Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 286: 117187, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39447290

RESUMEN

Phthalates are key additives in many plastic products and among the most frequently used plasticizers. The release of some of them into the environment has been shown to have serious effects on development and reproduction. Based on such effects, diisononyl phthalate (DINP) has been advocated as a safer alternative to di-2-ethylhexyl phthalate (DEHP). Recently, it has been suggested that DEHP may affect the vertebrate blood-brain barrier. This could have serious consequences not only for the developing, but also for the adult brain. Here we tested for such impact on neuronal function and demonstrate acute exposure effects of both plasticizers on fundamental aspects of brain function in an adult vertebrate. We used the Mauthner neuron in the hindbrain of fish and its diverse inputs from various sensory systems as a model. After exposing intact goldfish to environmentally relevant plasticizer concentration (either 100 µg L-1, or 10 µg L-1), we show from in vivo intracellular recording that one month of environmental exposure to DEHP or DINP affected the sensory input to this central neuron, offset the balance between excitation and inhibition, and reduced its conduction speed by 20 %. The effects of both plasticizers were strong even at the concentration of 10 µg L-1. In an adult vertebrate, our findings thus demonstrate a previously neglected high sensitivity of various crucial brain functions to the acute exposure to phthalates.

2.
Nutrients ; 16(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39203853

RESUMEN

Sensorineural hearing loss (SNHL), characterized by damage to the inner ear or auditory nerve, is a prevalent auditory disorder. This study explores the potential of Castanopsis echinocarpa (CAE) as a therapeutic agent for SNHL. In vivo experiments were conducted using zebrafish and mouse models. Zebrafish with neomycin-induced ototoxicity were treated with CAE, resulting in otic hair cell protection with an EC50 of 0.49 µg/mL and a therapeutic index of 1020. CAE treatment improved auditory function and protected cochlear sensory cells in a mouse model after noise-induced hearing loss (NIHL). RNA sequencing of NIHL mouse cochleae revealed that CAE up-regulates genes involved in neurotransmitter synthesis, secretion, transport, and neuronal survival. Real-time qPCR validation showed that NIHL decreased the mRNA expression of genes related to neuronal function, such as Gabra1, Gad1, Slc32a1, CaMK2b, CaMKIV, and Slc17a7, while the CAE treatment significantly elevated these levels. In conclusion, our findings provide strong evidence that CAE protects against hearing loss by promoting sensory cell protection and enhancing the expression of genes critical for neuronal function and survival.


Asunto(s)
Regulación de la Expresión Génica , Pérdida Auditiva Sensorineural , Extractos Vegetales , Pez Cebra , Animales , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Pérdida Auditiva Sensorineural/inducido químicamente , Ratones , Extractos Vegetales/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Modelos Animales de Enfermedad , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neomicina/farmacología , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Cóclea/efectos de los fármacos , Cóclea/metabolismo , Ototoxicidad/etiología , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo
3.
J Neurosci Methods ; 407: 110143, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670536

RESUMEN

BACKGROUND: Silicon-based micro-pillar substrates (MPS), as three-dimensional cell culture platforms with vertically aligned micro-patterned scaffolding structures, are known to facilitate high-quality growth and morphology of dorsal root ganglion (DRG) sensory neurons, promote neurite outgrowth and enhance neurite alignment. However, the electrophysiological aspects of DRG neurons cultured on silicon MPSs have not been thoroughly investigated, which is of greatest importance to ensure that such substrates do not disrupt neuronal homeostasis and function before their widespread adoption in diverse biomedical applications. NEW METHOD: We conducted whole-cell patch-clamp recordings to explore the electrophysiological properties of DRG neurons cultured on MPS arrays, utilizing a custom-made upright patch-clamp setup. RESULTS: Our findings revealed that DRG neurons exhibited similar electrophysiological responses on patterned MPS samples when compared to the control planar glass surfaces. Notably, there were no significant differences observed in the action potential parameters or firing patterns of action potentials between neurons grown on either substrate. COMPARISON WITH EXISTING METHODS: In the current study we for the first time confirmed that successful electrophysiological recordings can be obtained from the cells grown on MPS. CONCLUSION: Our results imply that, despite the potential alterations caused by the cumulative trauma of tissue harvest and cell dissociation, essential functional cell properties of DRG neurons appear to be relatively maintained on MPS surfaces. Therefore, vertically aligned silicon MPSs could be considered as a potentially effective three-dimensional system for supporting a controlled cellular environment in culture.


Asunto(s)
Ganglios Espinales , Técnicas de Placa-Clamp , Silicio , Ganglios Espinales/fisiología , Ganglios Espinales/citología , Animales , Técnicas de Placa-Clamp/instrumentación , Técnicas de Placa-Clamp/métodos , Células Cultivadas , Potenciales de Acción/fisiología , Neuronas/fisiología , Neuronas/citología , Ratas Sprague-Dawley , Ratas , Técnicas de Cultivo Tridimensional de Células/métodos , Técnicas de Cultivo Tridimensional de Células/instrumentación , Fenómenos Electrofisiológicos/fisiología
4.
Aging Cell ; 23(4): e14082, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38204362

RESUMEN

Circadian cycles of sleep:wake and gene expression change with age in all organisms examined. Metabolism is also under robust circadian regulation, but little is known about how metabolic cycles change with age and whether these contribute to the regulation of behavioral cycles. To address this gap, we compared cycling of metabolites in young and old Drosophila and found major age-related variations. A significant model separated the young metabolic profiles by circadian timepoint, but could not be defined for the old metabolic profiles due to the greater variation in this dataset. Of the 159 metabolites measured in fly heads, we found 17 that cycle by JTK analysis in young flies and 17 in aged. Only four metabolites overlapped in the two groups, suggesting that cycling metabolites are distinct in young and old animals. Among our top cyclers exclusive to young flies were components of the pentose phosphate pathway (PPP). As the PPP is important for buffering reactive oxygen species, and overexpression of glucose-6-phosphate dehydrogenase (G6PD), a key component of the PPP, was previously shown to extend lifespan in Drosophila, we asked if this manipulation also affects sleep:wake cycles. We found that overexpression in circadian clock neurons decreases sleep in association with an increase in cellular calcium and mitochondrial oxidation, suggesting that altering PPP activity affects neuronal activity. Our findings elucidate the importance of metabolic regulation in maintaining patterns of neural activity, and thereby sleep:wake cycles.


Asunto(s)
Relojes Circadianos , Drosophila , Animales , Drosophila/metabolismo , Sueño , Especies Reactivas de Oxígeno/metabolismo , Vía de Pentosa Fosfato , Ritmo Circadiano
5.
Mol Nutr Food Res ; 68(2): e2300414, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37991232

RESUMEN

SCOPE: Astaxanthin (AST) is ubiquitous in aquatic foods and microorganisms. The study previously finds that docosahexaenoic acid-acylated AST monoester (AST-DHA) improves cognitive function in Alzheimer's disease (AD), although the underlying mechanism remains unclear. Moreover, autophagy is reportedly involved in amyloid-ß (Aß) clearance and AD pathogenesis. Therefore, this study aims to evaluate the preventive effect of AST-DHA and elucidates the mechanism of autophagy modulation in Aß pathology. METHODS AND RESULTS: In the cellular AD model, AST-DHA significantly reduces toxic Aß1-42 levels and alleviated the accumulation of autophagic markers (LC3II/I and p62) in Aß25-35 -induced SH-SY5Y cells. Notably, AST-DHA restores the autophagic flux in SH-SY5YmRFP-GFP-LC3 cells. In APP/PS1 mice, a 3-month dietary supplementation of AST-DHA exceeded free-astaxanthin (F-AST) capacity to increase hippocampal and cortical autophagy. Mechanistically, AST-DHA restores autophagy by activating the ULK1 signaling pathway and restoring autophagy-lysosome fusion. Moreover, AST-DHA relieves ROS production and mitochondrial stress affecting autophagy in AD. As a favorable outcome of restored autophagy, AST-DHA mitigates cerebral Aß and p-Tau deposition, ultimately improving neuronal function. CONCLUSION: The findings demonstrate that AST-DHA can rectify autophagic impairment in AD, and confer neuroprotection in Aß-related pathology, which supports the future application of AST as an autophagic inducer for maintaining brain health.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Ácidos Docosahexaenoicos/farmacología , Péptidos beta-Amiloides/metabolismo , Autofagia , Ratones Transgénicos , Modelos Animales de Enfermedad , Xantófilas
6.
Cell Calcium ; 116: 102821, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37949035

RESUMEN

Ryanodine receptors (RyR) are intracellular Ca2+ channels localized in the endoplasmic reticulum, where they act as critical mediators of Ca2+-induced Ca2+ calcium release (CICR). In the brain, mammals express in both neurons, and non-neuronal cells, a combination of the three RyR-isoforms (RyR1-3). Pharmacological approaches, which do not distinguish between isoforms, have indicated that RyR-isoforms contribute to brain function. However, isoform-specific manipulations have revealed that RyR-isoforms display different subcellular localizations and are differentially associated with neuronal function. These findings raise the need to understand RyR-isoform specific transcriptional regulation, as this knowledge will help to elucidate the causes of neuronal dysfunction for a growing list of brain disorders that show altered RyR channel expression and function.


Asunto(s)
Retículo Endoplásmico , Canal Liberador de Calcio Receptor de Rianodina , Animales , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Encéfalo/metabolismo , Calcio/metabolismo , Isoformas de Proteínas/metabolismo , Rianodina/metabolismo , Mamíferos/metabolismo
7.
Genes Brain Behav ; 22(5): e12855, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37533187

RESUMEN

Alcohol Use Disorder is a complex genetic disorder, involving genetic, neural, and environmental factors, and their interactions. The Collaborative Study on the Genetics of Alcoholism (COGA) has been investigating these factors and identified putative alcohol use disorder risk genes through genome-wide association studies. In this review, we describe advances made by COGA in elucidating the functional changes induced by alcohol use disorder risk genes using multimodal approaches with human cell lines and brain tissue. These studies involve investigating gene regulation in lymphoblastoid cells from COGA participants and in post-mortem brain tissues. High throughput reporter assays are being used to identify single nucleotide polymorphisms in which alternate alleles differ in driving gene expression. Specific single nucleotide polymorphisms (both coding or noncoding) have been modeled using induced pluripotent stem cells derived from COGA participants to evaluate the effects of genetic variants on transcriptomics, neuronal excitability, synaptic physiology, and the response to ethanol in human neurons from individuals with and without alcohol use disorder. We provide a perspective on future studies, such as using polygenic risk scores and populations of induced pluripotent stem cell-derived neurons to identify signaling pathways related with responses to alcohol. Starting with genes or loci associated with alcohol use disorder, COGA has demonstrated that integration of multimodal data within COGA participants and functional studies can reveal mechanisms linking genomic variants with alcohol use disorder, and potential targets for future treatments.


Asunto(s)
Alcoholismo , Humanos , Alcoholismo/genética , Estudio de Asociación del Genoma Completo , Genómica , Consumo de Bebidas Alcohólicas , Etanol , Polimorfismo de Nucleótido Simple
8.
Biomolecules ; 13(2)2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36830653

RESUMEN

Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 (DYRK1) encodes a conserved protein kinase that is indispensable to neuron development. However, whether DYRK1 possesses additional functions apart from kinase function remains poorly understood. In this study, we firstly demonstrated that the C-terminal of ascidian Ciona robusta DYRK1 (CrDYRK1) showed transcriptional activation activity independent of its kinase function. The transcriptional activation activity of CrDYRK1 could be autoinhibited by a repression domain in the N-terminal. More excitingly, both activation and repression domains were retained in HsDYRK1A in humans. The genes, activated by the activation domain of HsDYRK1A, are mainly involved in ion transport and neuroactive ligand-receptor interaction. We further found that numerous mutation sites relevant to the DYRK1A-related intellectual disability syndrome locate in the C-terminal of HsDYRK1A. Then, we identified several specific DNA motifs in the transcriptional regulation region of those activated genes. Taken together, we identified a conserved transcription activation domain in DYRK1 in urochordates and vertebrates. The activation is independent of the kinase activity of DYRK1 and can be repressed by its own N-terminal. Transcriptome and mutation data indicate that the transcriptional activation ability of HsDYRK1A is potentially involved in synaptic transmission and neuronal function related to the intellectual disability syndrome.


Asunto(s)
Discapacidad Intelectual , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Fosforilación , Activación Transcripcional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Tirosina/metabolismo
9.
Dev Dyn ; 252(1): 156-171, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36454543

RESUMEN

BACKGROUND: Down syndrome (DS) patients have a 100-fold increase in the risk of Hirschsprung syndrome of the colon and rectum (HSCR), a lack of enteric neurons in the colon. The leading DS candidate gene is trisomy of the Down syndrome cell adhesion molecule (DSCAM). RESULTS: We find that Dscam1 protein is expressed in the Drosophila enteric/stomatogastric nervous system (SNS). Axonal Dscam1 phenotypes can be rescued equally by diverse isoforms. Overexpression of Dscam1 resulted in frontal and hindgut nerve overgrowth. Expression of dominant negative Dscam1-ΔC led to a truncated frontal nerve and increased branching of the hindgut nerve. Larval locomotion is influenced by feeding state, and we found that the average speed of larvae with Dscam1 SNS expression was reduced, whereas overexpression of Dscam1-ΔC significantly increased the speed. Dscam1 overexpression reduced the efficiency of food clearance from the larval gut. CONCLUSION: Our work demonstrates that overexpression of Dscam1 can perturb gut function in a model system.


Asunto(s)
Síndrome de Down , Proteínas de Drosophila , Animales , Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Síndrome de Down/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Neuronas/metabolismo
10.
Front Epidemiol ; 3: 1299587, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38455939

RESUMEN

This study's aim was to identify risk factors associated with sensorineural and neurocognitive function (brain aging) in older adults. In N = 1,478 Epidemiology of Hearing Loss Study participants (aged 64-100 years, 59% women), we conducted sensorineural and cognitive tests, which were combined into a summary measure using Principal Component Analysis (PCA). Participants with a PCA score <-1 standard deviation (SD) were considered to have brain aging. Incident brain aging was defined as PCA score <-1 SD at 5-year follow-up among participants who had a PCA score ≥-1 SD at baseline. Logistic regression and Poisson models were used to estimate associations between baseline risk factors of lifestyle, vascular and metabolic health, and inflammation and prevalent or incident brain aging, respectively. In an age-sex adjusted multivariable model, not consuming alcohol (odds ratio(OR) = 1.77, 95% confidence Interval (CI) = 1.18,2.66), higher interleukin-6 levels (OR = 1.30, 95% CI = 1.03,1.64), and depressive symptoms (OR = 2.44, 95% CI = 1.63,3.67) were associated with a higher odds of having brain aging, while higher education had protective effects (OR = 0.55, 95% CI = 0.33,0.94). A history of stroke, arterial stiffness, and obesity were associated with an increased risk of developing brain aging during the five years of follow-up. Lifestyle, vascular, metabolic and inflammatory factors were associated with brain aging in older adults, which adds to the evidence of shared pathways for sensorineural and neurocognitive declines in aging. Targeting these shared central processing etiological factors with interventions may lead to retention of better neurological function, benefiting multiple systems, i.e., hearing, smell, and cognition, ultimately helping older adults retain independence and higher quality of life longer.

11.
Cells ; 11(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36429051

RESUMEN

Cerebral ischemia refers to the symptom of insufficient blood supply to the brain. Cells of many different origins participate in the process of repairing damage after cerebral ischemia occurs, in which exosomes secreted by the cells play important roles. For their characteristics, such as small molecular weight, low immunogenicity, and the easy penetration of the blood-brain barrier (BBB), exosomes can mediate cell-to-cell communication under pathophysiological conditions. In cerebral ischemia, exosomes can reduce neuronal damage and improve the brain microenvironment by regulating inflammation, mediating pyroptosis, promoting axonal growth, and stimulating vascular remodeling. Therefore, exosomes have an excellent application prospect for the treatment of cerebral ischemia. This article reviews the roles and mechanisms of exosomes from different sources in cerebral ischemia and provides new ideas for the prevention and treatment of cerebral ischemia.


Asunto(s)
Isquemia Encefálica , Exosomas , Humanos , Barrera Hematoencefálica , Neuronas , Piroptosis
12.
J Parkinsons Dis ; 12(8): 2397-2422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278361

RESUMEN

BACKGROUND: Various cellular pathways have been implicated in the transfer of disease-related proteins between cells, contributing to disease progression and neurodegeneration. However, the overall effects of protein transfer are still unclear. OBJECTIVE: Here, we performed a systematic comparison of basic molecular mechanisms involved in the release of alpha-synuclein, Tau, and huntingtin, and evaluated functional effects upon internalization by receiving cells. METHODS: Evaluation of protein release to the extracellular space in a free form and in extracellular vesicles using an optimized ultracentrifugation protocol. The extracellular effects of the proteins and extracellular vesicles in primary neuronal cultures were assessed using multi-channel electrophysiological recordings combined with a customized spike sorting framework. RESULTS: We demonstrate cells differentially release free-forms of each protein to the extracellular space. Importantly, neuronal activity is distinctly modulated upon protein internalization in primary cortical cultures. In addition, these disease-related proteins also occur in extracellular vesicles, and are enriched in ectosomes. Internalization of ectosomes and exosomes by primary microglial or astrocytic cells elicits the production of pro-inflammatory cytokines, and modifies spontaneous electrical activity in neurons. OBJECTIVE: Overall, our study demonstrates that released proteins can have detrimental effects for surrounding cells, and suggests protein release pathways may be exploited as therapeutic targets in different neurodegenerative diseases.


Asunto(s)
Exosomas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Neuronas/metabolismo , Exosomas/metabolismo , Transporte de Proteínas
13.
Exp Ther Med ; 24(2): 492, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35837037

RESUMEN

microRNAs (miRNAs or miRs) have been reported to regulate the pathology of intracerebral hemorrhage (ICH). Therefore, the present study aimed to investigate the function of miR-30e-5p in rats with ICH with specific focus on Toll-like receptor (TLR)4. In the present study, collagenase type IV was used for the establishment of the ICH model in rats, prior to which the rats were injected with miR-30e-5p mimic or miR-30e-5p mimic + pcDNA3.1-TLR4 plasmid. The expression levels of miR-30e-5p and TLR4 were then measured using reverse transcription-quantitative PCR and western blotting. The potential interaction between miR-30e-5p and TLR4 was tested using the MicroRNA Target Prediction Database and dual-luciferase reporter and RNA immunoprecipitation assay. In addition, the concentration of TNF-α, IL-6 and IL-1ß was measured using ELISA. The protein expression levels of TLR4/myeloid differentiation factor 88 (MyD88)/TIR-domain-containing adapter-inducing interferon-ß (TRIF) signaling-associated molecules were measured by western blotting. Following induction of ICH, miR-30e-5p expression was downregulated, while TLR4 expression was upregulated. By contrast, injection with miR-30e-5p mimic rescued neuronal function while suppressing neuronal inflammation in rats following ICH; these effects were reversed by co-overexpression of TLR4. Furthermore, overexpression of miR-30e-5p inactivated TLR4/MyD88/TRIF signaling in rats with ICH; this was also reversed by overexpression of TLR4. Taken together, these results suggested that overexpression of miR-30e-5p exerted a protective role against neuronal deficit and inflammation caused by ICH in rats by targeting TLR4 and inactivating TLR4/MyD88/TRIF signaling.

14.
Front Neurosci ; 16: 858049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600617

RESUMEN

Persons with type 2 diabetes born in the regions of famine exposures have disproportionally elevated risk of vision-threatening proliferative diabetic retinopathy (PDR) in adulthood. However, the underlying mechanisms are not known. In the present study, we aimed to investigate the plausible molecular factors underlying progression to PDR. To study the association of genetic variants with PDR under the intrauterine famine exposure, we analyzed single nucleotide polymorphisms (SNPs) that were previously reported to be associated with type 2 diabetes, glucose, and pharmacogenetics. Analyses were performed in the population from northern Ukraine with a history of exposure to the Great Ukrainian Holodomor famine [the Diagnostic Optimization and Treatment of Diabetes and its Complications in the Chernihiv Region (DOLCE study), n = 3,583]. A validation of the top genetic findings was performed in the Hong Kong diabetes registry (HKDR, n = 730) with a history of famine as a consequence of the Japanese invasion during WWII. In DOLCE, the genetic risk for PDR was elevated for the variants in ADRA2A, PCSK9, and CYP2C19*2 loci, but reduced at PROX1 locus. The association of ADRA2A loci with the risk of advanced diabetic retinopathy in famine-exposed group was further replicated in HKDR. The exposure of embryonic retinal cells to starvation for glucose, mimicking the perinatal exposure to famine, resulted in sustained increased expression of Adra2a and Pcsk9, but decreased Prox1. The exposure to starvation exhibited a lasting inhibitory effects on neurite outgrowth, as determined by neurite length. In conclusion, a consistent genetic findings on the famine-linked risk of ADRA2A with PDR indicate that the nerves may likely to be responsible for communicating the effects of perinatal exposure to famine on the elevated risk of advanced stages of diabetic retinopathy in adults. These results suggest the possibility of utilizing neuroprotective drugs for the prevention and treatment of PDR.

15.
Alzheimers Dement ; 18(10): 1721-1735, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34908231

RESUMEN

N-linked protein glycosylation in the brain is an understudied facet of glucose utilization that impacts a myriad of cellular processes including resting membrane potential, axon firing, and synaptic vesicle trafficking. Currently, a spatial map of N-linked glycans within the normal and Alzheimer's disease (AD) human brain does not exist. A comprehensive analysis of the spatial N-linked glycome would improve our understanding of brain energy metabolism, linking metabolism to signaling events perturbed during AD progression, and could illuminate new therapeutic strategies. Herein we report an optimized in situ workflow for enzyme-assisted, matrix-assisted laser desorption and ionization (MALDI) mass spectrometry imaging (MSI) of brain N-linked glycans. Using this workflow, we spatially interrogated N-linked glycan heterogeneity in both mouse and human AD brains and their respective age-matched controls. We identified robust regional-specific N-linked glycan changes associated with AD in mice and humans. These data suggest that N-linked glycan dysregulation could be an underpinning of AD pathologies.


Asunto(s)
Enfermedad de Alzheimer , Glicómica , Humanos , Glicómica/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Encéfalo/metabolismo , Polisacáridos/análisis , Polisacáridos/química , Polisacáridos/metabolismo , Glucosa/metabolismo
16.
J Neurosci Methods ; 368: 109457, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34953937

RESUMEN

BACKGROUND: Recombinant adeno-associated virus (AAV) is the most widely used vector for gene therapy in clinical trials. To increase transduction efficiency and specificity, novel engineered AAV variants with modified capsid sequences are evaluated in human cell cultures and non-human primates. METHODS: We tested two novel AAV capsid variants, AAV2-NNPTPSR and AAV9-NVVRSSS, in human cortical neurons, which were directly converted from human induced pluripotent stem cells and cocultured with rat primary astrocytes. RESULTS: AAV2-NNPTPSR variant efficiently transduced both induced human cortical glutamatergic neurons and induced human cortical GABAergic interneurons. By contrast, AAV9-NVVRSSS variant transduced both induced human cortical neurons and cocultured rat primary astrocytes. High viral titers (1E+5 viral genomes per cell) caused a significant decrease in viability of induced human cortical neurons. Low viral titers (1E+4 viral genomes per cell) led to a significant increase in the neuronal activity marker c-Fos in transduced human neurons following treatment with a potassium channel blocker. CONCLUSIONS: We identified two engineered AAV capsid variants that efficiently transduce induced human cortical neurons. The threefold higher percentage of c-Fos positive, transduced human neurons may indicate functional alterations induced by viral transduction and/or transgene expression.


Asunto(s)
Dependovirus , Células Madre Pluripotentes Inducidas , Animales , Cápside/metabolismo , Dependovirus/genética , Vectores Genéticos , Humanos , Neuronas , Ratas , Transducción Genética
17.
Protein Cell ; 13(1): 6-25, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33306168

RESUMEN

The serine/threonine p21-activated kinases (PAKs), as main effectors of the Rho GTPases Cdc42 and Rac, represent a group of important molecular switches linking the complex cytoskeletal networks to broad neural activity. PAKs show wide expression in the brain, but they differ in specific cell types, brain regions, and developmental stages. PAKs play an essential and differential role in controlling neural cytoskeletal remodeling and are related to the development and fate of neurons as well as the structural and functional plasticity of dendritic spines. PAK-mediated actin signaling and interacting functional networks represent a common pathway frequently affected in multiple neurodevelopmental and neurodegenerative disorders. Considering specific small-molecule agonists and inhibitors for PAKs have been developed in cancer treatment, comprehensive knowledge about the role of PAKs in neural cytoskeletal remodeling will promote our understanding of the complex mechanisms underlying neurological diseases, which may also represent potential therapeutic targets of these diseases.


Asunto(s)
Citoesqueleto/enzimología , Enfermedades del Sistema Nervioso/enzimología , Neuronas/enzimología , Transducción de Señal , Quinasas p21 Activadas/metabolismo , Animales , Citoesqueleto/genética , Humanos , Enfermedades del Sistema Nervioso/genética , Quinasas p21 Activadas/genética
18.
Neurochem Int ; 152: 105249, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826529

RESUMEN

Building a brain is complicated but maintaining one may be an even greater challenge. Epigenetic mechanisms, including DNA methylation, histone and chromatin modifications, and the actions of non-coding RNAs, play an indispensable role in both. They orchestrate long-term changes in gene expression that underpin establishment of cellular identity as well as the distinct functionality of each cell type, while providing the needed plasticity for the brain to respond to a changing environment. The rapid expansion of studies on these epigenetic mechanisms over the last few decades has brought an evolving definition of the term epigenetics, including in the specialized context of the nervous system. The goal of this special issue is thus not only to bring a greater understanding of the myriad ways in which epigenetic mechanisms regulate nervous system development and function, but also to provide a platform for discussion of what is and what is not epigenetics. To this end, the editors have compiled a collection of review articles highlighting some of the remarkable breadth of epigenetic mechanisms that act at all stages of neuronal development and function, spanning from neurodevelopment, through learning and memory, and neurodegeneration.


Asunto(s)
Epigénesis Genética/genética , Aprendizaje/fisiología , Memoria/fisiología , Sistema Nervioso/metabolismo , Animales , Metilación de ADN/fisiología , Histonas/metabolismo , Plasticidad Neuronal/fisiología
19.
Front Oncol ; 11: 761284, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34881178

RESUMEN

OBJECTIVE: This study aimed to establish optimal surgical strategies via reviewing the clinical outcomes of various surgical approaches for the pertroclival meningiomas (PCMs). METHODS: This retrospective study enrolled 107 patients with PCMs at the authors' institution from year 2010 to 2020. Patient demographics, the clinical characteristics, various operative approaches, major morbidity, post-operative cranial nerve deficits and tumor progression or recurrence were analyzed. RESULTS: The subtemporal transtentorial approach (STA), the Kawase approach (KA), the retrosigmoid approach (RSA) and the anterior sigmoid approach (ASA), namely the posterior petrosal approach (PPA) were adopted for 17 cases, 22 cases, 31 cases and 34 cases respectively. Total or subtotal resection was achieved in 96 cases (89.7%). The incidence of new-onset and aggravated cranial nerve dysfunction were 13.1% (14/107) and 10.4% (15/144), respectively. Furthermore, 14 cases suffered from intracranial infection, 9 cases had cerebrospinal fluid leakage, and 3 cases sustained intracranial hematoma (1 case underwent second operation). The mean preoperative and postoperative Karnofsky Performance Status (KPS) score was 80 (range 60-100) and 78.6 (range 0-100), but this was not statistically significant (P>0.05). After a mean follow-up of 5.1 years (range 0.3- 10.6 years), tumor progression or recurrence was confirmed in 23 cases. Two cases died from postoperative complications. CONCLUSIONS: For the treatment of PCMs, it is still a challenge to achieve total resection. With elaborate surgical plans and advanced microsurgical skills, most patients with PCMs can be rendered tumor resection with satisfactory extent and functional preservation, despite transient neurological deterioration during early postoperative periods.

20.
Molecules ; 26(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34834026

RESUMEN

Modern societies use a continuously growing number of chemicals. Because these are released into the environment and are taken up by humans, rigorous (but practicable) risk assessment must precede the approval of new substances for commerce. A number of tests is applicable, but it has been very difficult to efficiently assay the effect of chemicals on communication and information processing in vivo in the adult vertebrate brain. Here, we suggest a straightforward way to rapidly and accurately detect effects of chemical exposure on action potential generation, synaptic transmission, central information processing, and even processing in sensory systems in vivo by recording from a single neuron. The approach is possible in an identified neuron in the hindbrain of fish that integrates various sources of information and whose properties are ideal for rapid analysis of the various effects chemicals can have on the nervous system. The analysis uses fish but, as we discuss here, key neuronal functions are conserved and differences can only be due to differences in metabolism or passage into the brain, factors that can easily be determined. Speed and efficiency of the method, therefore, make it suitable to provide information in risk assessment, as we illustrate here with the effects of bisphenols on adult brain function.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Encéfalo/metabolismo , Peces/metabolismo , Neuronas/metabolismo , Fenoles/toxicidad , Transmisión Sináptica/efectos de los fármacos , Animales , Humanos , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...