Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Más filtros












Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202411636, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152515

RESUMEN

Aberrant hypoxic stress will initiate a cascade of pathological consequence observed prominently in tumorigenesis. Understanding of hypoxia's role in tumorigenesis is  highly essential for developing effective therapeutics, which necessitates reliable tools to specifically distinguish hypoxic tumor cells (or tissues) and correlate their dynamics with the status of disease in complex living settings for precise theranostics. So far, disparate hypoxia-responsive probe molecules and prodrugs were designed via chemical or enzymatic reactions, yet their capability in real-time reporting pathogenesis development is often compromised due to unrestricted diffusion and less selectivity towards the environmental responsiveness. Herein we present an oxygen-insensitive nitroreductase (NTR)-activatable glycan metabolic reporter (pNB-ManNAz) capable of covalently labeling hypoxic tumor cells and tissues. Under pathophysiological hypoxic environments, the caged non-metabolizable precursor pNB-ManNAz exhibited unique responsiveness to cellular NTR, culminating in structural self-immolation and the resultant ManNAz could incorporate onto cell surface glycoproteins, thereby facilitating fluorescence labeling via bioorthogonal chemistry. This NTR-responsive metabolic reporter demonstrated broad applicability for multicellular hypoxia labeling, particularly in the dynamic monitoring of orthotopic tumorigenesis and targeted tumor phototherapy in vivo. We anticipate that this approach holds promise for investigating hypoxia-related pathological progression, offering valuable insights for accurate diagnosis and treatment.

2.
Front Pharmacol ; 15: 1451517, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101150

RESUMEN

Nitroreductase activable agents offer a personalized and targeted approach to cancer theranostics by selectively activating prodrugs within the tumor microenvironment. These agents enable non-invasive tumor imaging, image-guided drug delivery, and real-time treatment monitoring. By leveraging the enzymatic action of tumor-specific nitroreductase enzymes, cytotoxic drugs are delivered directly to cancer cells while minimizing systemic toxicity. This review highlights the key features, mechanisms of action, diagnostic applications, therapeutic potentials, and future directions of nitroreductase activable agents for tumor theranostics. Integration with imaging modalities, advanced drug delivery systems, immunotherapy combinations, and theranostic biomarkers shows promise for optimizing treatment outcomes and improving patient survival in oncology. Continued research and innovation in this field are crucial for advancing novel theranostic strategies and enhancing patient care. Nitroreductase activable agents represent a promising avenue for personalized cancer therapy and have the potential to transform cancer diagnosis and treatment approaches.

3.
Redox Biol ; 75: 103294, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39096854

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a serious interstitial lung disease. However, the definitive diagnosis of IPF is impeded by the limited capabilities of current diagnostic methods, which may fail to capture the optimal timing for treatment. The main goal of this study is to determine the feasibility of a nitroreductase (NTR) responsive probe, 18F-NCRP, for early detection and deterioration monitoring of IPF. 18F-NCRP was obtained with high radiochemical purity (>95 %). BLM-injured mice were established by intratracheal instillation with bleomycin (BLM) and characterized through histological analysis. Longitudinal PET/CT imaging, biodistribution study and in vitro autoradiography were performed. The correlations between the uptake of 18F-NCRP and mean lung density (tested by CT), as well as histopathological characteristics were analyzed. In PET imaging study, 18F-NCRP exhibited promising efficacy in monitoring the progression of IPF, which was earlier than CT. The ratio of uptake in BLM-injured lung to control lung increased from 1.4-fold on D15 to 2.2-fold on D22. Biodistribution data showed a significant lung uptake of 18F-NCRP in BLM-injured mice. There was a strong positive correlation between the 18F-NCRP uptake in the BLM-injured lungs and the histopathological characteristics. Given that, 18F-NCRP PET imaging of NTR, a promising biomarker for investigating the underlying pathogenic mechanism of IPF, is attainable as well as desirable, which might lay the foundation for establishing an NTR-targeted imaging evaluation system of IPF.

4.
Int J Antimicrob Agents ; 64(3): 107277, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032672

RESUMEN

OBJECTIVES: Nitrofurantoin is recommended as first-line therapy for the optimal treatment of uncomplicated urinary tract infections (UTIs) caused by enterococci and Escherichia coli. However, the mechanisms of nitrofurantoin resistance in enterococci have not been elucidated. This study aimed to investigate the mechanisms of nitrofurantoin resistance in E. faecium, focusing on the role of the nitroreductase NrmA. METHODS: Enterococcus strains isolated from the urinary tract samples were collected and were tested for nitrofurantoin susceptibility. Potential genes associated with nitrofurantoin resistance were screened in the NCBI nucleotide database and by polymerase chain reaction (PCR). Complementation assays and enzyme kinetic tests were performed to assess the impact of the Q48K mutation in NrmA on nitrofurantoin resistance. RESULTS: Of the 128 E. faecium isolates tested, 59 (46.1%) were resistant to nitrofurantoin. Analysis revealed the presence of a type IB nitroreductase, designated NrmA, in all E. faecium strains studied, shared 18.7% sequence identity with nitroreductase NfsB in E. coli. Different from NrmA in nitrofurantoin-susceptible E. faecium, nitrofurantoin-resistant strains had a single amino acid substitution, i.e., a lysine instead of a glutamine at position 48 (Q48K mutation). Complementation assays of nitrofurantoin-resistant E. faecium HS17-112 showed that the nitrofurantoin minimal inhibitory concentration of the complemented strain HS17-112: pIB166-nrmA (wild type [WT]) decreased from 128 mg/L to 4 mg/L. Compared with NrmA (WT), NrmA (Q48K) showed significantly reduced catalytic efficiency, with a kcat/Km value decreasing from 0.122 µM-1 s-1 to 0.000042 µM-1 s-1. CONCLUSION: The Q48K mutation in nitroreductase NrmA is responsible for nitrofurantoin resistance in E. faecium.

5.
J Fluoresc ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018002

RESUMEN

Nitroreductase (NTR) is to be pivotal in the biodegradation of nitroaromatics. NTR is produced in tumor tissues under hypoxic conditions, which is one of the markers for early tumor diagnosis. In this study, a novel probe FD-NTR was developed for NTR detection. Probe FD-NTR can exhibit a specific reaction with NTR in the presence of NADH. The probe displayed satisfactory selectivity and sensitivity towards NTR with a calculated detection limit of 12 ng/mL. Under the conditions of low cytotoxic hypoxia, the FD-NTR probe has shown successful application in imaging both MCF-7 cells and tumor tissues, which indicated that the FD-NTR probe holds promising application prospects for detecting NTR in tumors.

6.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999023

RESUMEN

A series of 21 new 7'H-spiro[azetidine-3,5'-furo [3,4-d]pyrimidine]s substituted at the pyrimidine ring second position were synthesized. The compounds showed high antibacterial in vitro activity against M. tuberculosis. Two compounds had lower minimum inhibitory concentrations against Mtb (H37Rv strain) compared with isoniazid. The novel spirocyclic scaffold shows excellent properties for anti-tuberculosis drug development.


Asunto(s)
Antituberculosos , Azetidinas , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Nitrofuranos , Compuestos de Espiro , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/síntesis química , Azetidinas/química , Azetidinas/farmacología , Nitrofuranos/farmacología , Nitrofuranos/química , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Compuestos de Espiro/síntesis química , Relación Estructura-Actividad , Estructura Molecular
7.
J Agric Food Chem ; 72(28): 15633-15642, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950134

RESUMEN

The residues of acifluorfen present a serious threat to the agricultural environment and sensitive crops. DnrA, a nitroreductase, is an intracellular enzyme that restricts the application of wild-type Bacillus sp. Za in environmental remediation. In this study, two strategies were employed to successfully secrete DnrA in strains SCK6 and Za, and the secretion expression conditions were optimized to achieve rapid degradation of acifluorfen. Under the optimal conditions, the relative activities of the DnrA supernatant from strains SCK6-D and Za-W were 3.06-fold and 3.53-fold higher than that of strain Za, respectively. While all three strains exhibited similar tolerance to different concentrations of acifluorfen, strains SCK6-D and Za-W demonstrated significantly faster degradation efficiency compared to strain Za. Furthermore, the DnrA supernatant from strains SCK6-D and Za-W could effectively reduce the toxicity of acifluorfen on maize and cucumber seedlings. This study provides an effective technical approach for the rapid degradation of acifluorfen.


Asunto(s)
Bacillus , Proteínas Bacterianas , Biodegradación Ambiental , Nitrorreductasas , Zea mays , Bacillus/enzimología , Bacillus/metabolismo , Bacillus/genética , Nitrorreductasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Zea mays/metabolismo , Zea mays/microbiología , Cucumis sativus/microbiología , Cucumis sativus/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/química
8.
Molecules ; 29(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39064943

RESUMEN

A series of 13 new 3-substituted 5-(5-nitro-2-furyl)-1,2,4-oxadiazoles was synthesized from different aminonitriles. All compounds were screened in the disc diffusion test at a 100 µg/mL concentration to determine the bacterial growth inhibition zone presence and diameter, and then the minimum inhibitory concentrations (MICs) were determined for the most active compounds by serial dilution. The compounds showed antibacterial activity against ESKAPE bacteria, predominantly suppressing the growth of 5 species out of the panel. Some compounds had similar or lower MICs against ESKAPE pathogens compared to ciprofloxacin, nitrofurantoin, and furazidin. In particular, 3-azetidin-3-yl-5-(5-nitro-2-furyl)-1,2,4-oxadiazole (2h) inhibited S. aureus at a concentration lower than all comparators. Compound 2e (5-(5-nitro-2-furyl)-3-[4-(pyrrolidin-3-yloxy)phenyl]-1,2,4-oxadiazole) was active against Gram-positive ESKAPE pathogens as well as M. tuberculosis. Differences in the molecular periphery led to high selectivity for the compounds. The induced-fit docking (IFD) modeling technique was applied to in silico research. Molecular docking results indicated the targeting of compounds against various nitrofuran-associated biological targets.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Nitrofuranos , Nitrofuranos/farmacología , Nitrofuranos/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Diseño de Fármacos , Relación Estructura-Actividad , Oxadiazoles/química , Oxadiazoles/farmacología , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos
9.
FEBS J ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946302

RESUMEN

Nitroreductases (NRs) are NAD(P)H-dependent flavoenzymes that reduce nitro aromatic compounds to their corresponding arylamines via the nitroso and hydroxylamine intermediates. Because of their broad substrate scope and versatility, NRs have found application in multiple fields such as biocatalysis, bioremediation, cell-imaging and prodrug activation. However, only a limited number of members of the broad NR superfamily (> 24 000 sequences) have been experimentally characterized. Within this group of enzymes, only few are capable of amine synthesis, which is a fundamental chemical transformation for the pharmaceutical, agricultural, and textile industries. Herein, we provide a comprehensive description of a recently discovered NR from Bacillus tequilensis, named BtNR. This enzyme has previously been demonstrated to have the capability to fully convert nitro aromatic and heterocyclic compounds to their respective primary amines. In this study, we determined its biochemical, kinetic and structural properties, including its apparent melting temperature (Tm) of 59 °C, broad pH activity range (from pH 3 to 10) and a notably low redox potential (-236 ± 1 mV) in comparison to other well-known NRs. We also determined its steady-state and pre-steady-state kinetic parameters, which are consistent with other NRs. Additionally, we elucidated the crystal structure of BtNR, which resembles the well-characterized Escherichia coli oxygen-insensitive NAD(P)H nitroreductase (NfsB), and investigated the substrate binding in its active site through docking and molecular dynamics studies with four nitro aromatic substrates. Guided by these structural analyses, we probed the functional roles of active site residues by site-directed mutagenesis. Our findings provide valuable insights into the biochemical and structural properties of BtNR, as well as its potential applications in biotechnology.

10.
J Biol Chem ; 300(7): 107431, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825006

RESUMEN

Antibiotic-resistant Enterobacterales pose a major threat to healthcare systems worldwide, necessitating the development of novel strategies to fight such hard-to-kill bacteria. One potential approach is to develop molecules that force bacteria to hyper-activate prodrug antibiotics, thus rendering them more effective. In the present work, we aimed to obtain proof-of-concept data to support that small molecules targeting transcriptional regulators can potentiate the antibiotic activity of the prodrug metronidazole (MTZ) against Escherichia coli under aerobic conditions. By screening a chemical library of small molecules, a series of structurally related molecules were identified that had little inherent antibiotic activity but showed substantial activity in combination with ineffective concentrations of MTZ. Transcriptome analyses, functional genetics, thermal shift assays, and electrophoretic mobility shift assays were then used to demonstrate that these MTZ boosters target the transcriptional repressor MarR, resulting in the upregulation of the marRAB operon and its downstream MarA regulon. The associated upregulation of the flavin-containing nitroreductase, NfsA, was then shown to be critical for the booster-mediated potentiation of MTZ antibiotic activity. Transcriptomic studies, biochemical assays, and electron paramagnetic resonance measurements were then used to show that under aerobic conditions, NfsA catalyzed 1-electron reduction of MTZ to the MTZ radical anion which in turn induced lethal DNA damage in E. coli. This work reports the first example of prodrug boosting in Enterobacterales by transcriptional modulators and highlights that MTZ antibiotic activity can be chemically induced under anaerobic growth conditions.


Asunto(s)
Antibacterianos , Proteínas de Escherichia coli , Escherichia coli , Metronidazol , Nitrorreductasas , Proteínas Represoras , Nitrorreductasas/metabolismo , Nitrorreductasas/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Escherichia coli/genética , Metronidazol/farmacología , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Antibacterianos/farmacología , Antibacterianos/química , Aerobiosis , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química
11.
Chembiochem ; 25(15): e202400257, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38847484

RESUMEN

Nitroreductase (NTR) has long been a target of interest for its important role involved in the nitro compounds metabolism. Various probes have been reported for NTR analysis, but rarely able to distinguish the extracellular NTR from intracellular ones. Herein we reported a new NTR sensor, HCyS-NO2, which was a hemicyanine molecule with one nitro and two sulfo groups attached. The nitro group acted as the reporting group to respond NTR reduction. Direct linkage of nitro group into the hemicyanine π conjugate system facilitated the intramolecular electron transfer (IET) process and thus quenched the fluorescence of hemicyanine core. Upon reduction with NTR, the nitro group was rapidly converted into the hydroxylamino and then the amino group, eliminating IET process and thus restoring the fluorescence. The sulfo groups installed significantly increased the hydrophilicity of the molecule, and introduced negative charges at physiological pH, preventing the diffusion into bacteria. Both gram-negative and gram-positive bacteria were able to turn on the fluorescence of HCyS-NO2, without detectable diffusion into cells, providing a useful tool to probe the extracellular reduction process.


Asunto(s)
Colorantes Fluorescentes , Nitrorreductasas , Agua , Nitrorreductasas/metabolismo , Colorantes Fluorescentes/química , Agua/química , Carbocianinas/química , Solubilidad , Estructura Molecular
12.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928299

RESUMEN

Bacterial nitroreductase enzymes capable of activating imaging probes and prodrugs are valuable tools for gene-directed enzyme prodrug therapies and targeted cell ablation models. We recently engineered a nitroreductase (E. coli NfsB F70A/F108Y) for the substantially enhanced reduction of the 5-nitroimidazole PET-capable probe, SN33623, which permits the theranostic imaging of vectors labeled with oxygen-insensitive bacterial nitroreductases. This mutant enzyme also shows improved activation of the DNA-alkylation prodrugs CB1954 and metronidazole. To elucidate the mechanism behind these enhancements, we resolved the crystal structure of the mutant enzyme to 1.98 Å and compared it to the wild-type enzyme. Structural analysis revealed an expanded substrate access channel and new hydrogen bonding interactions. Additionally, computational modeling of SN33623, CB1954, and metronidazole binding in the active sites of both the mutant and wild-type enzymes revealed key differences in substrate orientations and interactions, with improvements in activity being mirrored by reduced distances between the N5-H of isoalloxazine and the substrate nitro group oxygen in the mutant models. These findings deepen our understanding of nitroreductase substrate specificity and catalytic mechanisms and have potential implications for developing more effective theranostic imaging strategies in cancer treatment.


Asunto(s)
Metronidazol , Nitroimidazoles , Nitrorreductasas , Nitrorreductasas/metabolismo , Nitrorreductasas/química , Nitrorreductasas/genética , Nitroimidazoles/química , Nitroimidazoles/metabolismo , Metronidazol/química , Metronidazol/metabolismo , Metronidazol/farmacología , Profármacos/metabolismo , Profármacos/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Tomografía de Emisión de Positrones/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Dominio Catalítico , Ingeniería de Proteínas , Modelos Moleculares , Aziridinas/química , Aziridinas/metabolismo
13.
Chembiochem ; : e202400428, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940076

RESUMEN

Biocatalysis has played a limited role in the early stages of drug discovery. This is often attributed to the limited substrate scope of enzymes not affording access to vast areas of novel chemical space. Here, we have shown a promiscuous nitroreductase enzyme (NR-55) can be used to produce a panel of functionalised anilines from a diverse panel of aryl nitro starting materials. After screening on analytical scale, we show that sixteen substrates could be scaled to 1 mmol scale, with several poly-functional anilines afforded with ease under the standard conditions. The aniline products were also screened for activity against several cell lines of interest, with modest activity observed for one compound. This study demonstrates the potential for nitroreductase biocatalysis to provide access to functional fragments under benign conditions.

14.
Biosens Bioelectron ; 261: 116514, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908291

RESUMEN

Thyroid cancer always appears insidiously with few noticeable clinical symptoms. Due to its limitations, conventional ultrasound imaging can lead to missed or misdiagnosed cases. Surgery is still the primary treatment method of thyroid cancer, but removal of surrounding healthy tissues to minimize recurrence leads to overtreatment and added patient suffering. To address this challenge, herein, a nitroreductase (NTR) fluorescent probe, Ox-NTR, has been developed for detecting thyroid cancer and tracking the surgical removal of thyroid tumors by fluorescence imaging. The conjugated structure of oxazine 1 was disrupted, significantly reducing the issue of high background signals, thus effectively achieving low background fluorescence. Under hypoxic conditions, the nitro group of Ox-NTR can be reduced to an amine and subsequently decomposed into oxazine 1, emitting intense red fluorescence. Ox-NTR has a low detection limit of 0.09 µg/mL for NTR with excellent photostability and selectivity. Cellular studies show that Ox-NTR can effectively detect NTR levels in hypoxic thyroid cancer cells. Moreover, the ability of Ox-NTR of rapid response to thyroid cancer in vivo is confirmed by fluorescence imaging in mice, distinguishing tumors from normal tissues due to its superior low background fluorescence. Utilizing this fluorescence imaging method during surgical resection can guide the removal of tumors, preventing both missed tumor tissues and accidental removal of healthy tissue. In summary, the novel Ox-NTR offers precise detection capabilities that provide significant advantages over traditional imaging methods for thyroid cancer diagnosis and treatment, making it a valuable tool to guide tumor removal in surgical procedures.


Asunto(s)
Colorantes Fluorescentes , Nitrorreductasas , Imagen Óptica , Neoplasias de la Tiroides , Nitrorreductasas/metabolismo , Colorantes Fluorescentes/química , Neoplasias de la Tiroides/cirugía , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/patología , Humanos , Animales , Imagen Óptica/métodos , Ratones , Técnicas Biosensibles/métodos , Línea Celular Tumoral , Cirugía Asistida por Computador/métodos , Ratones Desnudos
15.
Bioorg Chem ; 149: 107531, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850779

RESUMEN

Nitroreductase (NTR) overexpression often occurs in tumors, highlighting the significance of effective NTR detection. Despite the utilization of various optical methods for this purpose, the absence of an efficient tumor-targeting optical probe for NTR detection remains a challenge. In this research, a novel tumor-targeting probe (Cy-Bio-NO2) is developed to perform dual-modal NTR detection using near-infrared fluorescence and photoacoustic techniques. This probe exhibits exceptional sensitivity and selectivity to NTR. Upon the reaction with NTR, Cy-Bio-NO2 demonstrates a distinct fluorescence "off-on" response at 800 nm, with an impressive detection limit of 12 ng/mL. Furthermore, the probe shows on-off photoacoustic signal with NTR. Cy-Bio-NO2 has been successfully employed for dual-modal NTR detection in living cells, specifically targeting biotin receptor-positive cancer cells for imaging purposes. Notably, this probe effectively detects tumor hypoxia through dual-modal imaging in tumor-bearing mice. The strategy of biotin incorporation markedly enhances the probe's tumor-targeting capability, facilitating its engagement in dual-modal imaging at tumor sites. This imaging capacity holds substantial promise as an accurate tool for cancer diagnosis.


Asunto(s)
Colorantes Fluorescentes , Nitrorreductasas , Imagen Óptica , Animales , Humanos , Ratones , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Neoplasias/diagnóstico por imagen , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Nitrorreductasas/metabolismo , Nitrorreductasas/análisis , Técnicas Fotoacústicas , Dióxido de Nitrógeno/síntesis química , Dióxido de Nitrógeno/química
16.
Eur J Med Chem ; 274: 116559, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850856

RESUMEN

Tuberculosis remains the second deadliest infectious disease in humans and a public health threat due to the emergence of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains. Therefore, it is urgent to identify new anti-tuberculosis treatments and novel therapeutic targets to prevent the emergence of resistance. In recent years, the study of anti-tuberculosis properties of nitroaromatic compounds has led to the identification of two novel biological targets, the deazaflavin (F420)-dependent nitroreductase Ddn and the decaprenylphosphoryl-ß-d-ribose 2'-epimerase DprE1. This review aims to show why Ddn and DprE1 are promising therapeutic targets and highlight nitroaromatic compounds interest in developing new anti-tuberculosis treatments active against MDR-TB and XDR-TB. Despite renewed interest in the development of new anti-tuberculosis nitroaromatic compounds, pharmaceutical companies often exclude nitro-containing molecules from their drug discovery programs because of their toxic and mutagenic potential. This exclusion results in missed opportunities to identify new nitroaromatic compounds and promising therapeutic targets.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Nitrorreductasas , Antituberculosos/farmacología , Antituberculosos/química , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Nitrorreductasas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Nitrocompuestos/química , Nitrocompuestos/farmacología , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Desarrollo de Medicamentos , Oxidorreductasas de Alcohol
17.
Talanta ; 276: 126277, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761658

RESUMEN

Nitroreductase (NTR) is a frequently used biomarker for the assessment of hypoxia level in tumors. As one of the main sources of enzymes, the dysfunction of lysosomes typically leads to various diseases. In this study, an NTR-triggered lysosome-targeting probe, M-TPE-P, was designed based on a tetraphenylethylene core. DFT calculation indicated that the probe possessed a narrow singlet-triplet energy gap (ΔEST), rendering it an efficient photosensitizer. The docking affinity of M-TPE-P to NTR revealed a strong structural match between them. Photophysical properties demonstrated that the probe exhibited high selectivity and sensitivity in a broad pH rang for detecting NTR with kcat/Km as 2.18 × 104 M-1 s-1. The detection limit was determined to be 53.6 ng/mL in 80 % PBS/DMSO solution. Cell imaging studies showed the probe could trace intracellular NTR behavior with green fluorescence. The colocalization analysis indicated its excellent lysosome-targeting specificity. In addition, the probe exhibited effective ROS generation ability and significant PDT effect after NIR irradiation, positioning it as a promising photosensitizer for cancer treatment.


Asunto(s)
Lisosomas , Nitrorreductasas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Nitrorreductasas/metabolismo , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Lisosomas/metabolismo , Lisosomas/química , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Imagen Óptica , Estilbenos/química , Estilbenos/farmacología , Células HeLa , Teoría Funcional de la Densidad , Fluorescencia , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno/metabolismo
18.
Arch Pharm (Weinheim) ; 357(7): e2400059, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38627301

RESUMEN

Chagas disease is a neglected tropical parasitic disease caused by the protozoan Trypanosoma cruzi. Worldwide, an estimated 8 million people are infected with T. cruzi, causing more than 10,000 deaths per year. Currently, only two drugs, nifurtimox and benznidazole (BNZ), are approved for its treatment. However, both are ineffective during the chronic phase, show toxicity, and produce serious side effects. This work aimed to obtain and evaluate novel 2-nitroimidazole-N-acylhydrazone derivatives analogous to BNZ. The design of these compounds used the two important pharmacophoric subunits of the BNZ prototype, the 2-nitroimidazole nucleus and the benzene ring, and the bioisosterism among the amide group of BNZ and N-acylhydrazone. The 27 compounds were obtained by a three-step route in 57%-98% yields. The biological results demonstrated the potential of this new class of compounds, since eight compounds were potent and selective in the in vitro assay against T. cruzi amastigotes and trypomastigotes using a drug-susceptible strain of T. cruzi (Tulahuen) (IC50 = 4.3-6.25 µM) and proved to be highly selective with low cytotoxicity on L929 cells. The type I nitroreductase (TcNTR) assay suggests that the new compounds may act as substrates for this enzyme.


Asunto(s)
Hidrazonas , Nitroimidazoles , Pruebas de Sensibilidad Parasitaria , Tripanocidas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Tripanocidas/farmacología , Tripanocidas/síntesis química , Tripanocidas/química , Nitroimidazoles/farmacología , Nitroimidazoles/química , Nitroimidazoles/síntesis química , Relación Estructura-Actividad , Animales , Hidrazonas/farmacología , Hidrazonas/síntesis química , Hidrazonas/química , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Ratones , Estructura Molecular , Relación Dosis-Respuesta a Droga , Humanos
19.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673999

RESUMEN

E. coli nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO2). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO2 and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO2 increases with their electron affinity (single-electron reduction potential, E17) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on E17, but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π-π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO2 reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Nitrorreductasas , Oxidación-Reducción , Profármacos , Nitrorreductasas/metabolismo , Nitrorreductasas/química , Nitrorreductasas/genética , Profármacos/química , Profármacos/metabolismo , Especificidad por Sustrato , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Potenciometría , Catálisis , Simulación del Acoplamiento Molecular
20.
Talanta ; 274: 125976, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579417

RESUMEN

Hypoxia is commonly regarded as a typical feature of solid tumors, which originates from the insufficient supply of oxygen. Herein, the development of an efficient method for assessing hypoxia levels in tumors is strongly desirable. Nitroreductase (NTR) is an overexpressed reductase in the solid tumors, has been served as a potential biomarker to evaluate the degrees of hypoxia. In this work, we elaborately synthesized a new near-infrared (NIR) fluorescence probe (MR) to monitor NTR activity for assessment of hypoxia levels in living cells and in tumors. Upon exposure of NTR, the nitro-unit of MR could be selectively reduced to amino-moiety with the help of nicotinamide adenine dinucleotide. Moreover, the obtained fluorophore emitted a prominent NIR fluorescence, because it possessed a classical "push-pull" structure. The MR displayed several distinguished characters toward NTR, including intense NIR fluorescent signals, large Stokes shift, high selectivity and low limit of detection (46 ng/mL). Furthermore, cellular confocal fluorescence imaging results validated that the MR had potential of detecting NTR levels in hypoxic cells. Significantly, using the MR, the elevated of NTR levels were successfully visualized in the tumor-bearing mouse models. Therefore, this detecting platform based on this probe may be tactfully constructed for monitoring the variations of NTR and estimating the degrees of hypoxia in tumors.


Asunto(s)
Colorantes Fluorescentes , Nitrorreductasas , Nitrorreductasas/metabolismo , Nitrorreductasas/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Animales , Ratones , Humanos , Imagen Óptica/métodos , Rayos Infrarrojos , Ratones Desnudos , Ratones Endogámicos BALB C , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...