Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38399102

RESUMEN

Zinc electrodeposition serves as a crucial electrochemical process widely employed in various industries, particularly in automotive manufacturing, owing to its cost effectiveness compared to traditional methods. However, traditional zinc electrodeposition using aqueous solutions faces challenges related to toxicity and hydrogen gas generation. Non-aqueous electrolytes such as ionic liquids (ILs) and deep eutectic solvents (DESs) have gained attention, with choline-chloride-based DESs showing promise despite raising environmental concerns. In this study, zinc electrodeposition on mild steel was investigated using three distinct electrolytes: (i) halide-free aqueous solutions, (ii) chloride-based DES, and (iii) halide-free acetate-based organic solutions. The study examined the influence of deposition time on the growth of Zn on mild steel substrates from these electrolytes using physical characterization techniques, including scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicate that glycol + acetate-based non-aqueous organic solutions provide an eco-friendly alternative, exhibiting comparable efficiency, enhanced crystalline growth, and promising corrosion resistance. This research contributes valuable insights into the impact of electrolyte choice on zinc electrodeposition, offering a pathway towards more sustainable and efficient processes. Through a comprehensive comparison and analysis of these methods, it advances our understanding of the practical applications of zinc electrodeposition technology.

2.
ChemSusChem ; 17(9): e202301434, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38212248

RESUMEN

Rechargeable aluminum-ion batteries (AIBs) have emerged as a promising candidate for energy storage applications and have been extensively investigated over the past few years. Due to their high theoretical capacity, nature of abundance, and high safety, AIBs can be considered an alternative to lithium-ion batteries. However, the electrochemical performance of AIBs for large-scale applications is still limited due to the poor selection of cathode materials. Transition metal dichalcogenides (TMDs) have been regarded as appropriate cathode materials for AIBs due to their wide layer spacing, large surface area, and distinct physiochemical characteristics. This mini-review provides a succinct summary of recent research progress on TMD-based cathode materials in non-aqueous AIBs. The latest developments in the benefits of utilizing 3D-printed electrodes for AIBs are also explored.

3.
Nanomicro Lett ; 15(1): 21, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36580172

RESUMEN

Rechargeable Al batteries (RAB) are promising candidates for safe and environmentally sustainable battery systems with low-cost investments. However, the currently used aluminum chloride-based electrolytes present a significant challenge to commercialization due to their corrosive nature. Here, we report for the first time, a novel electrolyte combination for RAB based on aluminum trifluoromethanesulfonate (Al(OTf)3) with tetrabutylammonium chloride (TBAC) additive in diglyme. The presence of a mere 0.1 M of TBAC in the Al(OTf)3 electrolyte generates the charge carrying electrochemical species, which forms the basis of reaction at the electrodes. TBAC reduces the charge transfer resistance and the surface activation energy at the anode surface and also augments the dissociation of Al(OTf)3 to generate the solid electrolyte interphase components. Our electrolyte's superiority directly translates into reduced anodic overpotential for cells that ran for 1300 cycles in Al plating/stripping tests, the longest cycling life reported to date. This unique combination of salt and additive is non-corrosive, exhibits a high flash point and is cheaper than traditionally reported RAB electrolyte combinations, which makes it commercially promising. Through this report, we address a major roadblock in the commercialization of RAB and inspire equivalent electrolyte fabrication approaches for other metal anode batteries.

4.
Adv Mater ; 32(50): e2004028, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33169392

RESUMEN

The main drawbacks of today's state-of-the-art lithium-air (Li-air) batteries are their low energy efficiency and limited cycle life due to the lack of earth-abundant cathode catalysts that can drive both oxygen reduction and evolution reactions (ORR and OER) at high rates at thermodynamic potentials. Here, inexpensive trimolybdenum phosphide (Mo3 P) nanoparticles with an exceptional activity-ORR and OER current densities of 7.21 and 6.85 mA cm-2 at 2.0 and 4.2 V versus Li/Li+ , respectively-in an oxygen-saturated non-aqueous electrolyte are reported. The Tafel plots indicate remarkably low charge transfer resistance-Tafel slopes of 35 and 38 mV dec-1 for ORR and OER, respectively-resulting in the lowest ORR overpotential of 4.0 mV and OER overpotential of 5.1 mV reported to date. Using this catalyst, a Li-air battery cell with low discharge and charge overpotentials of 80 and 270 mV, respectively, and high energy efficiency of 90.2% in the first cycle is demonstrated. A long cycle life of 1200 is also achieved for this cell. Density functional theory calculations of ORR and OER on Mo3 P (110) reveal that an oxide overlayer formed on the surface gives rise to the observed high ORR and OER electrocatalytic activity and small discharge/charge overpotentials.

5.
Angew Chem Int Ed Engl ; 59(49): 22007-22011, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32805079

RESUMEN

A non-aqueous proton electrolyte is devised by dissolving H3 PO4 into acetonitrile. The electrolyte exhibits unique vibrational signatures from stimulated Raman spectroscopy. Such an electrolyte exhibits unique characteristics compared to aqueous acidic electrolytes: 1) higher (de)protonation potential for a lower desolvation energy of protons, 2) better cycling stability by dissolution suppression, and 3) higher Coulombic efficiency owing to the lack of oxygen evolution reaction. Two non-aqueous proton full cells exhibit better cycling stability, higher Coulombic efficiency, and less self-discharge compared to the aqueous counterpart.

6.
Angew Chem Int Ed Engl ; 59(34): 14577-14583, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32495999

RESUMEN

Aqueous zinc (Zn) batteries have been considered as promising candidates for grid-scale energy storage. However, their cycle stability is generally limited by the structure collapse of cathode materials and dendrite formation coupled with undesired hydrogen evolution on the Zn anode. Herein we propose a zinc-organic battery with a phenanthrenequinone macrocyclic trimer (PQ-MCT) cathode, a zinc-foil anode, and a non-aqueous electrolyte of a N,N-dimethylformamide (DMF) solution containing Zn2+ . The non-aqueous nature of the system and the formation of a Zn2+ -DMF complex can efficiently eliminate undesired hydrogen evolution and dendrite growth on the Zn anode, respectively. Furthermore, the organic cathode can store Zn2+ ions through a reversible coordination reaction with fast kinetics. Therefore, this battery can be cycled 20 000 times with negligible capacity fading. Surprisingly, this battery can even be operated in a wide temperature range from -70 to 150 °C.

7.
Membranes (Basel) ; 9(9)2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480364

RESUMEN

Ammonia is a key chemical produced in huge quantities worldwide. Its primary industrial production is via the Haber-Bosch method; a process requiring high temperatures and pressures, and consuming large amounts of energy. In the past two decades, several alternatives to the existing process have been proposed, including the electrochemical synthesis. The present paper reviews literature concerning this approach and the experimental research carried out in aqueous, molten salt, or solid electrolyte cells, over the past three years. The electrochemical systems are grouped, described, and discussed according to the operating temperature, which is determined by the electrolyte used, and their performance is valuated. The problems which need to be addressed further in order to scale-up the electrochemical synthesis of ammonia to the industrial level are examined.

8.
Angew Chem Int Ed Engl ; 58(45): 15978-16000, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31339214

RESUMEN

Further enhancement in the energy densities of rechargeable lithium batteries calls for novel cell chemistry with advanced electrode materials that are compatible with suitable electrolytes without compromising the overall performance and safety, especially when considering high-voltage applications. Significant advancements in cell chemistry based on traditional organic carbonate-based electrolytes may be successfully achieved by introducing fluorine into the salt, solvent/cosolvent, or functional additive structure. The combination of the benefits from different constituents enables optimization of the electrolyte and battery chemistry toward specific, targeted applications. This Review aims to highlight key research activities and technical developments of fluorine-based materials for aprotic non-aqueous solvent-based electrolytes and their components along with the related ongoing scientific challenges and limitations. Ionic liquid-based electrolytes containing fluorine will not be considered in this Review.

9.
ACS Appl Mater Interfaces ; 9(49): 42797-42805, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29168631

RESUMEN

Non-aqueous electrolytes (e.g., organic and ionic liquid electrolytes) can undergo high working voltage to improve the energy densities of supercapacitors. However, the large ion sizes, high viscosities, and low ionic conductivities of organic and ionic liquid electrolytes tend to cause the low specific capacitances, poor rate, and cycling performance of supercapacitors based on conventional micropore-dominant activated carbon electrodes, limiting their practical applications. Herein, we propose an effective strategy to simultaneously obtain high power and energy densities in non-aqueous electrolytes via using a cattle bone-derived porous carbon as an electrode material. Because of the unique co-activation of KOH and hydroxyapatite (HA) within the cattle bone, nitrogen-doped hierarchically porous carbon (referred to as NHPC-HA/KOH) is obtained and possesses a mesopore- and macropore-dominant porosity with an ultrahigh specific surface area (2203 m2 g-1) of meso- and macropores. The NHPC-HA/KOH electrodes exhibit superior performance with specific capacitances of 224 and 240 F g-1 at 5 A g-1 in 1.0 M TEABF4/AN and neat EMIMBF4 electrolyte, respectively. The symmetric supercapacitor using NHPC-HA/KOH electrodes can deliver integrated high energy and power properties (48.6 W h kg-1 at 3.13 kW kg-1 in 1.0 M TEABF4/AN and 75 W h kg-1 at 3.75 kW kg-1 in neat EMIMBF4), as well as superior cycling performance (over 89% of the initial capacitance after 10 000 cycles at 10 A g-1).

10.
Adv Mater ; 29(41)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28885728

RESUMEN

Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L-1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...