Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurosci Conscious ; 2024(1): niae034, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301415

RESUMEN

Internal feeling states such as pain, hunger, and thirst are widely assumed to be drivers of behaviours essential for homeostasis and animal survival. Call this the 'causal assumption'. It is becoming increasingly apparent that the causal assumption is incompatible with the standard view of motor action in neuroscience. While there is a well-known explanatory gap between neural activity and feelings, there is also a disjuncture in the reverse direction-what role, if any, do feelings play in animals if not to cause behaviour? To deny that feelings cause behaviours might thus seem to presage epiphenomenalism-the idea that subjective experiences, including feelings, are inert, emergent and, on some views, non-physical properties of brain processes. Since epiphenomenalism is antagonistic to fundamental commitments of evolutionary biology, the view developed here challenges the standard view about the function of feelings without denying that feelings have a function. Instead, we introduce the 'sense making sense' hypothesis-the idea that the function of subjective experience is not to cause behaviour, but to explain, in a restricted but still useful sense of 'explanation'. A plausible framework is derived that integrates commonly accepted neural computations to blend motor control, feelings, and explanatory processes to make sense of the way feelings are integrated into our sense of how and why we do and what we do.

2.
Proc Natl Acad Sci U S A ; 121(36): e2405138121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190352

RESUMEN

The neural pathways that start human color vision begin in the complex synaptic network of the foveal retina where signals originating in long (L), middle (M), and short (S) wavelength-sensitive cone photoreceptor types are compared through antagonistic interactions, referred to as opponency. In nonhuman primates, two cone opponent pathways are well established: an L vs. M cone circuit linked to the midget ganglion cell type, often called the red-green pathway, and an S vs. L + M cone circuit linked to the small bistratified ganglion cell type, often called the blue-yellow pathway. These pathways have been taken to correspond in human vision to cardinal directions in a trichromatic color space, providing the parallel inputs to higher-level color processing. Yet linking cone opponency in the nonhuman primate retina to color mechanisms in human vision has proven particularly difficult. Here, we apply connectomic reconstruction to the human foveal retina to trace parallel excitatory synaptic outputs from the S-ON (or "blue-cone") bipolar cell to the small bistratified cell and two additional ganglion cell types: a large bistratified ganglion cell and a subpopulation of ON-midget ganglion cells, whose synaptic connections suggest a significant and unique role in color vision. These two ganglion cell types are postsynaptic to both S-ON and L vs. M opponent midget bipolar cells and thus define excitatory pathways in the foveal retina that merge the cardinal red-green and blue-yellow circuits, with the potential for trichromatic cone opponency at the first stage of human vision.


Asunto(s)
Percepción de Color , Visión de Colores , Fóvea Central , Células Fotorreceptoras Retinianas Conos , Células Ganglionares de la Retina , Humanos , Fóvea Central/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Conos/metabolismo , Visión de Colores/fisiología , Células Ganglionares de la Retina/fisiología , Percepción de Color/fisiología , Células Bipolares de la Retina/fisiología , Células Bipolares de la Retina/metabolismo , Retina/fisiología , Masculino , Femenino , Adulto , Conectoma , Vías Visuales/fisiología
3.
Adv Sci (Weinh) ; : e2403245, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119926

RESUMEN

Despite clinical data stretching over millennia, the neurobiological basis of the effectiveness of acupuncture in treating diseases of the central nervous system has remained elusive. Here, using an established model of acupuncture treatment in Parkinson's disease (PD) model mice, we show that peripheral acupuncture stimulation activates hypothalamic melanin-concentrating hormone (MCH) neurons via nerve conduction. We further identify two separate neural pathways originating from anatomically and electrophysiologically distinct MCH neuronal subpopulations, projecting to the substantia nigra and hippocampus, respectively. Through chemogenetic manipulation specifically targeting these MCH projections, their respective roles in mediating the acupuncture-induced motor recovery and memory improvements following PD onset are demonstrated, as well as the underlying mechanisms mediating recovery from dopaminergic neurodegeneration, reactive gliosis, and impaired hippocampal synaptic plasticity. Collectively, these MCH neurons constitute not only a circuit-based explanation for the therapeutic effectiveness of traditional acupuncture, but also a potential cellular target for treating both motor and non-motor PD symptoms.

4.
Elife ; 122024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133541

RESUMEN

In a developing nervous system, axonal arbors often undergo complex rearrangements before neural circuits attain their final innervation topology. In the lateral line sensory system of the zebrafish, developing sensory axons reorganize their terminal arborization patterns to establish precise neural microcircuits around the mechanosensory hair cells. However, a quantitative understanding of the changes in the sensory arbor morphology and the regulators behind the microcircuit assembly remain enigmatic. Here, we report that Semaphorin7A (Sema7A) acts as an important mediator of these processes. Utilizing a semi-automated three-dimensional neurite tracing methodology and computational techniques, we have identified and quantitatively analyzed distinct topological features that shape the network in wild-type and Sema7A loss-of-function mutants. In contrast to those of wild-type animals, the sensory axons in Sema7A mutants display aberrant arborizations with disorganized network topology and diminished contacts to hair cells. Moreover, ectopic expression of a secreted form of Sema7A by non-hair cells induces chemotropic guidance of sensory axons. Our findings propose that Sema7A likely functions both as a juxtracrine and as a secreted cue to pattern neural circuitry during sensory organ development.


Asunto(s)
Sistema de la Línea Lateral , Semaforinas , Pez Cebra , Animales , Semaforinas/metabolismo , Semaforinas/genética , Sistema de la Línea Lateral/embriología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Axones/fisiología , Axones/metabolismo , Red Nerviosa/fisiología
5.
Elife ; 122024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857169

RESUMEN

Understanding how different neuronal types connect and communicate is critical to interpreting brain function and behavior. However, it has remained a formidable challenge to decipher the genetic underpinnings that dictate the specific connections formed between neuronal types. To address this, we propose a novel bilinear modeling approach that leverages the architecture similar to that of recommendation systems. Our model transforms the gene expressions of presynaptic and postsynaptic neuronal types, obtained from single-cell transcriptomics, into a covariance matrix. The objective is to construct this covariance matrix that closely mirrors a connectivity matrix, derived from connectomic data, reflecting the known anatomical connections between these neuronal types. When tested on a dataset of Caenorhabditis elegans, our model achieved a performance comparable to, if slightly better than, the previously proposed spatial connectome model (SCM) in reconstructing electrical synaptic connectivity based on gene expressions. Through a comparative analysis, our model not only captured all genetic interactions identified by the SCM but also inferred additional ones. Applied to a mouse retinal neuronal dataset, the bilinear model successfully recapitulated recognized connectivity motifs between bipolar cells and retinal ganglion cells, and provided interpretable insights into genetic interactions shaping the connectivity. Specifically, it identified unique genetic signatures associated with different connectivity motifs, including genes important to cell-cell adhesion and synapse formation, highlighting their role in orchestrating specific synaptic connections between these neurons. Our work establishes an innovative computational strategy for decoding the genetic programming of neuronal type connectivity. It not only sets a new benchmark for single-cell transcriptomic analysis of synaptic connections but also paves the way for mechanistic studies of neural circuit assembly and genetic manipulation of circuit wiring.


Asunto(s)
Caenorhabditis elegans , Conectoma , Neuronas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Ratones , Neuronas/fisiología , Análisis de la Célula Individual , Modelos Neurológicos
6.
Natl Sci Rev ; 11(4): nwae082, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38686177

RESUMEN

The nucleus of Darkschewitsch (ND), mainly composed of GABAergic neurons, is widely recognized as a component of the eye-movement controlling system. However, the functional contribution of ND GABAergic neurons (NDGABA) in animal behavior is largely unknown. Here, we show that NDGABA neurons were selectively activated by different types of fear stimuli, such as predator odor and foot shock. Optogenetic and chemogenetic manipulations revealed that NDGABA neurons mediate freezing behavior. Moreover, using circuit-based optogenetic and neuroanatomical tracing methods, we identified an excitatory pathway from the lateral periaqueductal gray (lPAG) to the ND that induces freezing by exciting ND inhibitory outputs to the motor-related gigantocellular reticular nucleus, ventral part (GiV). Together, these findings indicate the NDGABA population as a novel hub for controlling defensive response by relaying fearful information from the lPAG to GiV, a mechanism critical for understanding how the freezing behavior is encoded in the mammalian brain.

7.
Neurotherapeutics ; 21(3): e00364, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38669936

RESUMEN

Surgical neuromodulation has witnessed significant progress in recent decades. Notably, deep brain stimulation (DBS), delivered precisely within therapeutic targets, has revolutionized the treatment of medication-refractory movement disorders and is now expanding for refractory psychiatric disorders, refractory epilepsy, and post-stroke motor recovery. In parallel, the advent of incisionless treatment with focused ultrasound ablation (FUSA) can offer patients life-changing symptomatic relief. Recent research has underscored the potential to further optimize DBS and FUSA outcomes by conceptualizing the therapeutic targets as critical nodes embedded within specific brain networks instead of strictly anatomical structures. This paradigm shift was facilitated by integrating two imaging modalities used regularly in brain connectomics research: diffusion MRI (dMRI) and functional MRI (fMRI). These advanced imaging techniques have helped optimize the targeting and programming techniques of surgical neuromodulation, all while holding immense promise for investigations into treating other neurological and psychiatric conditions. This review aims to provide a fundamental background of advanced imaging for clinicians and scientists, exploring the synergy between current and future approaches to neuromodulation as they relate to dMRI and fMRI capabilities. Focused research in this area is required to optimize existing, functional neurosurgical treatments while serving to build an investigative infrastructure to unlock novel targets to alleviate the burden of other neurological and psychiatric disorders.


Asunto(s)
Estimulación Encefálica Profunda , Imagen por Resonancia Magnética , Humanos , Estimulación Encefálica Profunda/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/tendencias , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Procedimientos Neuroquirúrgicos/métodos
8.
Proc Natl Acad Sci U S A ; 121(9): e2320276121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38381789

RESUMEN

Neuropeptide S (NPS) was postulated to be a wake-promoting neuropeptide with unknown mechanism, and a mutation in its receptor (NPSR1) causes the short sleep duration trait in humans. We investigated the role of different NPS+ nuclei in sleep/wake regulation. Loss-of-function and chemogenetic studies revealed that NPS+ neurons in the parabrachial nucleus (PB) are wake-promoting, whereas peri-locus coeruleus (peri-LC) NPS+ neurons are not important for sleep/wake modulation. Further, we found that a NPS+ nucleus in the central gray of the pons (CGPn) strongly promotes sleep. Fiber photometry recordings showed that NPS+ neurons are wake-active in the CGPn and wake/REM-sleep active in the PB and peri-LC. Blocking NPS-NPSR1 signaling or knockdown of Nps supported the function of the NPS-NPSR1 pathway in sleep/wake regulation. Together, these results reveal that NPS and NPS+ neurons play dichotomous roles in sleep/wake regulation at both the molecular and circuit levels.


Asunto(s)
Neuropéptidos , Sueño , Humanos , Sueño/fisiología , Puente/fisiología , Locus Coeruleus/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
9.
CNS Neurosci Ther ; 30(4): e14482, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37786962

RESUMEN

INTRODUCTION: Restricted repetitive behaviors (RRBs), which are associated with many different neurological and mental disorders, such as obsessive-compulsive disorder (OCD) and autism, are patterns of behavior with little variation and little obvious function. Paired Box 2 (Pax2) is a transcription factor that is expressed in many systems, including the kidney and the central nervous system. The protein that is encoded by Pax2 has been implicated in the development of the nervous system and neurodevelopmental disorders. In our previous study, Pax2 heterozygous gene knockout mice (Pax2+/- mice) showed abnormally increased self-grooming and impaired learning and memory abilities. However, it remains unclear which cell type is involved in this process. In this study, we deleted Pax2 only in the nervous system to determine the regulatory mechanism of Pax2 in RRBs. METHODS: In this study, Pax2 nervous system-specific knockout mice (Nestin-Pax2 mice) aged 6-8 weeks and Pax2 flox mice of the same age were recruited as the experimental group. Tamoxifen and vehicle were administered via intraperitoneal injection to induce Pax2 knockout after gene identification. Western blotting was used to detect Pax2 expression. After that, we assessed the general health of these two groups of mice. The self-grooming test, marble burying test and T-maze acquisition and reversal learning test were used to observe the lower-order and higher-order RRBs. The three-chamber test, Y-maze, and elevated plus-maze were used to assess social ability, spatial memory ability, and anxiety. Neural circuitry tracing and transcriptome sequencing (RNA-seq) were used to observe the abnormal neural circuitry, differentially expressed genes (DEGs) and signaling pathways affected by Pax2 gene knockout in the nervous system and the putative molecular mechanism. RESULTS: (1) The Nestin-Pax2 mouse model was successfully constructed, and the Nestin-Pax2 mice showed decreased expression of Pax2. (2) Nestin-Pax2 mice showed increased self-grooming behavior and impaired T-maze reversal behavior compared with Pax2 flox mice. (3) An increased number of projection fibers can be found in the mPFC projecting to the CA1 and BLA, and a reduction in IGFBP2 can be found in the hippocampus of Nestin-Pax2 mice. CONCLUSION: The results demonstrated that loss of Pax2 in the nervous system leads to restricted repetitive behaviors. The mechanism may be associated with impaired neural circuitry and a reduction in IGFBP2.


Asunto(s)
Cognición , Sistema Nervioso , Humanos , Ratones , Animales , Ratones Noqueados , Nestina , Hipocampo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Factor de Transcripción PAX2/genética
10.
Mol Neurobiol ; 61(1): 358-371, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37607992

RESUMEN

Neuronal synaptic junctions connect neurons to enable neuronal signal transmission in the nervous system. The proper establishment of synaptic connections required many adhesion molecules. Malfunctions of these adhesion molecules can result in neural development disorders and neuropsychiatric disorders. How specific synapses are established by various adhesion molecules for proper neural circuitry is a fundamental question of neuroscience. SynCAMs, also named CADMs, Necl, etc., are among the many adhesion proteins found in synapses. Here, we review the current understanding of the physical properties of SynCAMs and their roles in axon pathfinding, myelination, synaptogenesis, and synaptic plasticity. In addition, we discuss the involvement of SynCAMs in neuropsychiatric disorders. Finally, we propose that SynCAM functions can be better viewed and understood from the perspective of orientational cell adhesions (OCAs). In particular, we discuss the possibilities of how SynCAMs can be regulated at the cell-type specific expression, transcription variants, posttranslational modification, and subcellular localization to modulate the diversity of SynCAMs as OCA molecules. Being major components of the synapses, SynCAMs continue to be an important research topic of neuroscience, and many outstanding questions are waiting to be answered.


Asunto(s)
Moléculas de Adhesión Celular , Neurogénesis , Animales , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Sinapsis/metabolismo , Vertebrados/metabolismo
11.
CNS Neurosci Ther ; 30(2): e14351, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37408386

RESUMEN

AIMS: Postoperative cognitive dysfunction (POCD) is a common complication associated with poor outcome. Our previous study has shown that living with familiar observers in the same cage reduces anxiety of mice with surgery. Anxiety can impair learning and memory. Thus, this study was designed to determine whether living with familiar observers attenuated the dysfunction of learning and memory of mice with surgery. METHODS: Six- to eight-week-old CD-1 male mice or 18-month-old C57BL/6 male mice had left carotid artery exposure under isoflurane anesthesia. They lived with non-surgery male mice at 2 (number of surgery mice) to 3 (number of non-surgery mice) ratio or with other surgery mice. Mice were subjected to light and dark box test 3 days after surgery to measure their anxiety levels and novel object recognition and fear conditioning tests from 5 days after surgery to measure their learning and memory. Blood and brain were harvested for biochemical analysis. RESULTS: Living with familiar observers that lived with surgery mice for at least 2 weeks before the surgery and then after surgery reduced the anxiety and dysfunction of learning and memory in young adult male mice. Living with unfamiliar observers that lived with surgery mice after the surgery but not before the surgery did not have those effects on the mice with surgery. Living with familiar observers attenuated learning and memory dysfunction after surgery also in old male mice. Living with familiar observers attenuated inflammatory response in the blood and brain and the activation of the lateral habenula (LHb)-ventral tegmental area (VTA) neural circuitry, which has been shown to be important for POCD. Wound infiltration with bupivacaine attenuated the activation of LHb-VTA. CONCLUSION: These results suggest that living with familiar observers attenuates POCD and neuroinflammation, possibly via inhibiting the activation of the LHb-VTA neural circuitry.


Asunto(s)
Disfunción Cognitiva , Complicaciones Cognitivas Postoperatorias , Ratones , Masculino , Animales , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Disfunción Cognitiva/etiología , Aprendizaje
12.
Front Neurosci ; 17: 1281401, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116070

RESUMEN

Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.

13.
Eur J Psychotraumatol ; 14(2): 2272477, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965734

RESUMEN

Background: Supporting wellbeing beyond symptom reduction is necessary in trauma care. Research suggests increased posttraumatic growth (PTG) may promote wellbeing more effectively than posttraumatic stress disorder (PTSD) symptom reduction alone. Understanding neurobiological mechanisms of PTG would support PTG intervention development. However, most PTG research to-date has been cross-sectional data self-reported through surveys or interviews.Objective: Neural evidence of PTG and its coexistence with resilience and PTSD is limited. To advance neural PTG literature and contribute translational neuroscientific knowledge necessary to develop future objectively measurable neural-based PTG interventions.Method: Alpha frequency EEG and validated psychological inventories measuring PTG, resilience, and PTSD symptoms were collected from 30 trauma-exposed healthy adults amidst the COVID-19 pandemic. EEG data were collected using custom MNE-Python software, and a wireless OpenBCI 16-channel dry electrode EEG headset. Psychological inventory scores were analysed in SPSS Statistics and used to categorise the EEG data. Power spectral density analyses, t-tests and ANOVAs were conducted within EEGLab to identify brain activity differentiating high and low PTG, resilience, and PTSD symptoms.Results: Higher PTG was significantly differentiated from low PTG by higher alpha power in the left centro-temporal brain area around EEG electrode C3. A trend differentiating high PTG from PTSD was also indicated in this same location. Whole-scalp spectral topographies revealed alpha power EEG correlates of PTG, resilience and PTSD symptoms shared limited, but potentially meaningful similarities.Conclusion: This research provides the first comparative neural topographies of PTG, resilience and PTSD symptoms in the known literature. Results provide objective neural evidence supporting existing theory depicting PTG, resilience and PTSD as independent, yet co-occurring constructs. PTG neuromarker alpha C3 significantly delineated high from low PTG and warrants further investigation for potential clinical application. Findings provide foundation for future neural-based interventions and research for enhancing PTG in trauma-exposed individuals.


Objective translational study designed to increase neural understanding of posttraumatic growth (PTG) and provide a basis for future neural-based interventions to enhance PTG.Results provide neural evidence of PTG as an independent construct that coexists, and shares limited neural relatedness with resilience and PTSD symptoms.Increased PTG was significantly related to higher alpha power in the left centro-temporal brain area around EEG electrode C3: This finding warrants further investigation for potential clinical application.


Asunto(s)
Crecimiento Psicológico Postraumático , Trastornos por Estrés Postraumático , Humanos , Adulto , Trastornos por Estrés Postraumático/psicología , Estudios Transversales , Pandemias , Encuestas y Cuestionarios
14.
EMBO Rep ; 24(10): e56898, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37530648

RESUMEN

Sexuality is generally prevented in newborns and arises with organizational rewiring of neural circuitry and optimization of fitness for reproduction competition. Recent studies reported that sex circuitry in Drosophila melanogaster is developed in juvenile males but functionally inhibited by juvenile hormone (JH). Here, we find that the fly sex circuitry, mainly expressing the male-specific fruitless (fruM ) and/or doublesex (dsx), is organizationally undeveloped and functionally inoperative in juvenile males. Artificially activating all fruM neurons induces substantial courtship in solitary adult males but not in juvenile males. Synaptic transmissions between major courtship regulators and all dsx neurons are strong in adult males but either weak or undetectable in juvenile males. We further find that JH does not inhibit male courtship in juvenile males but instead promotes courtship robustness in adult males. Our results indicate that the transition to sexuality from juvenile to adult flies requires organizational rewiring of neural circuitry.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Masculino , Drosophila melanogaster/genética , Factores de Transcripción , Proteínas de Drosophila/genética , Hormonas Juveniles , Conducta Sexual Animal/fisiología , Proteínas del Tejido Nervioso
15.
Front Neurosci ; 17: 1196786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424993

RESUMEN

Background: Alpha 7 nicotinic acetylcholine receptor (α7nAChR) agonists have been developed to treat schizophrenia but failed in clinical trials due to rapid desensitization. GAT107, a type 2 allosteric agonist-positive allosteric modulator (ago-PAM) to the α7 nAChR was designed to activate the α7 nAChR while reducing desensitization. We hypothesized GAT107 would alter the activity of thalamocortical neural circuitry associated with cognition, emotion, and sensory perception. Methods: The present study used pharmacological magnetic resonance imaging (phMRI) to evaluate the dose-dependent effect of GAT107 on brain activity in awake male rats. Rats were given a vehicle or one of three different doses of GAT107 (1, 3, and 10 mg/kg) during a 35 min scanning session. Changes in BOLD signal and resting state functional connectivity were evaluated and analyzed using a rat 3D MRI atlas with 173 brain areas. Results: GAT107 presented with an inverted-U dose response curve with the 3 mg/kg dose having the greatest effect on the positive BOLD volume of activation. The primary somatosensory cortex, prefrontal cortex, thalamus, and basal ganglia, particularly areas with efferent connections from the midbrain dopaminergic system were activated as compared to vehicle. The hippocampus, hypothalamus, amygdala, brainstem, and cerebellum showed little activation. Forty-five min post treatment with GAT107, data for resting state functional connectivity were acquired and showed a global decrease in connectivity as compared to vehicle. Discussion: GAT107 activated specific brain regions involved in cognitive control, motivation, and sensory perception using a BOLD provocation imaging protocol. However, when analyzed for resting state functional connectivity there was an inexplicable, general decrease in connectivity across all brain areas.

16.
Schizophr Res ; 258: 71-77, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37517366

RESUMEN

The negative symptoms of schizophrenia, which often appear earlier than any other symptom, are prominent and clinically relevant in the majority of patients. As a result, interest in their treatment has increased. Patients who exhibit significant negative symptoms have worse functional outcomes than those without, resulting in impairments in occupational, household, and recreational functioning, as well as difficulties in relationships. Yet treatment with currently available medications does not lead to any significant improvements in this core component of schizophrenia. An increased understanding of the pathophysiology underlying negative symptoms and the discovery of novel treatments that do not directly target dopamine offer the potential to develop therapies that may reduce negative symptoms and increase quality of life for patients. The current article will discuss the impact of negative symptoms, outline current measurement tools for the assessment of negative symptoms, and examine how these measures may be improved. Insights into the neural circuitry underlying negative symptoms will be discussed, and promising targets for the development of effective treatments for these symptoms will be identified. As more prospective, large-scale, randomized studies focus on the effects of treatments on negative symptoms, progress in this area is foreseeable. However, improvements in clinical assessment instruments, a better understanding of the underlying neural mechanisms, development of novel treatments with varied targets, and a greater focus on personalized treatment are all important to produce significant benefits for patients with negative symptoms of schizophrenia.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Esquizofrenia/tratamiento farmacológico , Calidad de Vida , Estudios Prospectivos , Resultado del Tratamiento
17.
Proc Natl Acad Sci U S A ; 120(18): e2300545120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37098066

RESUMEN

The Old World macaque monkey and New World common marmoset provide fundamental models for human visual processing, yet the human ancestral lineage diverged from these monkey lineages over 25 Mya. We therefore asked whether fine-scale synaptic wiring in the nervous system is preserved across these three primate families, despite long periods of independent evolution. We applied connectomic electron microscopy to the specialized foveal retina where circuits for highest acuity and color vision reside. Synaptic motifs arising from the cone photoreceptor type sensitive to short (S) wavelengths and associated with "blue-yellow" (S-ON and S-OFF) color-coding circuitry were reconstructed. We found that distinctive circuitry arises from S cones for each of the three species. The S cones contacted neighboring L and M (long- and middle-wavelength sensitive) cones in humans, but such contacts were rare or absent in macaques and marmosets. We discovered a major S-OFF pathway in the human retina and established its absence in marmosets. Further, the S-ON and S-OFF chromatic pathways make excitatory-type synaptic contacts with L and M cone types in humans, but not in macaques or marmosets. Our results predict that early-stage chromatic signals are distinct in the human retina and imply that solving the human connectome at the nanoscale level of synaptic wiring will be critical for fully understanding the neural basis of human color vision.


Asunto(s)
Visión de Colores , Conectoma , Animales , Humanos , Callithrix , Percepción de Color/fisiología , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Macaca , Cercopithecidae
18.
Zoolog Sci ; 40(2): 128-140, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37042692

RESUMEN

Many vertebrate species show breeding periods and exhibit series of characteristic species-specific sexual behaviors only during the breeding period. Here, secretion of gonadal sex hormones from the mature gonads has been considered to facilitate sexual behaviors. Thus, the sexual behavior has long been considered to be regulated by neural and hormonal mechanisms. In this review, we discuss recent progress in the study of neural control mechanisms of sexual behavior with a focus on studies using fish, which have often been the favorite animals used by many researchers who study instinctive animal behaviors. We first discuss control mechanisms of sexual behaviors by sex steroids in relation to the anatomical studies of sex steroid-concentrating neurons in various vertebrate brains, which are abundantly distributed in evolutionarily conserved areas such as preoptic area (POA) and anterior hypothalamus. We then focus on another brain area called the ventral telencephalic area, which has also been suggested to contain sex steroid-concentrating neurons and has been implicated in the control of sexual behaviors, especially in teleosts. We also discuss control of sex-specific behaviors and sexual preference influenced by estrogenic signals or by olfactory/pheromonal signals. Finally, we briefly summarize research on the modulatory control of motivation for sexual behaviors by a group of peptidergic neurons called terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which are known to be especially developed in fishes among various vertebrate species.


Asunto(s)
Peces , Área Preóptica , Femenino , Masculino , Animales , Peces/fisiología , Área Preóptica/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/fisiología , Encéfalo/metabolismo , Esteroides
19.
Front Hum Neurosci ; 16: 1021375, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277051

RESUMEN

Objective: This systematic review aims to analyze existing literature of the effects of transcranial direct current stimulation (tDCS) on motor skills learning of healthy adults and discuss the underlying neurophysiological mechanism that influences motor skills learning. Methods: This systematic review has followed the recommendations of the Preferred Reporting Items for Systematic reviews and Meta-Analyses. The PubMed, EBSCO, and Web of Science databases were systematically searched for relevant studies that were published from database inception to May 2022. Studies were included based on the Participants, Intervention, Comparison, Outcomes, and Setting inclusion strategy. The risk of bias was evaluated by using the Review manager 5.4 tool. The quality of each study was assessed with the Physiotherapy Evidence Database (PEDro) scale. Results: The electronic search produced 142 studies. Only 11 studies were included after filtering. These studies performed well in terms of distribution, blinding availability and selective reporting. They reported that tDCS significantly improved motor skills learning. The main outcomes measure were the improvement of the motor sequence tasks and specific motor skills. Nine studies showed that tDCS interventions reduced reaction time to complete motor sequence tasks in healthy adults and two studies showed that tDCS interventions improved golf putting task performance. Conclusion: The included studies showed that tDCS can help healthy adults to improve the motor skills learning by activating different brain regions, such as the primary motor cortex, left dorsolateral prefrontal cortex and right cerebellum. However, the number of included studies was limited, and the sample sizes were small. Therefore, more studies are urgently needed to validate the results of current studies and further explore the underlying neurophysiological mechanisms of tDCS in the future.

20.
Cells ; 11(19)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36231048

RESUMEN

Physical activity-based rehabilitative interventions represent the main treatment concept for people suffering from spinal cord injury (SCI). The role such interventions play in the relief of neuropathic pain (NP) states is emerging, along with underlying mechanisms resulting in SCI-induced NP (SCI-NP). Animal models have been used to investigate the benefits of activity-based interventions (ABI), such as treadmill training, wheel running, walking, swimming, and bipedal standing. These activity-based paradigms have been shown to modulate inflammatory-related alterations as well as induce functional and structural changes in the spinal cord gray matter circuitry correlated with pain behaviors. Thus far, the research available provides an incomplete picture of the cellular and molecular pathways involved in this beneficial effect. Continued research is essential for understanding how such interventions benefit SCI patients suffering from NP and allow the development of individualized rehabilitative therapies. This article reviews preclinical studies on this specific topic, goes over mechanisms involved in SCI-NP in relation to ABI, and then discusses the effectiveness of different activity-based paradigms as they relate to different forms, intensity, initiation times, and duration of ABI. This article also summarizes the mechanisms of respective interventions to ameliorate NP after SCI and provides suggestions for future research directions.


Asunto(s)
Neuralgia , Traumatismos de la Médula Espinal , Animales , Sustancia Gris , Hiperalgesia/metabolismo , Actividad Motora , Neuralgia/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...