Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892087

RESUMEN

Utilizing bioinformatics tools, this study expands our understanding of secondary metabolism in Botrytis cinerea, identifying novel genes within polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), sesquiterpene cyclase (STC), diterpene cyclase (DTC), and dimethylallyltryptophan synthase (DMATS) families. These findings enrich the genetic framework associated with B. cinerea's pathogenicity and ecological adaptation, offering insights into uncharted metabolic pathways. Significantly, the discovery of previously unannotated genes provides new molecular targets for developing targeted antifungal strategies, promising to enhance crop protection and advance our understanding of fungal biochemistry. This research not only broadens the scope of known secondary metabolites but also opens avenues for future exploration into B. cinerea's biosynthetic capabilities, potentially leading to novel antifungal compounds. Our work underscores the importance of integrating bioinformatics and genomics for fungal research, paving the way for sustainable agricultural practices by pinpointing precise molecular interventions against B. cinerea. This study sets a foundation for further investigations into the fungus's secondary metabolism, with implications for biotechnology and crop disease management.


Asunto(s)
Botrytis , Péptido Sintasas , Sintasas Poliquetidas , Metabolismo Secundario , Botrytis/genética , Botrytis/patogenicidad , Metabolismo Secundario/genética , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Biología Computacional/métodos , Familia de Multigenes , Genes Fúngicos
2.
Bioorg Med Chem ; 110: 117815, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38943807

RESUMEN

The adenylation (A) domain of non-ribosomal peptide synthetases (NRPSs) catalyzes the adenylation reaction with substrate amino acids and ATP. Leveraging the distinct substrate specificity of A-domains, we previously developed photoaffinity probes for A-domains based on derivatization with a 5'-O-N-(aminoacyl)sulfamoyl adenosine (aminoacyl-AMS)-appended clickable benzophenone. Although our photoaffinity probes with different amino acid warheads enabled selective detection, visualization, and enrichment of target A-domains in proteomic environments, the effects of photoaffinity linkers have not been investigated. To explore the optimal benzophenone-based linker scaffold, we designed seven photoaffinity probes for the A-domains with different lengths, positions, and molecular shapes. Using probes 2-8 for the phenylalanine-activating A-domain of gramicidin S synthetase A (GrsA), we systematically investigated the binding affinity and labeling efficiency of the endogenous enzyme in a live producer cell. Our results indicated that the labeling efficiencies of probes 2-8 tended to depend on their binding affinities rather than on the linker length, flexibility, or position of the photoaffinity group. We also identified that probe 2 with a 4,4'-diaminobenzophenone linker exhibits the highest labeling efficiency for GrsA with fewer non-target labeling properties in live cells.

3.
Angew Chem Int Ed Engl ; : e202406389, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801753

RESUMEN

The recently identified natural product NOSO-95A from entomopathogenic Xenorhabdus bacteria, derived from a biosynthetic gene cluster (BGC) encoding a non-ribosomal peptide synthetase (NRPS), was the first member of the odilorhabdin class of antibiotics. This class exhibits broad-spectrum antibiotic activity and inspired the development of the synthetic derivative NOSO-502, which holds potential as a new clinical drug by breaking antibiotic resistance. While the mode of action of odilorhabdins was broadly investigated, their biosynthesis pathway remained poorly understood. Here we describe the heterologous production of NOSO-95A in Escherichia coli after refactoring the complete BGC. Since the production titer was low, NRPS engineering was applied to uncover the underlying biosynthetic principles. For this, modules of the odilorhabdin NRPS fused to other synthetases were co-expressed with candidate hydroxylases encoded in the BGC allowing the characterization of the biosynthesis of three unusual amino acids and leading to the identification of a prodrug-activation mechanism by deacylation. Our work demonstrates the application of NRPS engineering as a blueprint to mechanistically elucidate large or toxic NRPS and provides the basis to generate novel odilorhabdin analogues with improved properties in the future.

4.
Microbiol Resour Announc ; 13(4): e0124623, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38451104

RESUMEN

Bacillus halotolerans F29-3, a Gram-positive bacterium, is recognized for its synthesis of the antifungal substance fengycin. This announcement introduces the complete genome sequence and provides insights into the genetic products related to antibiotic secondary metabolites, including non-ribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and NRPS/PKS combination.

5.
Microb Cell Fact ; 23(1): 93, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539193

RESUMEN

Fungal non-ribosomal peptide synthetase (NRPS)-encoding products play a paramount role in new drug discovery. Fusarium, one of the most common filamentous fungi, is well-known for its biosynthetic potential of NRPS-type compounds with diverse structural motifs and various biological properties. With the continuous improvement and extensive application of bioinformatic tools (e.g., anti-SMASH, NCBI, UniProt), more and more biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) have been identified in Fusarium strains. However, the biosynthetic logics of these SMs have not yet been well investigated till now. With the aim to increase our knowledge of the biosynthetic logics of NPRS-encoding products in Fusarium, this review firstly provides an overview of research advances in elucidating their biosynthetic pathways.


Asunto(s)
Fusarium , Fusarium/genética , Fusarium/metabolismo , Hongos/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Biología Computacional , Familia de Multigenes , Vías Biosintéticas/genética
6.
World J Microbiol Biotechnol ; 40(4): 135, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489053

RESUMEN

As lead molecules, cyclic lipopeptides with antibacterial, antifungal, and antiviral properties have garnered a lot of attention in recent years. Because of their potential, cyclic lipopeptides have earned recognition as a significant class of antimicrobial compounds with applications in pharmacology and biotechnology. These lipopeptides, often with biosurfactant properties, are amphiphilic, consisting of a hydrophilic moiety, like a carboxyl group, peptide backbone, or carbohydrates, and a hydrophobic moiety, mostly a fatty acid. Besides, several lipopeptides also have cationic groups that play an important role in biological activities. Antimicrobial lipopeptides can be considered as possible substitutes for antibiotics that are conventional to address the current drug-resistant issues as pharmaceutical industries modify the parent antibiotic molecules to render them more effective against antibiotic-resistant bacteria and fungi, leading to the development of more resistant microbial strains. Bacillus species produce lipopeptides, which are secondary metabolites that are amphiphilic and are typically synthesized by non-ribosomal peptide synthetases (NRPSs). They have been identified as potential biocontrol agents as they exhibit a broad spectrum of antimicrobial activity. A further benefit of lipopeptides is that they can be produced and purified biotechnologically or biochemically in a sustainable manner using readily available, affordable, renewable sources without harming the environment. In this review, we discuss the biochemical and functional characterization of antifungal lipopeptides, as well as their various modes of action, method of production and purification (in brief), and potential applications as novel antibiotic agents.


Asunto(s)
Antiinfecciosos , Lipopéptidos , Lipopéptidos/metabolismo , Antifúngicos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Preparaciones Farmacéuticas
7.
mSphere ; 9(3): e0047523, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38349154

RESUMEN

Reptiles and amphibians (herptiles) are some of the most endangered and threatened species on the planet and numerous conservation strategies are being implemented with the goal of ensuring species recovery. Little is known, however, about the gut microbiome of wild herptiles and how it relates to the health of these populations. Here, we report results from the gut microbiome characterization of both a broad survey of herptiles, and the correlation between the fungus Basidiobolus, and the bacterial community supported by a deeper, more intensive sampling of Plethodon glutinosus, known as slimy salamanders. We demonstrate that bacterial communities sampled from frogs, lizards, and salamanders are structured by the host taxonomy and that Basidiobolus is a common and natural component of these wild gut microbiomes. Intensive sampling of multiple hosts across the ecoregions of Tennessee revealed that geography and host:geography interactions are strong predictors of distinct Basidiobolus operational taxonomic units present within a given host. Co-occurrence analyses of Basidiobolus and bacterial community diversity support a correlation and interaction between Basidiobolus and bacteria, suggesting that Basidiobolus may play a role in structuring the bacterial community. We further the hypothesis that this interaction is advanced by unique specialized metabolism originating from horizontal gene transfer from bacteria to Basidiobolus and demonstrate that Basidiobolus is capable of producing a diversity of specialized metabolites including small cyclic peptides.IMPORTANCEThis work significantly advances our understanding of biodiversity and microbial interactions in herptile microbiomes, the role that fungi play as a structural and functional members of herptile gut microbiomes, and the chemical functions that structure microbiome phenotypes. We also provide an important observational system of how the gut microbiome represents a unique environment that selects for novel metabolic functions through horizontal gene transfer between fungi and bacteria. Such studies are needed to better understand the complexity of gut microbiomes in nature and will inform conservation strategies for threatened species of herpetofauna.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Bacterias/genética , Hongos/genética , ARN Ribosómico 16S/genética , Animales
8.
Structure ; 32(4): 440-452.e4, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38340732

RESUMEN

Nonribosomal peptide synthetases (NRPSs) are large multidomain enzymes for the synthesis of a variety of bioactive peptides in a modular and pipelined fashion. Here, we investigated how the condensation (C) domain and the adenylation (A) domain cooperate with each other for the efficient catalytic activity in microcystin NRPS modules. We solved two crystal structures of the microcystin NRPS modules, representing two different conformations in the NRPS catalytic cycle. Our data reveal that the dynamic interaction between the C and the A domains in these modules is mediated by the conserved "RXGR" motif, and this interaction is important for the adenylation activity. Furthermore, the "RXGR" motif-mediated dynamic interaction and its functional regulation are prevalent in different NRPSs modules possessing both the A and the C domains. This study provides new insights into the catalytic mechanism of NRPSs and their engineering strategy for synthetic peptides with different structures and properties.


Asunto(s)
Microcistinas , Péptido Sintasas , Péptido Sintasas/química , Conformación Molecular , Péptidos
9.
Beilstein J Org Chem ; 20: 321-330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410778

RESUMEN

Several under-explored Aspergillus sp. produce intriguing heptapeptides containing a γ-aminobutyric acid (GABA) residue with as yet unknown biological functions. In this study, a new GABA-containing heptapeptide - unguisin J (1) - along with known unguisin B (2) were isolated from a solid culture of Aspergillus heteromorphus CBS 117.55. The structure of compound 1 was elucidated by extensive 1D and 2D NMR spectroscopic analysis including HSQC, HMBC, COSY, and 2D NOESY as well as HRESIMS. The stereochemistry of 1 and 2 was determined by Marfey's method. A biosynthetic gene cluster (BGC) encoding unguisins B and J was compared to characterized BGCs in other Aspergillus sp. Since the unguisin family of heptapetides incorporate different amino acid residues at different positions of the peptide, the A and C domains of the UngA NRPS were analyzed in an attempt to understand the lack of substrate specificity observed.

10.
Chemistry ; 30(4): e202302590, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37926691

RESUMEN

Three central steps during the biosynthesis of cytochalasan precursors, including reductive release, Knoevenagel cyclisation and Diels Alder cyclisation are not yet understood at a detailed molecular level. In this work we investigated the reductive release step catalysed by a hybrid polyketide synthase non-ribosomal peptide synthetase (PKS-NRPS) from the pyrichalasin H pathway. Synthetic thiolesters were used as substrate mimics for in vitro studies with the isolated reduction (R) and holo-thiolation (T) domains of the PKS-NRPS hybrid PyiS. These assays demonstrate that the PyiS R-domain mainly catalyses an NADPH-dependent reductive release of an aldehyde intermediate that quickly undergoes spontaneous Knoevenagel cyclisation. The R-domain can only process substrates that are covalently bound to the phosphopantetheine thiol of the upstream T-domain, but it shows little selectivity for the polyketide.


Asunto(s)
Sintasas Poliquetidas , Sintasas Poliquetidas/química
11.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140972, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37951518

RESUMEN

Non-ribosomal peptide synthetases (NRPSs) generate chemically complex compounds and their modular architecture suggests that changing their domain organization can predictably alter their products. Ebony, a small three-domain NRPS, catalyzes the formation of ß-alanine containing amides from biogenic amines. To examine the necessity of interdomain interactions, we modeled and docked domains of Ebony to reveal potential interfaces between them. Testing the same domain combinations in vitro showed that 8 % of activity was preserved after Ebony was dissected into a di-domain and a detached C-terminal domain, suggesting that sufficient interaction was maintained after dissection. Our work creates a model to identify domain interfaces necessary for catalysis, an important step toward utilizing Ebony as a combinatorial engineering platform for novel amides.


Asunto(s)
Amidas , Péptido Sintasas , Péptido Sintasas/química
12.
Arch Microbiol ; 205(11): 354, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828121

RESUMEN

The urgent need for new antimicrobials arises from antimicrobial resistance. Actinobacteria, especially Streptomyces genus, are responsible for production of numerous clinical antibiotics and anticancer agents. Genome mining reveals the biosynthetic gene clusters (BGCs) related to secondary metabolites and the genetic potential of a strain to produce natural products. However, this potential may not be expressed under laboratory conditions. In the present study, the Antarctic bacterium was taxonomically affiliated as Streptomyces albidoflavus ANT_B131 (CBMAI 1855). The crude extracts showed antimicrobial activity against both fungi, Gram-positive and Gram-negative bacteria and antiproliferative activity against five human tumor cell lines. Whole-genome sequencing reveals a genome size of 6.96 Mb, and the genome mining identified 24 BGCs, representing 13.3% of the genome. The use of three culture media and three extraction methods reveals the expression and recovery of 20.8% of the BGCs. The natural products identified included compounds, such as surugamide A, surugamide D, desferrioxamine B + Al, desferrioxamine E, and ectoine. This study reveals the potential of S. albidoflavus ANT_B131 as a natural product producer. Yet, the diversity of culture media and extraction methods could enhance the BGCs expression and recovery of natural products, and could be a strategy to intensify the BGC expression of natural products.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Streptomyces , Humanos , Antibacterianos/metabolismo , Bacterias Gramnegativas/genética , Bacterias Grampositivas/genética , Antiinfecciosos/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Medios de Cultivo/metabolismo , Familia de Multigenes
13.
Acta Pharm Sin B ; 13(8): 3561-3574, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37655329

RESUMEN

WS9326A is a peptide antibiotic containing a highly unusual N-methyl-E-2-3-dehydrotyrosine (NMet-Dht) residue that is incorporated during peptide assembly on a non-ribosomal peptide synthetase (NRPS). The cytochrome P450 encoded by sas16 (P450Sas) has been shown to be essential for the formation of the alkene moiety in NMet-Dht, but the timing and mechanism of the P450Sas-mediated α,ß-dehydrogenation of Dht remained unclear. Here, we show that the substrate of P450Sas is the NRPS-associated peptidyl carrier protein (PCP)-bound dipeptide intermediate (Z)-2-pent-1'-enyl-cinnamoyl-Thr-N-Me-Tyr. We demonstrate that P450Sas-mediated incorporation of the double bond follows N-methylation of the Tyr by the N-methyl transferase domain found within the NRPS, and further that P450Sas appears to be specific for substrates containing the (Z)-2-pent-1'-enyl-cinnamoyl group. A crystal structure of P450Sas reveals differences between P450Sas and other P450s involved in the modification of NRPS-associated substrates, including the substitution of the canonical active site alcohol residue with a phenylalanine (F250), which in turn is critical to P450Sas activity and WS9326A biosynthesis. Together, our results suggest that P450Sas catalyses the direct dehydrogenation of the NRPS-bound dipeptide substrate, thus expanding the repertoire of P450 enzymes that can be used to produce biologically active peptides.

14.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762605

RESUMEN

In Pseudomonas lipopeptides, the D-configuration of amino acids is generated by dedicated, dual-function epimerization/condensation (E/C) domains. The increasing attention to stereochemistry in lipopeptide structure elucidation efforts has revealed multiple examples where epimerization does not occur, even though an E/C-type domain is present. While the origin of the idle epimerization in those E/C-domains remains elusive, epimerization activity has so far shown a binary profile: it is either 'on' (active) or 'off' (inactive). Here, we report the unprecedented observation of an E/C-domain that acts 'on and off', giving rise to the production of two diastereoisomeric lipopeptides by a single non-ribosomal peptide synthetase system. Using dereplication based on solid-phase peptide synthesis and NMR fingerprinting, we first show that the two cyclic lipopeptides produced by Pseudomonas entomophila COR5 correspond to entolysin A and B originally described for P. entomophila L48. Next, we prove that both are diastereoisomeric homologues differing only in the configuration of a single amino acid. This configurational variability is maintained in multiple Pseudomonas strains and typically occurs in a 3:2 ratio. Bioinformatic analysis reveals a possible correlation with the composition of the flanking sequence of the N-terminal secondary histidine motif characteristic for dual-function E/C-type domains. In permeabilization assays, using propidium iodide entolysin B has a higher antifungal activity compared to entolysin A against Botrytis cinerea and Pyricularia oryzae spores. The fact that configurational homologues are produced by the same NRPS system in a Pseudomonas strain adds a new level of structural and functional diversification to those already known from substrate flexibility during the recruitment of the amino acids and fatty acids and underscores the importance of complete stereochemical elucidation of non-ribosomal lipopeptide structures.


Asunto(s)
Aminoácidos , Antifibrinolíticos , Antifúngicos , Lipopéptidos
15.
Methods Mol Biol ; 2670: 17-46, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37184698

RESUMEN

The non-ribosomal peptide synthetases (NRPSs) are a family of modular enzymes involved in the production of peptide natural products. Not restricted by the constraints of ribosomal peptide and protein production, the NRPSs are able to incorporate unusual amino acids and other suitable building blocks into the final product. The NRPSs operate with an assembly line strategy in which peptide intermediates are covalently tethered to a peptidyl carrier protein and transported to different catalytic domains for the multiple steps in the biosynthesis. Often the carrier and catalytic domains are joined into a single large multidomain protein. This chapter serves to introduce the NRPS enzymes, using the nocardicin NRPS system as an example that highlights many common features to NRPS biochemistry. We then describe recent advances in the structural biology of NRPSs focusing on large multidomain structures that have been determined.


Asunto(s)
Péptido Sintasas , Péptidos , Péptido Sintasas/química , Dominio Catalítico , Bioquímica
16.
Methods Mol Biol ; 2670: 69-100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37184700

RESUMEN

Many amino acid-containing natural products are biosynthesized by large, multifunctional enzymes known as non-ribosomal peptide synthetases (NRPSs). Adenylation (A) domains in NRPSs are responsible for the incorporation of amino acid building blocks and can be considered as engineering domains; therefore, advanced techniques are required to not only rapidly verify expression and folding, but also accelerate the functional prediction of the A-domains in lysates from native and heterologous systems. We recently developed activity-based protein profiling (ABPP) of NRPSs that offers a simple and robust analytical platform for A-domains and provides insights into their enzyme-substrate specificity. In this chapter, we describe the design and synthesis of these ABPP probes and provide a summary of our work on the development of a series of protocols for labeling, visualizing, and analyzing endogenous NRPSs in complex biological systems.


Asunto(s)
Gramicidina , Péptido Sintasas , Péptido Sintasas/química , Especificidad por Sustrato , Aminoácidos
17.
Antibiotics (Basel) ; 12(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37107148

RESUMEN

Dithiolopyrrolone antibiotics are well known for their outstanding biological activities, and their biosynthesis has been studied vigorously. However, the biosynthesis mechanism of the characteristic bicyclic scaffold is still unknown after years of research. To uncover this mechanism, a multi-domain non-ribosomal peptide synthase DtpB from the biosynthetic gene cluster of thiolutin was selected as an object to study. We discovered that its adenylation domain not only recognized and adenylated cysteine, but also played an essential role in the formation of the peptide bond. Notably, an eight-membered ring compound was also discovered as an intermediate during the formation of the bicyclic structure. Based on these findings, we propose a new mechanism for the biosynthesis of the bicyclic scaffold of dithiolopyrrolones, and unveil additional functions of the adenylation domain.

18.
Mar Genomics ; 70: 101032, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37084583

RESUMEN

Marine sponges associated microorganisms are considered to be prolific source of bioactive natural products. Omics-based techniques such as metagenomics and metatranscriptomics have been used as effective tools to discover natural products. In this study, we used integrated metagenomic and metatranscriptomic analysis of three samples of the Egyptian Red Sea sponge Theonella sp. microbiome to obtain a complete picture of its biosynthetic activity to produce bioactive compounds. Our data revealed high biodiversity of the Egyptian sponge microbiota represented by 38 bacterial phyla with Candidate Phylum Poribacteria as the most abundant phyla with an average of 27.5% of the microbial community. The analysis also revealed high biosynthetic activity of the sponge microbiome through detecting different types of biosynthetic gene clusters (BGCs) with predicted antibacterial, cytotoxic and inhibitory bioactivity and the majority of these clusters were found to be actively transcribed. The complete BGCs of the cytotoxic theonellamide and misakinolide were detected and found to be actively transcribed. The majority of the detected BGCs were predicted to be novel as they did not show any similarity with any known cluster in the MIBiG database.


Asunto(s)
Microbiota , Poríferos , Theonella , Animales , Poríferos/genética , Theonella/microbiología , Metagenómica , Océano Índico , Egipto , Filogenia , Bacterias/genética
19.
Structure ; 31(6): 700-712.e4, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37059096

RESUMEN

The genotoxin colibactin produced by Escherichia coli is involved in the development of colorectal cancers. This secondary metabolite is synthesized by a multi-protein machinery, mainly composed of non-ribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) enzymes. In order to decipher the function of a PKS-NRPS hybrid enzyme implicated in a key step of colibactin biosynthesis, we conducted an extensive structural characterization of the ClbK megaenzyme. Here we present the crystal structure of the complete trans-AT PKS module of ClbK showing structural specificities of hybrid enzymes. In addition, we report the SAXS solution structure of the full-length ClbK hybrid that reveals a dimeric organization as well as several catalytic chambers. These results provide a structural framework for the transfer of a colibactin precursor through a PKS-NRPS hybrid enzyme and can pave the way for re-engineering PKS-NRPS hybrid megaenzymes to generate diverse metabolites with many applications.


Asunto(s)
Escherichia coli , Sintasas Poliquetidas , Sintasas Poliquetidas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo
20.
Life (Basel) ; 13(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36836900

RESUMEN

Micromonospora sp. AKA109 is a producer of akazaoxime and A-76356, whereas Micromonospora sp. AKA38 is that of levantilide C. We aimed to clarify their taxonomic positions and identify biosynthetic gene clusters (BGCs) of these compounds. In 16S rRNA gene and DNA gyrase subunit B gene (gyrB) sequence analyses, strains AKA109 and AKA38 were the most closely related to Micromonospora humidisoli MMS20-R2-29T and Micromonospora schwarzwaldensis HKI0641T, respectively. Although Micromonospora sp. AKA109 was identified as M. humidisoli by the gyrB sequence similarity and DNA-DNA relatedness based on whole genome sequences, Micromonospora sp. AKA38 was classified to a new genomospecies. M. humidisoli AKA109 harbored six type-I polyketide synthase (PKS), one type-II PKS, one type-III PKS, three non-ribosomal peptide synthetase (NRPS) and three hybrid PKS/NRPS gene clusters, among which the BGC of akazaoxime and A-76356 was identified. These gene clusters are conserved in M. humidisoli MMS20-R2-29T. Micromonospora sp. AKA38 harbored two type-I PKS, one of which was responsible for levantilide C, one type-II PKS, one type-III PKS, two NRPS and five hybrid PKS/NRPS gene clusters. We predicted products derived from these gene clusters through bioinformatic analyses. Consequently, these two strains are revealed to be promising sources for diverse non-ribosomal peptide and polyketide compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...