Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(7): e17388, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967139

RESUMEN

Permafrost thaw in northern peatlands causes collapse of permafrost peat plateaus and thermokarst bog development, with potential impacts on atmospheric greenhouse gas exchange. Here, we measured methane and carbon dioxide fluxes over 3 years (including winters) using static chambers along two permafrost thaw transects in northwestern Canada, spanning young (~30 years since thaw), intermediate and mature thermokarst bogs (~200 years since thaw). Young bogs were wetter, warmer and had more hydrophilic vegetation than mature bogs. Methane emissions increased with wetness and soil temperature (40 cm depth) and modelled annual estimates were greatest in the young bog during the warmest year and lowest in the mature bog during the coolest year (21 and 7 g C-CH4 m-2 year-1, respectively). The dominant control on net ecosystem exchange (NEE) in the mature bog (between +20 and -54 g C-CO2 m-2 year-1) was soil temperature (5 cm), causing net CO2 loss due to higher ecosystem respiration (ER) in warmer years. In contrast, wetness controlled NEE in the young and intermediate bogs (between +55 and -95 g C-CO2 m-2 year-1), where years with periodic inundation at the beginning of the growing season caused greater reduction in gross primary productivity than in ER leading to CO2 loss. Winter fluxes (November-April) represented 16% of annual ER and 38% of annual CH4 emissions. Our study found NEE of thermokarst bogs to be close to neutral and rules out large CO2 losses under current conditions. However, high CH4 emissions after thaw caused a positive net radiative forcing effect. While wet conditions favouring high CH4 emissions only persist for the initial young bog period, we showed that continued climate warming with increased ER, and thus, CO2 losses from the mature bog can cause net positive radiative forcing which would last for centuries after permafrost thaw.


Asunto(s)
Dióxido de Carbono , Cambio Climático , Gases de Efecto Invernadero , Metano , Hielos Perennes , Humedales , Metano/análisis , Metano/metabolismo , Dióxido de Carbono/análisis , Gases de Efecto Invernadero/análisis , Temperatura , Suelo/química , Canadá , Estaciones del Año
2.
Sci Total Environ ; 944: 173887, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38876340

RESUMEN

Accurately estimating the net ecosystem exchange of CO2 (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and climate conditions. However, significant uncertainties persist in the estimation of regional cropland NEE due to landscape heterogeneity and variations in the efficacy of upscaling models. Here, we applied an integrated approach that combined object-based image analysis (OBIA) techniques with advanced machine learning (ML) approaches to upscale regional cropland NEE. We conducted a thorough evaluation of the upscaling approach across four distinct cropland areas characterized by diverse climate conditions. Our study confirmed that OBIA techniques can efficiently segment cropland objects, thereby enhancing the representation and accuracy of characteristics relevant to cropland features. The sequential least squares programming algorithm, among the three methods used for ML model integration, demonstrated exceptional performance in predicting NEE, with an R2 value exceeding 0.80 across all study areas and peaking at 0.90 in the most successful area. On average, there was an 18 % improvement compared to the poorest-performing ML model and a 6 % enhancement compared to the best-performing ML model. The upscaled regional products exhibited superior performance in characterizing cropland NEE patterns compared to pixel-based products. Additionally, we utilized the SHapley Additive exPlanations (SHAP) to assess driver importance, revealing that phenology and radiation had the greatest influence on prediction accuracy, followed by temperature and soil moisture. This study highlights the potential of integrating OBIA techniques with machine learning approaches for upscaling regional cropland NEE, while concurrently reducing estimation uncertainties.

3.
Sci Total Environ ; 938: 173380, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38797417

RESUMEN

Enhancing the ability of coastal blue carbon to accumulate and store carbon and reduce net greenhouse gas emissions is an essential component of a comprehensive approach for tackling climate change. The annual winter harvesting of Phragmites is common worldwide. However, the effects of harvesting on methane (CH4) emissions and its potential as an effective blue carbon management strategy have rarely been reported. In this study, the effects of winter Phragmites harvesting on the CH4 and carbon dioxide (CO2) fluxes and the underlying mechanisms in coastal Phragmites wetlands were investigated by comparing the eddy covariance flux measurements for three coastal wetlands with different harvesting and tidal flow conditions. The results show that harvesting can greatly reduce the CH4 emissions and the radiative forcing of CH4 and CO2 fluxes in coastal Phragmites wetlands, suggesting that winter Phragmites harvesting has great potential as a nature-based strategy to mitigate global warming. The monthly mean CH4 fluxes were predominantly driven by air temperature, gross primary productivity, and latent heat fluxes, which are related to vegetation phenology. Additionally, variations in the salinity and water levels exerted strong regulation effects on CH4 emissions, highlighting the important role of proper tidal flow restoration and resalinization in enhancing blue carbon sequestration potential. Compared with the natural, tidally unrestricted wetlands, the CH4 fluxes in the impounded wetland were less strongly correlated with hydrometeorological variables, implying the increased difficulties of predicting CH4 variations in impounded ecosystem. This study facilitates the improved understanding of carbon exchange in coastal Phragmites wetlands with harvesting or impoundment, and provides new insights into effective blue carbon management strategies beyond tidal wetland restoration for mitigating the effects of climate change.

4.
Sci Total Environ ; 938: 173408, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38797409

RESUMEN

This study quantitatively evaluates the carbon dioxide (CO2) sink intensity of a large saline lake (area > 2000 km2) and a small saline lake (area 1.4 km2) on the Tibetan Plateau (TP), alongside an alpine meadow, by analysing their net ecosystem exchange (NEE) figures obtained by eddy covariance (EC) measurements. Specifically, the "large lake" exhibits an NEE value of -122.51 g C m-2 yr-1, whereas the small lake has an NEE value of -47.17 g C m-2 yr-1. The alpine meadow, in contrast, demonstrates an NEE value of -128.18 g C m-2 yr-1. Through standardization of the eddy flux data processing and accounting for site-specific conditions with a wind direction filter and footprint analysis, the study provides robust estimates of CO2 sink intensity. The "large lake" was found to absorb CO2 primarily during non-icing cold periods with minimal exchange occurring during ice-covered season, whereas the "small lake" showed no significant CO2 exchange throughout the year. On the other hand, alpine meadows engaged in CO2 uptake during the vegetative growth season but showed weak CO2 release in winter. CO2 uptake in lakes is mainly controlled by ice barrier and chemical processes, while biological processes dominate the alpine meadow. The carbon sink intensity of the TP's saline lakes is estimated to be 1.87-3.01 Tg C yr-1, smaller than the previous reported estimations. By evaluating the CO2 sink intensity of different lakes, the study highlights the importance of saline lakes in regional carbon balance assessments. It specifically points out the differential roles lakes of various sizes play in the carbon cycle, thereby enriching our understanding of carbon dynamics in high-altitude lacustrine ecosystems.

5.
Methods Mol Biol ; 2790: 227-256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649574

RESUMEN

The eddy covariance technique, commonly applied using flux towers, enables the investigation of greenhouse gas (e.g., carbon dioxide, methane, nitrous oxide) and energy (latent and sensible heat) fluxes between the biosphere and the atmosphere. Through measuring carbon fluxes in particular, eddy covariance flux towers can give insight into how ecosystem scale photosynthesis (i.e., gross primary productivity) changes over time in response to climate and management. This chapter is designed to be a beginner's guide to understanding the eddy covariance method and how it can be applied in photosynthesis research. It introduces key concepts and assumptions that apply to the method, what materials are required to set up a flux tower, as well as practical advice for site installation, maintenance, data management, and postprocessing considerations. This chapter also includes examples of what can go wrong, with advice on how to correct these errors if they arise. This chapter has been crafted to help new users design, install, and manage the best towers to suit their research needs and includes additional resources throughout to further guide successful eddy covariance research activities.


Asunto(s)
Fotosíntesis , Dióxido de Carbono/metabolismo , Ecosistema
6.
Sci Total Environ ; 922: 171218, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38423329

RESUMEN

Freshwater wetlands have a disproportionately large influence on the global carbon cycle, with the potential to serve as long-term carbon sinks. Many of the world's freshwater wetlands have been destroyed or degraded, thereby affecting carbon-sink capacity. Ecological restoration of degraded wetlands is thus becoming an increasingly sought-after natural climate solution. Yet the time required to revert a degraded wetland from a carbon source to sink remains largely unknown. Moreover, increased methane (CH4) and nitrous oxide (N2O) emissions might complicate the climate benefit that wetland restoration may represent. We conducted a global meta-analysis to evaluate the benefits of wetland restoration in terms of net ecosystem carbon and greenhouse gas balance. Most studies (76 %) investigated the benefits of wetland restoration in peatlands (bogs, fens, and peat swamps) in the northern hemisphere, whereas the effects of restoration in non-peat wetlands (freshwater marshes, non-peat swamps, and riparian wetlands) remain largely unexplored. Despite higher CH4 emissions, most restored (77 %) and all natural peatlands were net carbon sinks, whereas most degraded peatlands (69 %) were carbon sources. Conversely, CH4 emissions from non-peat wetlands were similar across degraded, restored, and natural non-peat wetlands. When considering the radiative forcings and atmospheric lifetimes of the different greenhouse gases, the average time for restored wetlands to have a net cooling effect on the climate after restoration is 525 years for peatlands and 141 years for non-peat wetlands. The radiative benefit of wetland restoration does, therefore, not meet the timeframe set by the Paris Agreement to limit global warming by 2100. The conservation and protection of natural freshwater wetlands should be prioritised over wetland restoration as those ecosystems already play a key role in climate change mitigation.

7.
Glob Chang Biol ; 30(1): e17087, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273494

RESUMEN

Increasing temperatures and winter precipitation can influence the carbon (C) exchange rates in arctic ecosystems. Feedbacks can be both positive and negative, but the net effects are unclear and expected to vary strongly across the Arctic. There is a lack of understanding of the combined effects of increased summer warming and winter precipitation on the C balance in these ecosystems. Here we assess the short-term (1-3 years) and long-term (5-8 years) effects of increased snow depth (snow fences) (on average + 70 cm) and warming (open top chambers; 1-3°C increase) and the combination in a factorial design on all key components of the daytime carbon dioxide (CO2 ) fluxes in a wide-spread heath tundra ecosystem in West Greenland. The warming treatment increased ecosystem respiration (ER) on a short- and long-term basis, while gross ecosystem photosynthesis (GEP) was only increased in the long term. Despite the difference in the timing of responses of ER and GEP to the warming treatment, the net ecosystem exchange (NEE) of CO2 was unaffected in the short term and in the long term. Although the structural equation model (SEM) indicates a direct relationship between seasonal accumulated snow depth and ER and GEP, there were no significant effects of the snow addition treatment on ER or GEP measured over the summer period. The combination of warming and snow addition turned the plots into net daytime CO2 sources during the growing season. Interestingly, despite no significant changes in air temperature during the snow-free time during the experiment, control plots as well as warming plots revealed significantly higher ER and GEP in the long term compared to the short term. This was in line with the satellite-derived time-integrated normalized difference vegetation index of the study area, suggesting that more factors than air temperature are drivers for changes in arctic tundra ecosystems.


Asunto(s)
Dióxido de Carbono , Ecosistema , Estaciones del Año , Dióxido de Carbono/química , Temperatura , Nieve , Tundra , Regiones Árticas , Suelo/química
8.
Glob Chang Biol ; 30(1): e17139, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273498

RESUMEN

Permafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year-round eddy covariance estimates of net carbon dioxide (CO2 ), mid-April to October methane (CH4 ) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow-season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2 (13-59 g C m-2 year-1 ) and stronger sources of CH4 (11-14 g CH4 m-2 from ~April to October). The interannual variability of net ecosystem exchange was high, approximately ±100 g C m-2 year-1 , or twice what has been previously reported across other boreal sites. Net CO2 release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4 emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2 , was also the largest CH4 emitter. These results suggest that the future carbon-source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (≤1 km2 ), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long-term measurements to identify carbon cycle process changes in a warming climate.


Asunto(s)
Ecosistema , Hielos Perennes , Dióxido de Carbono/análisis , Metano , Suelo , Agua
9.
Glob Chang Biol ; 30(1): e17151, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273511

RESUMEN

Observations of the annual cycle of atmospheric CO2 in high northern latitudes provide evidence for an increase in terrestrial metabolism in Arctic tundra and boreal forest ecosystems. However, the mechanisms driving these changes are not yet fully understood. One proposed hypothesis is that ecological change from disturbance, such as wildfire, could increase the magnitude and change the phase of net ecosystem exchange through shifts in plant community composition. Yet, little quantitative work has evaluated this potential mechanism at a regional scale. Here we investigate how fire disturbance influences landscape-level patterns of photosynthesis across western boreal North America. We use Alaska and Canadian large fire databases to identify the perimeters of wildfires, a Landsat-derived land cover time series to characterize plant functional types (PFTs), and solar-induced fluorescence (SIF) from the Orbiting Carbon Observatory-2 (OCO-2) as a proxy for photosynthesis. We analyze these datasets to characterize post-fire changes in plant succession and photosynthetic activity using a space-for-time approach. We find that increases in herbaceous and sparse vegetation, shrub, and deciduous broadleaf forest PFTs during mid-succession yield enhancements in SIF by 8-40% during June and July for 2- to 59-year stands relative to pre-fire controls. From the analysis of post-fire land cover changes within individual ecoregions and modeling, we identify two mechanisms by which fires contribute to long-term trends in SIF. First, increases in annual burning are shifting the stand age distribution, leading to increases in the abundance of shrubs and deciduous broadleaf forests that have considerably higher SIF during early- and mid-summer. Second, fire appears to facilitate a long-term shift from evergreen conifer to broadleaf deciduous forest in the Boreal Plain ecoregion. These findings suggest that increasing fire can contribute substantially to positive trends in seasonal CO2 exchange without a close coupling to long-term increases in carbon storage.


Asunto(s)
Incendios , Incendios Forestales , Ecosistema , Taiga , Canadá , Dióxido de Carbono/metabolismo , América del Norte , Bosques , Fotosíntesis , Estaciones del Año , Carbono
10.
Glob Chang Biol ; 30(1): e17043, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37988234

RESUMEN

In the northern high latitudes, warmer spring temperatures generally lead to earlier leaf onsets, higher vegetation production, and enhanced spring carbon uptake. Yet, whether this positive linkage has diminished under climate change remains debated. Here, we used atmospheric CO2 measurements at Barrow (Alaska) during 1979-2020 to investigate the strength of temperature dependence of spring carbon uptake reflected by two indicators, spring zero-crossing date (SZC) and CO2 drawdown (SCC). We found a fall and rise in the interannual correlation of temperature with SZC and SCC (RSZC-T and RSCC-T ), showing a recent reversal of the previously reported weakening trend of RSZC-T and RSCC-T . We used a terrestrial biosphere model coupled with an atmospheric transport model to reproduce this fall and rise phenomenon and conducted factorial simulations to explore its potential causes. We found that a strong-weak-strong spatial synchrony of spring temperature anomalies per se has contributed to the fall and rise trend in RSZC-T and RSCC-T , despite an overall unbroken temperature control on net ecosystem CO2 fluxes at local scale. Our results provide an alternative explanation for the apparent drop of RSZC-T and RSCC-T during the late 1990s and 2000s, and suggest a continued positive linkage between spring carbon uptake and temperature during the past four decades. We thus caution the interpretation of apparent climate sensitivities of carbon cycle retrieved from spatially aggregated signals.


Asunto(s)
Carbono , Ecosistema , Temperatura , Dióxido de Carbono , Estaciones del Año , Ciclo del Carbono , Cambio Climático
11.
Ying Yong Sheng Tai Xue Bao ; 34(11): 2958-2968, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37997406

RESUMEN

Wetlands serve as atmospheric carbon dioxide (CO2) sinks, as well as atmospheric methane (CH4) source due to the anaerobic soil environment. Although some studies report that the CH4 emission from wetlands partially offset their net CO2 uptake, there is no global data analysis on the offset of net ecosystem exchange of CO2 (NEE) by CH4 emission in wetland ecosystems. In this study, we collected the data sets of NEE and CH4 flux which were simultaneously measured in the inland wetlands (peatland and non-peatland wetland) and coastal wetlands (seagrass beds, salt marshes and mangroves) around the world. The results showed that all types of wetlands were atmospheric CO2 sink, with the NEE values ranking as follows: mangrove (-2011.0 g CO2·m-2·a-1) < salt marsh (-1636.6 g CO2·m-2·a-1) < non-peatland wetland (-870.8 g CO2·m-2·a-1) < peatland (-510.7 g CO2·m-2·a-1) < seagrass bed (-61.6 g CO2·m-2·a-1). When CH4 flux being converted into CO2-equivalent flux (CO2-eq flux) based on the 100-year scale global warming potentials, we found that the CH4 emissions partially offset 19.4%, 14.0%, 36.1%, 64.9% and 60.1% of the net CO2 uptake in seagrass beds, salt marshes, mangroves, non-peatland wetland and peatland, respectively. Over the 20-year scale, CH4 emissions partially offset 57.3%, 41.4%, 107.0%, 192.0% and 177.3% of the net CO2 uptake, respectively. Some mangroves, peatlands, and non-peatland wetlands acted as net CO2 equivalent source. Over the 100-year scale, the net greenhouse gas balance of each wetland ecosystem was negative value, which indicated that even accounting CH4 emission, wetland ecosystem was still an atmospheric carbon sink. Our results indicated that clarifying the main regulation mechanism of CH4 emission from wetland ecosystems and proposing reasonable CH4 reduction measures are crucial to maintain the carbon sink function in wetland ecosystems, and to mitigate the trend of climate warming.


Asunto(s)
Ecosistema , Humedales , Secuestro de Carbono , Dióxido de Carbono , Metano
12.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1509-1516, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37694412

RESUMEN

To understand carbon sequestration capacity of grasslands, the changes of CO2 flux in Xilinhot grasslands and the influence of environmental factors were analyzed by using the eddy data of Xilinhot National Climate Observatory in 2018-2021, and the distribution of flux source areas was analyzed. The results showed that the southwest wind prevailed in the study area throughout the year, the source area in the growing season was larger than that in the non-growing season, and the source area under stable atmospheric conditions was larger than that under unstable conditions. The maximum length of source region with a contribution rate of 90% was close to 400 m, which was consistent with the length estimated by the classical law. The net ecosystem exchange (NEE) of Xilinhot grasslands had obvious diurnal and seasonal dynamics, which was manifested as a carbon sink in the daytime and a carbon source at night during the growing season and weak carbon source in the non-growing season. From 2018 to 2021, the annual total NEE were -15.59, -46.28, -41.94, and -78.14 g C·m-2·a-1, respectively, with an average value of -45.49 g C·m-2·a-1, indicating that Xilinhot grassland had strong carbon sequestration capacity. Vapor pressure deficit and photosynthetically active radiation helped grasslands absorb atmospheric CO2. At night, when temperature was above 0 ℃, the increases in air and soil temperature promoted vegetation respiration to release CO2.


Asunto(s)
Dióxido de Carbono , Ecosistema , Pradera , China , Carbono
13.
Sci Total Environ ; 900: 165627, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37495128

RESUMEN

Shrubland ecosystems across Europe face a range of threats including the potential impacts of climate change. Within the INCREASE project, six shrubland ecosystems along a European climatic gradient were exposed to ecosystem-level year-round experimental nighttime warming and long-term, repeated growing season droughts. We quantified the ecosystem level CO2 fluxes, i.e. gross primary productivity (GPP), ecosystem respiration (Reco) and net ecosystem exchange (NEE), in control and treatment plots and compared the treatment effects along the Gaussen aridity index. In general, GPP exhibited higher sensitivity to drought and warming than Reco and was found to be the dominant contributor to changes in overall NEE. Across the climate gradient, northern sites were more likely to have neutral to positive responses of NEE, i.e. increased CO2 uptake, to drought and warming partly due to seasonal rewetting. While an earlier investigation across the same sites showed a good cross-site relationship between soil respiration responses to climate over the Gaussen aridity index, the responses of GPP, Reco and NEE showed a more complex response pattern suggesting that site-specific ecosystem traits, such as different growing season periods and plant species composition, affected the overall response pattern of the ecosystem-level CO2 fluxes. We found that the observed response patterns of GPP and Reco rates at the six sites could be explained well by the hypothesized position of each site on site-specific soil moisture response curves of GPP/Reco fluxes. Such relatively simple, site-specific analyses could help improve our ability to explain observed CO2 flux patterns in larger meta-analyses as well as in larger-scale model upscaling exercises and thereby help improve our ability to project changes in ecosystem CO2 fluxes in response to future climate change.


Asunto(s)
Sequías , Ecosistema , Dióxido de Carbono/análisis , Ciclo del Carbono , Suelo , Respiración , Estaciones del Año
14.
Sci Total Environ ; 859(Pt 1): 160249, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36402337

RESUMEN

For Detroit Michigan the arrival of COVID-19 led to intensive measures to prevent further spread of the virus resulting in consequent changes in traffic and energy use. We take advantage of these different emission scenarios to explore CO2 dynamics in a postindustrial city with a declining population and increasing green space. We present atmospheric CO2 concentration and net urban ecosystem exchange of CO2 (NUE) from a typical eddy covariance system and canopy greenness from a field camera on the Wayne State University campus in midtown Detroit. We categorized our study period (January 18, 2020-July 31, 2020) into three subperiods associated with the state-wide shelter-in-place order. Our results support that the city was a net carbon source throughout the period, particularly during the shelter-in-place period, although reduced traffic lowered CO2 concentrations and NUE. However, during the post-order period when traffic was highest, atmospheric CO2 concentrations and NUE were lowest, suggesting that the greening of urban vegetation may have greater carbon mitigation potential than lowering anthropogenic carbon emissions through traffic reductions.


Asunto(s)
COVID-19 , Carbono , Humanos , Ecosistema , Dióxido de Carbono , Parques Recreativos , Pandemias , Estaciones del Año
15.
Plants (Basel) ; 11(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36235344

RESUMEN

Plants are key components of the terrestrial ecosystem carbon cycle. Atmospheric CO2 is assimilated through photosynthesis and stored in plant biomass and in the soil. The use of turfgrass is expanding due to the increasing human population and urbanization. In this review, we summarize recent carbon sequestration research in turfgrass and compare turfgrass systems to other plant systems. The soil organic carbon (SOC) stored in turfgrass systems is comparable to that in other natural and agricultural systems. Turfgrass systems are generally carbon-neutral or carbon sinks, with the exception of intensively managed areas, such as golf course greens and athletic fields. Turfgrass used in other areas, such as golf course fairways and roughs, parks, and home lawns, has the potential to contribute to carbon sequestration if proper management practices are implemented. High management inputs can increase the biomass productivity of turfgrass but do not guarantee higher SOC compared to low management inputs. Additionally, choosing the appropriate turfgrass species that are well adapted to the local climate and tolerant to stresses can maximize CO2 assimilation and biomass productivity, although other factors, such as soil respiration, can considerably affect SOC. Future research is needed to document the complete carbon footprint, as well as to identify best management practices and appropriate turfgrass species to enhance carbon sequestration in turfgrass systems.

16.
Glob Chang Biol ; 28(21): 6370-6384, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054687

RESUMEN

Peatlands drained for agriculture or forestry are susceptible to the rapid release of greenhouse gases (GHGs) through enhanced microbial decomposition and increased frequency of deep peat fires. We present evidence that rewetting drained subtropical wooded peatlands (STWPs) along the southeastern USA coast, primarily pocosin bogs, could prevent significant carbon (C) losses. To quantify GHG emissions and storage from drained and rewetted pocosin we used eddy covariance techniques, the first such estimates that have been applied to this major bog type, on a private drained (PD) site supplemented by static chamber measurements at PD and Pocosin Lakes National Wildlife Refuge. Net ecosystem exchange measurements showed that the loss was 21.2 Mg CO2  ha-1  year-1 (1 Mg = 106 g) in the drained pocosin. Under a rewetted scenario, where the annual mean water table depth (WTD) decreased from 60 to 30 cm, the C loss was projected to fall to 2 Mg CO2  ha-1  year-1 , a 94% reduction. If the WTD was 20 cm, the peatlands became a net carbon sink (-3.3 Mg CO2  ha-1  year-1 ). Hence, net C reductions could reach 24.5 Mg CO2  ha-1  year-1 , and when scaled up to the 4000 ha PD site nearly 100,000 Mg CO2  year-1 of creditable C could be amassed. We conservatively estimate among the 0.75 million ha of southeastern STWPs, between 450 and 770 km2 could be rewet, reducing annual GHG emissions by 0.96-1.6 Tg (1 Tg = 1012 g) of CO2 , through suppressed microbial decomposition and 1.7-2.8 Tg via fire prevention, respectively. Despite covering <0.01% of US land area, rewetting drained pocosin can potentially provide 2.4% of the annual CO2 nationwide reduction target of 0.18 Pg (1 Pg = 1015 g). Suggesting pocosin restoration can contribute disproportionately to the US goal of achieving net-zero emission by 2050.


Asunto(s)
Secuestro de Carbono , Gases de Efecto Invernadero , Carbono , Dióxido de Carbono/análisis , Ecosistema , Gases de Efecto Invernadero/análisis , Hidrología , Metano/análisis , Suelo , Humedales
17.
Plant Biol (Stuttg) ; 24(7): 1186-1197, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35869655

RESUMEN

The occurrence of hot drought, i.e. low water availability and simultaneous high air temperature, represents a severe threat to ecosystems. Here, we investigated how the 2018 hot drought in Central Europe caused a tipping point in tree and ecosystem functioning in a Scots pine (Pinus sylvestris L.) forest in southwest Germany. Measurements of stress indicators, such as needle water potential, carbon assimilation and volatile organic compound (VOC) emissions, of dominant P. sylvestris trees were deployed to evaluate tree functioning during hot drought. Ecosystem impact and recovery were assessed as ecosystem carbon exchange, normalized difference vegetation index (NDVI) from satellite data and tree mortality data. During summer 2018, needle water potentials of trees dropped to minimum values of -7.5 ± 0.2 MPa, which implied severe hydraulic impairment of P. sylvestris. Likewise, carbon assimilation and VOC emissions strongly declined after mid-July. Decreasing NDVI values from August 2018 onwards were detected, along with severe defoliation in P. sylvestris, impairing ecosystem carbon flux recovery in 2019, shifting the forest into a year-round carbon source. A total of 47% of all monitored trees (n = 368) died by September 2020. NDVI recovered to pre-2018 levels in 2019, likely caused by emerging broadleaved understorey species. The 2018 hot drought had severe negative impacts on P. sylvestris. The co-occurrence of unfavourable site-specific conditions with recurrent severe droughts resulted in accelerated mortality. Thus, the 2018 hot drought pushed the P. sylvestris stand towards its tipping point, with a subsequent vegetation shift to a broadleaf-dominated forest.


Asunto(s)
Pinus sylvestris , Compuestos Orgánicos Volátiles , Sequías , Ecosistema , Bosques , Árboles , Carbono , Agua
18.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1183-1190, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35730075

RESUMEN

Pinus sylvestris var. mongolica is one of the important tree species for afforestation in Three-North Regions of China. Investigating net ecosystem exchange (NEE) and its influencing factors is of significance in understanding carbon balance of P. sylvestris var. mongolica plantation . We used the eddy covariance system and its supporting instruments to measure NEE and environmental factors of P. sylvestris var. mongolica plantation in the western Liaoning Province in 2020. The results showed that, at the half-hour scale, plantation emitted carbon during nighttime and sequestrated carbon over daytime. Carbon sequestration was inhibited by drought stress in the afternoon from May to August. At the daily scale, seasonal dynamics of nighttime NEE were mainly controlled by soil temperature and moisture, while that of daytime NEE were mainly controlled by soil moisture and vapor pressure deficit due to drought stress. When soil was dry, precipitation promoted nighttime and daytime NEE and improved photosynthetic and respiration parameters. At the month scale, there was significant negative linear relationship of daytime NEE with ecosystem apparent quantum yield and ecosystem maximum photosynthetic capacity. When air temperature was lower than 5 ℃, ecosystem respiration rate at 10 ℃ and temperature sensitivity of ecosystem respiration increased linearly with decreasing air temperature. The cumulative NEE of P. sylvestris var. mongolica plantation was -145.17 g C·m-2, indicating a weak carbon sink in 2020.


Asunto(s)
Pinus sylvestris , Pinus , Carbono , Dióxido de Carbono/análisis , China , Ecosistema , Suelo
19.
Glob Chang Biol ; 28(16): 4819-4831, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35593000

RESUMEN

Changes in the biosphere carbon (C) sink are of utmost importance given rising atmospheric CO2 levels. Concurrent global changes, such as increasing nitrogen (N) deposition, are affecting how much C can be stored in terrestrial ecosystems. Understanding the extent of these impacts will help in predicting the fate of the biosphere C sink. However, most N addition experiments add N in rates that greatly exceed ambient rates of N deposition, making inference from current knowledge difficult. Here, we leveraged data from a 13-year N addition gradient experiment with addition rates spanning realistic rates of N deposition (0, 1, 5, and 10 g N m-2  year-1 ) to assess the rates of N addition at which C uptake and storage were stimulated in a temperate grassland. Very low rates of N addition stimulated gross primary productivity and plant biomass, but also stimulated ecosystem respiration such that there was no net change in C uptake or storage. Furthermore, we found consistent, nonlinear relationships between N addition rate and plant responses such that intermediate rates of N addition induced the greatest ecosystem responses. Soil pH and microbial biomass and respiration all declined with increasing N addition indicating that negative consequences of N addition have direct effects on belowground processes, which could then affect whole ecosystem C uptake and storage. Our work demonstrates that experiments that add large amounts of N may be underestimating the effect of low to intermediate rates of N deposition on grassland C cycling. Furthermore, we show that plant biomass does not reliably indicate rates of C uptake or soil C storage, and that measuring rates of C loss (i.e., ecosystem and soil respiration) in conjunction with rates of C uptake and C pools are crucial for accurately understanding grassland C storage.


Asunto(s)
Nitrógeno , Suelo , Carbono , Ciclo del Carbono , Ecosistema , Pradera , Nitrógeno/análisis , Plantas
20.
Glob Chang Biol ; 28(15): 4539-4557, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35616054

RESUMEN

Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4 ) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted tidal exchange in vast areas of coastal wetlands. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls and scaling of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here, we (1) examine how carbon fluxes vary across a salinity gradient (4-25 psu) in impounded and natural, tidally unrestricted Phragmites wetlands using static chambers and (2) probe drivers of carbon fluxes within an impounded coastal wetland using eddy covariance at the Herring River in Wellfleet, MA, United States. Freshening across the salinity gradient led to a 50-fold increase in CH4 emissions, but effects on carbon dioxide (CO2 ) were less pronounced with uptake generally enhanced in the fresher, impounded sites. The impounded wetland experienced little variation in water-table depth or salinity during the growing season and was a strong CO2 sink of -352 g CO2 -C m-2  year-1 offset by CH4 emission of 11.4 g CH4 -C m-2  year-1 . Growing season CH4 flux was driven primarily by temperature. Methane flux exhibited a diurnal cycle with a night-time minimum that was not reflected in opaque chamber measurements. Therefore, we suggest accounting for the diurnal cycle of CH4 in Phragmites, for example by applying a scaling factor developed here of ~0.6 to mid-day chamber measurements. Taken together, these results suggest that although freshened, impounded wetlands can be strong carbon sinks, enhanced CH4 emission with freshening reduces net radiative balance. Restoration of tidal flow to impounded ecosystems could limit CH4 production and enhance their climate regulating benefits.


Asunto(s)
Metano , Humedales , Ciclo del Carbono , Dióxido de Carbono , Ecosistema , Poaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...