Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Evol ; 86(5): 283-292, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29679096

RESUMEN

The study of evolution is important to understand biological phenomena. During evolutionary processes, genetic changes confer amino acid substitutions in proteins, resulting in new or improved functions. Unfortunately, most mutations destabilize proteins. Thus, protein stability is a significant factor in evolution; however, its role remains unclear. Here, we simply and directly explored the association between protein activity and stability in random mutant libraries to elucidate the role of protein stability in evolutionary processes. In the first random mutation of an esterase from Sulfolobus tokodaii, approximately 20% of the variants displayed higher activity than wild-type protein (i.e., 20% evolvability). During evolutionary processes, the evolvability depended on the stability of template proteins, indicating that protein evolution is potentially governed by protein stability. Furthermore, decreased activity could be recovered during evolution by maintaining the stability of variants. The results suggest that protein sequence space for its evolution is able to expand during nearly neutral evolution where mutations are slightly deleterious for activity but rarely fatal for stability. Molecular evolution is a crucial phenomenon that has continued since the birth of life on earth, and mechanism underlying it is simple; therefore, this could be demonstrated by our simple experiments. These findings also can be applied to protein engineering.


Asunto(s)
Proteínas Arqueales/genética , Esterasas/genética , Evolución Molecular , Sulfolobus/enzimología , Sulfolobus/genética , Biblioteca de Genes , Mutación/genética , Estabilidad Proteica , Moldes Genéticos
2.
Ecol Evol ; 7(11): 3826-3835, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28616179

RESUMEN

Both effective population size and life history may influence the efficacy of purifying selection, but it remains unclear if the environment affects the accumulation of weakly deleterious nonsynonymous polymorphisms. We hypothesize that the reduced energetic cost of osmoregulation in brackish water habitat may cause relaxation of selective constraints at mitochondrial oxidative phosphorylation (OXPHOS) genes. To test this hypothesis, we analyzed 57 complete mitochondrial genomes of Pungitius pungitius collected from brackish and freshwater habitats. Based on inter- and intraspecific comparisons, we estimated that 84% and 68% of the nonsynonymous polymorphisms in the freshwater and brackish water populations, respectively, are weakly or moderately deleterious. Using in silico prediction tools (MutPred, SNAP2), we subsequently identified nonsynonymous polymorphisms with potentially harmful effect. Both prediction methods indicated that the functional effects of the fixed nonsynonymous substitutions between nine- and three-spined stickleback were weaker than for polymorphisms within species, indicating that harmful nonsynonymous polymorphisms within populations rarely become fixed between species. No significant differences in mean estimated functional effects were identified between freshwater and brackish water nine-spined stickleback to support the hypothesis that reduced osmoregulatory energy demand in the brackish water environment reduces the strength of purifying selection at OXPHOS genes. Instead, elevated frequency of nonsynonymous polymorphisms in the freshwater environment (Pn/Ps = 0.549 vs. 0.283; Fisher's exact test p = .032) suggested that purifying selection is less efficient in small freshwater populations. This study shows the utility of in silico functional prediction tools in population genetic and evolutionary research in a nonmammalian vertebrate and demonstrates that mitochondrial energy production genes represent a promising system to characterize the demographic, life history and potential habitat-dependent effects of segregating amino acid variants.

3.
Mol Ecol ; 22(22): 5635-50, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24134614

RESUMEN

Estimates from molecular data for the fraction of new nonsynonymous mutations that are adaptive vary strongly across plant species. Much of this variation is due to differences in life history strategies as they influence the effective population size (Ne ). Ample variation for these estimates, however, remains even when comparisons are made across species with similar values of Ne . An open question thus remains as to why the large disparity for estimates of adaptive evolution exists among plant species. Here, we have estimated the distribution of deleterious fitness effects (DFE) and the fraction of adaptive nonsynonymous substitutions (α) for 11 species of soft pines (subgenus Strobus) using DNA sequence data from 167 orthologous nuclear gene fragments. Most newly arising nonsynonymous mutations were inferred to be so strongly deleterious that they would rarely become fixed. Little evidence for long-term adaptive evolution was detected, as all 11 estimates for α were not significantly different from zero. Nucleotide diversity at synonymous sites, moreover, was strongly correlated with attributes of the DFE across species, thus illustrating a strong consistency with the expectations from the Nearly Neutral Theory of molecular evolution. Application of these patterns to genome-wide expectations for these species, however, was difficult as the loci chosen for the analysis were a biased set of conserved loci, which greatly influenced the estimates of the DFE and α. This implies that genome-wide parameter estimates will need truly genome-wide data, so that many of the existing patterns documented previously for forest trees (e.g. little evidence for signature of selection) may need revision.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Molecular , Aptitud Genética , Pinus/genética , ADN de Plantas/genética , Marcadores Genéticos , Genética de Población , Modelos Genéticos , Tipificación de Secuencias Multilocus , Polimorfismo Genético , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...