemical kinetics of the rationally designed electrode. This work provides a practical approach for constructing stable metal-selenide anodes with long cycle life and high-rate performance for PIBs.

8.
Anal Sci ; 37(6): 865-870, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33100307

RESUMEN

We investigated sputtered nanocarbon films with respect to the effect of suppressing surface oxygen on their electrochemical properties. The nanocarbon film consisted of nanocrystallites with mixed sp2 and sp3 bonds formed by unbalanced magnetron sputtering. Ultraviolet/ozone (UV/O3) irradiation and electrochemical pretreatment (ECP) were conducted to change the surface oxygen concentration of nanocarbon film. X-ray photoelectron spectroscopy (XPS) measurements revealed that nanocarbon films with different amounts of surface oxygen could be prepared. In addition, we observed no significant increase of the surface roughness (Ra) at the angstrom level after treatments, owing to a stable structure containing 40% of sp3 bonds. The electrode characteristics, including the potential window and electrochemical properties for some redox species, such as Ru(NH3)63+/2+, were investigated. Some electrochemical measurements of zinc ions (Zn2+) and hydrogen peroxide (H2O2) showed that the electrochemical reaction was improved by suppressing the surface oxygen. These results clearly indicated that the low surface oxygen concentration plays an important role in these electrochemical reactions.

9.
Nanomaterials (Basel) ; 11(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374328

RESUMEN

In this paper, a series of structurally modified silicate-substituted apatite co-doped with Sr2+ and Eu3+ ions were synthesized by a microwave-assisted hydrothermal method. The concentration of Sr2+ ions was set at 2 mol% and Eu3+ ions were established in the range of 0.5-2 mol% in a molar ratio of calcium ion amount. The XRD (X-ray powder diffraction) technique and infrared (FT-IR) spectroscopy were used to characterize the obtained materials. The Kröger-Vink notation was used to explain the possible charge compensation mechanism. Moreover, the study of the spectroscopic properties (emission, emission excitation and emission kinetics) of the obtained materials as a function of optically active ions and annealing temperature was carried out. The luminescence behavior of Eu3+ ions in the apatite matrix was verified by the Judd-Ofelt (J-O) theory and discussed in detail. The temperature-dependent emission spectra were recorded for the representative materials. Furthermore, the International Commission on Illumination (CIE) chromaticity coordinates and correlated color temperature were determined by the obtained results.

10.
Nanomaterials (Basel) ; 10(8)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751965

RESUMEN

Undoped as well as (Co, Mn) co-doped Zinc oxides have been effectively developed on glass substrates, taking advantage of the spray pyrolysis procedure. The X-ray diffraction XRD as well as X-ray photoelectron spectroscopy (XPS) measurements have recognized a pure hexagonal wurtzite form of ZnO, and no other collateral phases such as MnO2 or CoO2 have been observed as a result of doping. The calculated values of the texture coefficient (TC) were between 0.15 and 5.14, indicating a dominant orientation along the (002) plane. The crystallite size (D) varies with the (Co, Mn) contents. The dislocation density (δ) as well as the residual microstrains increased after Co and Mn doping. Furthermore, the surface morphology of the films has been affected significantly by the Co and Mn incorporation, as shown by the scanning electron microscopy (SEM) investigation. The study of the optical properties exhibits a red shift of the band gap energy (Eg) with the (Co, Mn) co-doping. The magnetic measurements have shown that the undoped and (Co, Mn) co-doped ZnO thin films displayed room-temperature ferromagnetism (RTFM).

11.
Anal Sci ; 36(4): 441-446, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-31787668

RESUMEN

A nanocarbon film consisting of nanocrystallites with mixed sp2 and sp3 bonds formed by unbalanced magnetron sputtering, was studied with respect to changes in the characteristics caused by the surface oxygen concentration. An electrochemical pretreatment (ECP) was conducted to change the surface oxygen concentration of the nanocarbon film. X-ray photoelectron spectroscopy (XPS) measurements revealed that nanocarbon films with different amounts of surface oxygen could be prepared. In addition, we observed no significant increase of surface roughness (Ra) at the angstrom level after ECP, owing to a stable structure containing 40% of sp3 bonds. The electrode characteristics, including the potential window, and electrochemical properties for some redox species, such as Ru(NH3)63+/2+, Fe(CN)63-/4- and some biomolecules, were investigated. The anodic potential limit became wider and ΔEp of Fe(CN)63-/4- became smaller at the treated nanocarbon film electrode than those of the as-deposited nanocarbon film electrode. Based on these results, we realized to measure uridylic acid (UMP) and inosine triphosphate (ITP) with a high oxidation potential by direct oxidation, which was difficult to measure at the as-deposited nanocarbon film electrode.

12.
Mikrochim Acta ; 187(1): 24, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31807919

RESUMEN

A glassy carbon electrode (GCE) was modified with cerium-doped ZnO nanoflowers (Ce-ZnO/GCE) to obtain a sensor for direct simultaneous detection of the cancer drugs epirubicin and methotrexate. XRD, SEM and EDX techniques were used to characterize their morphology and structure. Electrochemical impedance spectroscopy was applied to characterize the electrochemical features of the modified GCE. The experimental conditions were optimized. Diffusion coefficients and heterogeneous rate constants were determined for the oxidation of epirubicin. The differential pulse voltammetric response to epirubicin has a peak near 0.7 V (vs. Ag/AgCl at a scan rate of 50 mV s-1) and is linear in the 0.01 to 600 µM concentration range, and the detection limit is 2.3 nM (S/N = 5). The differential pulse voltammetric response to methotrexate has a peak near 0.75 V (vs. Ag/AgCl and the same scan rate) and is linear in the 0.01 to 500 µM concentration range, and the detection limit is 6.3 nM (S/N = 5). The method was applied to the simultaneous determination of epirubicin and methotrexate in pharmaceutical injections and in spiked diluted blood specimens. Graphical abstractSchematic of an electrochemical sensor based on Ce-doped ZnO nano-flowers modified glassy carbon electrode for detecting epirubicin.


Asunto(s)
Cerio/química , Electroquímica/métodos , Epirrubicina/análisis , Metotrexato/análisis , Nanopartículas/química , Óxido de Zinc/química , Electrodos , Epirrubicina/sangre , Epirrubicina/química , Epirrubicina/orina , Humanos , Concentración de Iones de Hidrógeno , Límite de Detección , Metotrexato/sangre , Metotrexato/química , Metotrexato/orina , Factores de Tiempo
13.
Materials (Basel) ; 12(23)2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31795308

RESUMEN

In nanoscale magnetic systems, the possible coexistence of structural disorder and competing magnetic interactions may determine the appearance of a glassy magnetic behavior, implying the onset of a low-temperature disordered collective state of frozen magnetic moments. This phenomenology is the object of an intense research activity, stimulated by a fundamental scientific interest and by the need to clarify how disordered magnetism effects may affect the performance of magnetic devices (e.g., sensors and data storage media). We report the results of a magnetic study that aims to broaden the basic knowledge of glassy magnetic systems and concerns the comparison between two samples, prepared by a polyol method. The first can be described as a nanogranular spinel Fe-oxide phase composed of ultrafine nanocrystallites (size of the order of 1 nm); in the second, the Fe-oxide phase incorporated non-magnetic Au nanoparticles (10-20 nm in size). In both samples, the Fe-oxide phase exhibits a glassy magnetic behavior and the nanocrystallite moments undergo a very similar freezing process. However, in the frozen regime, the Au/Fe-oxide composite sample is magnetically softer. This effect is explained by considering that the Au nanoparticles constitute physical constraints that limit the length of magnetic correlation between the frozen Fe-oxide moments.

14.
Materials (Basel) ; 10(8)2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28825664

RESUMEN

Kraft lignin (KL) was thermally treated at 500 to 1000 °C in an inert atmosphere. Carbon nanostructure parameters of thermally treated KL in terms of amorphous carbon fraction, aromaticity, and carbon nanocrystallites lateral size (La), thickness (Lc), and interlayer space (d002) were analyzed quantitatively using X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy. Experimental results indicated that increasing temperature reduced amorphous carbon but increased aromaticity in thermally treated KL materials. The Lc value of thermally treated KL materials averaged 0.85 nm and did not change with temperature. The d002 value decreased from 3.56 Å at 500 °C to 3.49 Å at 1000 °C. The La value increased from 0.7 to 1.4 nm as temperature increased from 500 to 1000 °C. A nanostructure model was proposed to describe thermally treated KL under 1000 °C. The thermal stability of heat treated KL increased with temperature rising from 500 to 800 °C.

15.
ACS Appl Mater Interfaces ; 8(27): 17233-8, 2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27305627

RESUMEN

A new cubic polymorph of sodium iron silicate, Na2FeSiO4, is reported for the first time as a cathode material for Na-ion batteries. It adopts an unprecedented cubic rigid tetrahedral open framework structure, i.e., F4̅3m, leading to a polyanion cathode material without apparent cell volume change during the charge/discharge processes. This cathode shows a reversible capacity of 106 mAh g(-1) and a capacity retention of 96% at 5 mA g(-1) after 20 cycles.

16.
Materials (Basel) ; 9(4)2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28773386

RESUMEN

A traditional semiconductor (WO3) was synthesized from different precursors via hydrothermal crystallization targeting the achievement of three different crystal shapes (nanoplates, nanorods and nanostars). The obtained WO3 microcrystals were analyzed by the means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectroscopy (DRS). These methods contributed to the detailed analysis of the crystal morphology and structural features. The synthesized bare WO3 photocatalysts were totally inactive, while the P25/WO3 composites were efficient under UV light radiation. Furthermore, the maximum achieved activity was even higher than the bare P25's photocatalytic performance. A correlation was established between the shape of the WO3 crystallites and the observed photocatalytic activity registered during the degradation of different substrates by using P25/WO3 composites.

17.
ACS Appl Mater Interfaces ; 7(41): 22888-97, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26422062

RESUMEN

Cu2ZnSnS4 (CZTS) is an environmentally benign semiconductor with excellent optoelectronic properties that attracts a lot of interest in thin film photovoltaics. In departure from that conventional configuration, we fabricate and test a novel absorber-conductor structure featuring in situ successive-ion-layer-adsorption-reaction (SILAR)-deposited CZTS nanocrystallites as a light absorber on one-dimensional TiO2 (rutile) nanorods as an electron conductor. The effectiveness of the nanoscale heterostructure in visible light harvesting and photoelectron generation is demonstrated with an initial short circuit current density of 3.22 mA/cm(2) and an internal quantum efficiency of ∼60% at the blue light region, revealing great potential in developing CZTS extremely thin absorber (ETA) solar cells.

18.
Biosens Bioelectron ; 73: 71-78, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26046316

RESUMEN

This work reports on a facile, novel multianalyte electrochemical immunoassay for simultaneous detection of a-fetoprotein (AFP) and human epidermal growth factor receptor type-2 (HER-2) using metal-containing nanomaterials confined in the ordered mesoporous carbon matrix (OMC-M) as labels. Well-dispersed uniform metallic nanocrystallites incorporated OMC materials were fabricated through a simple, economical, and green preparative strategy toward phenolic resol as a carbon source and metal nitrate as metal sources. The large amount of metallic nanocrystallites loading on the OMC nanomaterials, greatly amplified the detection signals, and the good biocompatibility of carbon nanotubes-chitosan retained excellent stability for the sandwich-type immunoassay. Under optimal experimental conditions, the proposed immunoassay exhibited high sensitivity and selectivity for the detection of analytes, providing a better linear response range from 0.001 to 150 ng/mL for AFP and for HER-2, with a lower limit of detectionof 0.6p g/mL and 0.35 pg/mL (S/N=3), respectively. The immunosensor exhibited convenience, low cost, rapidity, good specificity, acceptable stability and reproducibility. Moreover, satisfactory results were obtained for the determination of AFP and HER-2 in real human serum samples, indicating that the developed immunoassay has the potential to find application in clinical detection of AFP and HER-2 and other tumor markers as an alternative approach.


Asunto(s)
Técnicas Biosensibles/métodos , Carbono , Inmunoensayo/métodos , Nanopartículas del Metal , Especificidad de Anticuerpos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/inmunología , Técnicas Biosensibles/estadística & datos numéricos , Quitosano , Reacciones Cruzadas , Técnicas Electroquímicas/métodos , Humanos , Nanotubos de Carbono , Receptor ErbB-2/sangre , Receptor ErbB-2/inmunología , Reproducibilidad de los Resultados , alfa-Fetoproteínas/análisis , alfa-Fetoproteínas/inmunología
19.
J Biomed Mater Res A ; 103(1): 203-10, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24639027

RESUMEN

Calcium phosphate cement (CPC) is a widely used bone substitute. However, CPC application is limited by poor bioresorption, which is attributed to apatite, the stable product. This study aims to systematically survey the biological performance of dicalcium phosphate (DCP)-rich CPC. DCP-rich CPC exhibited a twofold, surface-modified DCP anhydrous (DCPA)-to-tetracalcium phosphate (TTCP) molar ratio, whereas conventional CPC (c-CPC) showed a onefold, surface unmodified DCPA-to-TTCP molar ratio. Cell adhesion, morphology, viability, and alkaline phosphatase (ALP) activity in the two CPCs were examined with bone cell progenitor D1 cultured in vitro. Microcomputed tomography and histological observation were conducted after CPC implantation in vivo to analyze the residual implant ratio and new bone formation rate. D1 cells cultured on DCP-rich CPC surfaces exhibited higher cell viability, ALP activity, and ALP quantity than c-CPC. Histological evaluation indicated that DCP-rich CPC showed lesser residual implant and higher new bone formation rate than c-CPC. Therefore, DCP-rich CPC can improve bioresorption. The newly developed DCP-rich CPC exhibited potential therapeutic applications for bone reconstruction.


Asunto(s)
Cementos para Huesos , Regeneración Ósea , Fosfatos de Calcio/química , Fosfatasa Alcalina/metabolismo , Animales , Huesos/enzimología , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Rastreo
20.
ACS Appl Mater Interfaces ; 6(22): 19737-43, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25330400

RESUMEN

Growth experiments show significant differences in the crystallization of ultrathin CaTiO3 layers on polycrystalline Pt surfaces. While the deposition of ultrathin layers below crystallization temperature inhibits the full layer crystallization, local epitaxial growth of CaTiO3 crystals on top of specific oriented Pt crystals occurs. The result is a formation of crystals embedded in an amorphous matrix. An epitaxial alignment of the cubic CaTiO3 ⟨111⟩ direction on top of the underlying Pt {111} surface has been observed. A reduced forming energy is attributed to an interplay of surface energies at the {111} interface of both materials and CaTiO3 nanocrystallites facets. The preferential texturing of CaTiO3 layers on top of Pt has been used in the preparation of ultrathin metal-insulator-metal capacitors with 5-30 nm oxide thickness. The effective CaTiO3 permittivity in the capacitor stack increases to 55 compared to capacitors with amorphous layers and a permittivity of 28. The isolated CaTiO3 crystals exhibit a passivation of the CaTiO3 grain surfaces by the surrounding amorphous matrix, which keeps the capacitor leakage current at ideally low values comparable for those of amorphous thin film capacitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...