Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 959
Filtrar
1.
Angew Chem Int Ed Engl ; : e202412040, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023217

RESUMEN

Chlororaphens A and B are structurally unique non-canonical C17 sesquiterpenoids from Pseudomonas chlororaphis that are made by two SAM-dependent methyltransferases and a type I terpene synthase. This study addresses the mechanism of their formation in isotopic labelling experiments and DFT calculations. The results demonstrate an astonishing complexity with distribution of labellings within a cyclopentane core that is reversely connected to two acyclic fragments in chlororaphen A and B. In addition, the uptake of up to 14 deuterium atoms from D2O was observed. These findings are explainable by a repeated late stage multistep rearrangement sequence. The absolute configurations of the chlororaphens and their biosynthetic intermediates were elucidated in stereoselective labelling experiments.

2.
Zool Res ; 45(4): 937-950, 2024 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021082

RESUMEN

Autophagy plays a pivotal role in diverse biological processes, including the maintenance and differentiation of neural stem cells (NSCs). Interestingly, while complete deletion of Fip200 severely impairs NSC maintenance and differentiation, inhibiting canonical autophagy via deletion of core genes, such as Atg5, Atg16l1, and Atg7, or blockade of canonical interactions between FIP200 and ATG13 (designated as FIP200-4A mutant or FIP200 KI) does not produce comparable detrimental effects. This highlights the likely critical involvement of the non-canonical functions of FIP200, the mechanisms of which have remained elusive. Here, utilizing genetic mouse models, we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1, primarily via TAX1BP1 in NSCs. Conditional deletion of Tax1bp1 in fip200 hGFAP conditional knock-in (cKI) mice led to NSC deficiency, resembling the fip200 hGFAP conditional knockout (cKO) mouse phenotype. Notably, reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200 hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation. Conversely, a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration. Furthermore, conditional deletion of Tax1bp1 in fip200 hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200 hGFAP cKO mice. Collectively, these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function, presenting novel therapeutic targets for neurodegenerative diseases.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Autofagia , Células-Madre Neurales , Animales , Células-Madre Neurales/fisiología , Células-Madre Neurales/metabolismo , Ratones , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Noqueados , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Regulación de la Expresión Génica , Proteínas de Neoplasias
3.
Biochemistry (Mosc) ; 89(6): 987-1001, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38981695

RESUMEN

The evolution of major taxa is often associated with the emergence of new gene families. In all multicellular animals except sponges and comb jellies, the genomes contain Hox genes, which are crucial regulators of development. The canonical function of Hox genes involves colinear patterning of body parts in bilateral animals. This general function is implemented through complex, precisely coordinated mechanisms, not all of which are evolutionarily conserved and fully understood. We suggest that the emergence of this regulatory complexity was preceded by a stage of cooperation between more ancient morphogenetic programs or their individual elements. Footprints of these programs may be present in modern animals to execute non-canonical Hox functions. Non-canonical functions of Hox genes are involved in maintaining terminal nerve cell specificity, autophagy, oogenesis, pre-gastrulation embryogenesis, vertical signaling, and a number of general biological processes. These functions are realized by the basic properties of homeodomain protein and could have triggered the evolution of ParaHoxozoa and Nephrozoa subsequently. Some of these non-canonical Hox functions are discussed in our review.


Asunto(s)
Genes Homeobox , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Familia de Multigenes , Humanos , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica
4.
Cells ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38994968

RESUMEN

The incorporation of bacterial ribosome has been reported to induce multipotency in somatic and cancer cells which leads to the conversion of cell lineages. Queried on its universality, we observed that bacterial ribosome incorporation into trypsinized mouse adult fibroblast cells (MAF) led to the formation of ribosome-induced cell clusters (RICs) that showed strong positive alkaline phosphatase staining. Under in vitro differentiation conditions, RICs-MAF were differentiated into adipocytes, osteoblasts, and chondrocytes. In addition, RICs-MAF were able to differentiate into neural cells. Furthermore, RICs-MAF expressed early senescence markers without cell death. Strikingly, no noticeable expression of renowned stemness markers like Oct4, Nanog, Sox2, etc. was observed here. Later RNA-sequencing data revealed the expression of rare pluripotency-associated markers, i.e., Dnmt3l, Sox5, Tbx3 and Cdc73 in RICs-MAF and the enrichment of endogenous ribosomal status. These observations suggested that RICs-MAF might have experienced a non-canonical multipotent state during lineage conversion. In sum, we report a unique approach of an exo-ribosome-mediated plastic state of MAF that is amenable to multi-lineage conversion.


Asunto(s)
Diferenciación Celular , Fibroblastos , Ribosomas , Animales , Ratones , Ribosomas/metabolismo , Fibroblastos/metabolismo , Plasticidad de la Célula , Bacterias/metabolismo , Bacterias/genética , Linaje de la Célula
5.
aBIOTECH ; 5(2): 202-208, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974859

RESUMEN

CRISPR/Cas9, presently the most widely used genome editing technology, has provided great potential for functional studies and plant breeding. However, the strict requirement for a protospacer adjacent motif (PAM) has hindered the application of the CRISPR/Cas9 system because the number of targetable genomic sites is limited. Recently, the engineered variants Cas9-NG, SpG, and SpRY, which recognize non-canonical PAMs, have been successfully tested in plants (mainly in rice, a monocot). In this study, we evaluated the targeted mutagenesis capabilities of these Cas9 variants in two important Brassica vegetables, Chinese cabbage (Brassica rapa spp. pekinensis) and cabbage (Brassica oleracea var. capitata). Both Cas9-NG and SpG induced efficient mutagenesis at NGN PAMs, while SpG outperformed Cas9-NG at NGC and NGT PAMs. SpRY achieved efficient editing at almost all PAMs (NRN > NYN), albeit with some self-targeting activity at transfer (T)-DNA sequences. And SpRY-induced mutants were detected in cabbage plants in a PAM-less fashion. Moreover, an adenine base editor was developed using SpRY and TadA8e deaminase that induced A-to-G conversions within target sites using non-canonical PAMs. Together, the toolboxes developed here induced successful genome editing in Chinese cabbage and cabbage. Our work further expands the targeting scope of genome editing and paves the way for future basic research and genetic improvement in Brassica. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00155-7.

6.
FEBS J ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003571

RESUMEN

Non-canonical nucleotides, generated as oxidative metabolic by-products, significantly threaten the genome integrity of Plasmodium falciparum and thereby, their survival, owing to their mutagenic effects. PfHAM1, an evolutionarily conserved inosine/xanthosine triphosphate pyrophosphohydrolase, maintains nucleotide homeostasis in the malaria parasite by removing non-canonical nucleotides, although structure-function intricacies are hitherto poorly reported. Here, we report the X-ray crystal structure of PfHAM1, which revealed a homodimeric structure, additionally validated by size-exclusion chromatography-multi-angle light scattering analysis. The two monomeric units in the dimer were aligned in a parallel fashion, and critical residues associated with substrate and metal binding were identified, wherein a notable structural difference was observed in the ß-sheet main frame compared to human inosine triphosphate pyrophosphatase. PfHAM1 exhibited Mg++-dependent pyrophosphohydrolase activity and the highest binding affinity to dITP compared to other non-canonical nucleotides as measured by isothermal titration calorimetry. Modifying the pfham1 genomic locus followed by live-cell imaging of expressed mNeonGreen-tagged PfHAM1 demonstrated its ubiquitous presence in the cytoplasm across erythrocytic stages with greater expression in trophozoites and schizonts. Interestingly, CRISPR-Cas9/DiCre recombinase-guided pfham1-null P. falciparum survived in culture under standard growth conditions, indicating its assistive role in non-canonical nucleotide clearance during intra-erythrocytic stages. This is the first comprehensive structural and functional report of PfHAM1, an atypical nucleotide-cleansing enzyme in P. falciparum.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38981610

RESUMEN

Cell adhesion proteins localize to epithelial and endothelial cell membranes to form junctional complexes between neighboring cells or between cells and the underlying basement membrane. The structural and functional integrity of these junctions are critical to establish cell polarity and maintain tissue barrier function, while also facilitating leukocyte migration and adhesion to sites of inflammation. In addition to their adhesive properties, however, junctional proteins can also serve important non-canonical functions in inflammatory signaling and transcriptional regulation. Intriguingly, recent work has unveiled novel roles for cell adhesion proteins as both signaling initiators and downstream targets during inflammation. In this review, we discuss both the traditional functions of junction proteins in cell adhesion and tissue barrier function as well as their non-canonical signaling roles that have been implicated in facilitating diverse inflammatory pathologies.

8.
Arch Biochem Biophys ; : 110102, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39029644

RESUMEN

Abdominal aortic aneurysm (AAA) is a dangerous condition affecting the aorta. Macrophage pyroptosis, phenotypic transformation, and apoptosis of aortic smooth muscle cells (ASMCs) are pivotal mechanisms in AAA pathogenesis. This study explores how Gasdermin B (GSDMB) regulates macrophage non-canonical pyroptosis and its impact on the phenotypic transformation and apoptosis of ASMCs, thereby unveiling the role of GSDMB in AAA pathogenesis. Immunofluorescence analysis was used to assess the expression levels and localization of GSDMB, cysteinyl aspartate-specific protease-4 (Caspase-4), and N-terminal of cleaved GSDMD (N-GSDMD) in AAA tissues. A cell model that mimics macrophage non-canonical pyroptosis was established by treating THP-1 cells with lipopolysaccharide (LPS). THP-1 cells with reduced or increased GSDMB were generated using small interfering RNA (siRNA) or plasmids. Co-culture experiments involving THP-1 cells and HASMCs were conducted to explore the impact of GSDMB on HASMCs. The mitochondrial reactive oxygen species (mtROS) scavenger Mito-TEMPO lowered mtROS levels in THP-1 cells. Our findings revealed that GSDMB was significantly upregulated in AAA macrophages, which was accompanied by robust non-canonical pyroptosis. THP-1 cells showed non-canonical pyroptosis in response to LPS, which was accompanied by an increase in GSDMB. Further research demonstrated that altering GSDMB, either by knockdown or overexpression, can affect macrophage non-canonical pyroptosis as well as the phenotypic transformation and apoptosis of HASMCs. LPS-induced non-canonical pyroptosis in THP-1 cells was associated with an increase in mtROS, whereas Mito-TEMPO effectively decreased non-canonical pyroptosis and the expression of GSDMB. These findings suggest that GSDMB plays a role in AAA macrophage non-canonical pyroptosis, which influences the phenotypic transformation and apoptosis of HASMCs. The mtROS-Dynamin-Related Protein 1 (Drp1) axis is likely to regulate the GSDMB-mediated non-canonical pyroptosis.

9.
J Steroid Biochem Mol Biol ; 243: 106559, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823459

RESUMEN

Steroid hormone receptors are key mediators in the execution of hormone action through a combination of genomic and non-genomic action. Since their isolation and characterisation in the early 20th Century much of our understanding of the biological actions of steroid hormones are underpinned by their activated receptor activity. Over the past two decades there has been an acceleration of more omics-based research which has resulted in a major uptick in our comprehension of genomic steroid action. However, it is well understood that steroid hormones can induce very rapid signalling events in tandem with their genomic actions wherein they exert their influence through alterations in gene expression. Thus the totality of genomic and non-genomic steroid action occurs in a simultaneous and reciprocal manner and a greater appreciation of whole cell action is required to fully evaluate steroid hormone activity in vivo. In this mini-review we outline the most recent developments in non-genomic steroid action and cytoplasmic steroid hormone receptor biology in endocrine-related cancers with a focus on the 3-keto steroid receptors, in particular the androgen receptor.

10.
Cell Host Microbe ; 32(6): 913-924.e7, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38870903

RESUMEN

Aspects of how Burkholderia escape the host's intrinsic immune response to replicate in the cell cytosol remain enigmatic. Here, we show that Burkholderia has evolved two mechanisms to block the activity of Ring finger protein 213 (RNF213)-mediated non-canonical ubiquitylation of bacterial lipopolysaccharide (LPS), thereby preventing the initiation of antibacterial autophagy. First, Burkholderia's polysaccharide capsule blocks RNF213 association with bacteria and second, the Burkholderia deubiquitylase (DUB), TssM, directly reverses the activity of RNF213 through a previously unrecognized esterase activity. Structural analysis provides insight into the molecular basis of TssM esterase activity, allowing it to be uncoupled from its isopeptidase function. Furthermore, a putative TssM homolog also displays esterase activity and removes ubiquitin from LPS, establishing this as a virulence mechanism. Of note, we also find that additional immune-evasion mechanisms exist, revealing that overcoming this arm of the host's immune response is critical to the pathogen.


Asunto(s)
Proteínas Bacterianas , Burkholderia , Lipopolisacáridos , Ubiquitinación , Lipopolisacáridos/metabolismo , Humanos , Burkholderia/inmunología , Proteínas Bacterianas/metabolismo , Esterasas/metabolismo , Evasión Inmune , Ubiquitina-Proteína Ligasas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Autofagia , Virulencia
11.
Biol Open ; 13(6)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38828842

RESUMEN

Most hematological malignancies are associated with reduced expression of one or more components of the Endosomal Sorting Complex Required for Transport (ESCRT). However, the roles of ESCRT in stem cell and progenitor maintenance are not resolved. Parsing signaling pathways in relation to the canonical role of ESCRT poses a challenge. The Drosophila hematopoietic organ, the larval lymph gland, provides a path to dissect the roles of cellular trafficking pathways such as ESCRT in blood development and maintenance. Drosophila has 13 core ESCRT components. Knockdown of individual ESCRTs showed that only Vps28 and Vp36 were required in all lymph gland progenitors. Using the well-conserved ESCRT-II complex as an example of the range of phenotypes seen upon ESCRT depletion, we show that ESCRTs have cell-autonomous as well as non-autonomous roles in progenitor maintenance and differentiation. ESCRT depletion also sensitized posterior lobe progenitors to respond to immunogenic wasp infestation. We also identify key heterotypic roles for ESCRT in position-dependent control of Notch activation to suppress crystal cell differentiation. Our study shows that the cargo sorting machinery determines the identity of progenitors and their adaptability to the dynamic microenvironment. These mechanisms for control of cell fate may tailor developmental diversity in multiple contexts.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Linaje de la Célula , Diferenciación Celular/genética , Drosophila , Transducción de Señal , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Inmunidad
12.
Angew Chem Int Ed Engl ; : e202408809, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924286

RESUMEN

The biosynthesis of six recently reported non-canonical C16 sesquiterpenoids named after ancient Greek philosophers including archimedene, aristotelene, eratosthenene, pythagorene, a-democritene and anaximandrene was investigated through density functional theory (DFT) calculations and isotopic labeling experiments. The results revealed for all compounds except archimedene a unique fragmentation-recombination mechanism as previously demonstrated for sodorifen biosynthesis, in addition to a remarkable "dancing" mechanism for anaximandrene biosynthesis.

13.
Stem Cell Res Ther ; 15(1): 186, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926849

RESUMEN

BACKGROUND: Human induced pluripotent stem cells (hiPSCs) and their differentiated cell types have a great potential for tissue repair and regeneration. While the primary focus of using hiPSCs has historically been to regenerate damaged tissue, emerging studies have shown a more potent effect of hiPSC-derived paracrine factors on tissue regeneration. However, the precise contents of the transplanted hiPSC-derived cell secretome are ambiguous. This is mainly due to the lack of tools to distinguish cell-specific secretome from host-derived proteins in a complex tissue microenvironment in vivo. METHODS: In this study, we present the generation and characterization of a novel hiPSC line, L274G-hiPSC, expressing the murine mutant methionyl-tRNA synthetase, L274GMmMetRS, which can be used for tracking the cell specific proteome via biorthogonal non-canonical amino acid tagging (BONCAT). We assessed the trilineage differentiation potential of the L274G-hiPSCs in vitro and in vivo. Furthermore, we assessed the cell-specific proteome labelling in the L274G-hiPSC derived cardiomyocytes (L274G-hiPSC-CMs) in vitro following co-culture with wild type human umbilical vein derived endothelial cells and in vivo post transplantation in murine hearts. RESULTS: We demonstrated that the L274G-hiPSCs exhibit typical hiPSC characteristics and that we can efficiently track the cell-specific proteome in their differentiated progenies belonging to the three germ lineages, including L274G-hiPSC-CMs. Finally, we demonstrated cell-specific BONCAT in transplanted L274G-hiPSC-CMs. CONCLUSION: The novel L274G-hiPSC line can be used to study the cell-specific proteome of hiPSCs in vitro and in vivo, to delineate mechanisms underlying hiPSC-based cell therapies for a variety of regenerative medicine applications.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Proteoma , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Proteoma/metabolismo , Animales , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Aminoácidos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Metionina-ARNt Ligasa/metabolismo , Metionina-ARNt Ligasa/genética
14.
Genes (Basel) ; 15(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38927615

RESUMEN

X-linked hypophosphatemia (XLH) is a rare inherited disorder of renal phosphate wasting with a highly variable phenotype caused by loss-of-function variants in the PHEX gene. The diagnosis of individuals with mild phenotypes can be challenging and often delayed. Here, we describe a three-generation family with a very mild clinical presentation of XLH. The diagnosis was unexpectedly found in a 39-year-old woman who was referred for genetic testing due to an unclear childhood diagnosis of a tubulopathy. Genetic testing performed by next-generation sequencing using a kidney disease gene panel identified a novel non-canonical splice site variant in the PHEX gene. Segregation analysis detected that the consultand's father, who presented with hypophosphatemia and decreased tubular phosphate reabsorption, and the consultand's son also carried this variant. RNA studies demonstrated that the non-canonical splice site variant partially altered the splicing of the PHEX gene, as both wild-type and aberrant splicing transcripts were detected in the two male members with only one copy of the PHEX gene. In conclusion, this case contributes to the understanding of the relationship between splicing variants and the variable expressivity of XLH disease. The mild phenotype of this family can be explained by the coexistence of PHEX transcripts with aberrant and wild-type splicing.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Endopeptidasa Neutra Reguladora de Fosfato PHEX , Linaje , Sitios de Empalme de ARN , Humanos , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Adulto , Femenino , Raquitismo Hipofosfatémico Familiar/genética , Masculino , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , Fenotipo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación
15.
Biochim Biophys Acta Gen Subj ; 1868(9): 130660, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38871061

RESUMEN

Caveolin-1 is critical for interacting with the TGF-ß receptor (TGFßR) and EGF receptor (EGFR) signaling, often observed in advanced cancers and tissue fibrosis. However, the mechanism underlying caveolin-1-mediated transactivation of TGFßR and EGFR signaling remains unclear. Therefore, we sought to determine whether caveolin-1 is involved in canonical and non-canonical TGFßR and EGFR signaling transactivation in this study. Methyl-ß-cyclodextrin (MßCD) was used to disrupt the cholesterol-containing membranes domains, and the caveolin-1 scaffolding domain (CSD) peptide was used to mimic the CSD of caveolin-1. Additionally, we transfected the Madin-Darby canine kidney cells with wild-type or phosphorylation-defective caveolin-1. We discovered that tyrosine 14 of caveolin-1 was critical for the negative regulation of TGFßR and EGFR canonical signaling. On the contrary, caveolin-1 inhibited TGF-ß1-induced ERK2 activation independent of tyrosine 14 phosphorylation. Although EGF failed to induce Smad3 phosphorylation in caveolin-1 knockdown cells, it activated Smad3 upon MßCD co-treatment, indicating that caveolin-1 indirectly regulated the non-canonical pathway of EGF. In conclusion, caveolin-1 differentially modulates TGFßR and EGFR signaling. Thus, targeting caveolin-1 is a potential strategy for treating diseases involving TGF-ß1 and EGF signaling.

16.
Mol Ther ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822524

RESUMEN

Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28. Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing T helper 1 (Th1) and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions, as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.

17.
Cell Biol Toxicol ; 40(1): 48, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900277

RESUMEN

Aggregation of aberrant proteins is a common pathological hallmark in neurodegeneration such as polyglutamine (polyQ) and other repeat-expansion diseases. Here through overexpression of ataxin3 C-terminal polyQ expansion in Drosophila gut enterocytes, we generated an intestinal obstruction model of spinocerebellar ataxia type3 (SCA3) and reported a new role of nuclear-associated endosomes (NAEs)-the delivery of polyQ to the nucleoplasm. In this model, accompanied by the prominently increased RAB5-positive NAEs are abundant nucleoplasmic reticulum enriched with polyQ, abnormal nuclear envelope invagination, significantly reduced endoplasmic reticulum, indicating dysfunctional nucleocytoplasmic trafficking and impaired endomembrane organization. Consistently, Rab5 but not Rab7 RNAi further decreased polyQ-related NAEs, inhibited endomembrane disorganization, and alleviated disease model. Interestingly, autophagic proteins were enriched in polyQ-related NAEs and played non-canonical autophagic roles as genetic manipulation of autophagic molecules exhibited differential impacts on NAEs and SCA3 toxicity. Namely, the down-regulation of Atg1 or Atg12 mitigated while Atg5 RNAi aggravated the disease phenotypes both in Drosophila intestines and compound eyes. Our findings, therefore, provide new mechanistic insights and underscore the fundamental roles of endosome-centered nucleocytoplasmic trafficking and homeostatic endomembrane allocation in the pathogenesis of polyQ diseases.


Asunto(s)
Autofagia , Endosomas , Péptidos , Animales , Péptidos/metabolismo , Endosomas/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Transporte Activo de Núcleo Celular , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Enterocitos/metabolismo , Modelos Animales de Enfermedad , Ataxina-3/metabolismo , Ataxina-3/genética , Drosophila/metabolismo
18.
Metab Eng ; 85: 26-34, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38802041

RESUMEN

Integration of novel compounds into biological processes holds significant potential for modifying or expanding existing cellular functions. However, the cellular uptake of these compounds is often hindered by selectively permeable membranes. We present a novel bacterial transport system that has been rationally designed to address this challenge. Our approach utilizes a highly promiscuous sulfonate membrane transporter, which allows the passage of cargo molecules attached as amides to a sulfobutanoate transport vector molecule into the cytoplasm of the cell. These cargoes can then be unloaded from the sulfobutanoyl amides using an engineered variant of the enzyme γ-glutamyl transferase, which hydrolyzes the amide bond and releases the cargo molecule within the cell. Here, we provide evidence for the broad substrate specificity of both components of the system by evaluating a panel of structurally diverse sulfobutanoyl amides. Furthermore, we successfully implement the synthetic uptake system in vivo and showcase its functionality by importing an impermeant non-canonical amino acid.

19.
Methods Mol Biol ; 2726: 143-168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38780731

RESUMEN

The 3D structures of many ribonucleic acid (RNA) loops are characterized by highly organized networks of non-canonical interactions. Multiple computational methods have been developed to annotate structures with those interactions or automatically identify recurrent interaction networks. By contrast, the reverse problem that aims to retrieve the geometry of a look from its sequence or ensemble of interactions remains much less explored. In this chapter, we will describe how to retrieve and build families of conserved structural motifs using their underlying network of non-canonical interactions. Then, we will show how to assign sequence alignments to those families and use the software BayesPairing to build statistical models of structural motifs with their associated sequence alignments. From this model, we will apply BayesPairing to identify in new sequences regions where those loop geometries can occur.


Asunto(s)
Emparejamiento Base , Biología Computacional , ARN , Programas Informáticos , Biología Computacional/métodos , ARN/química , ARN/genética , Conformación de Ácido Nucleico , Alineación de Secuencia/métodos , Algoritmos , Motivos de Nucleótidos , Teorema de Bayes , Modelos Moleculares
20.
Plant Physiol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808472

RESUMEN

Non-canonical peptides (NCPs) are a class of peptides generated from regions previously thought of as non-coding, such as introns, 5' untranslated regions (UTRs), 3' UTRs, and intergenic regions. In recent years, the significance and diverse functions of NCPs have come to light, yet a systematic and comprehensive NCP database remains absent. Here, we developed NCPbook (https://ncp.wiki/ncpbook/), a database of evidence-supported NCPs, which aims to provide a resource for efficient exploration, analysis, and manipulation of NCPs. NCPbook incorporates data from diverse public databases and scientific literature. The current version of NCPbook includes 180,676 NCPs across 29 different species, evidenced by mass spectrometry (MS), ribosome profiling (Ribo-seq), or molecular experiments (ME). These NCPs are distributed across kingdoms, comprising 123,408 from 14 plant species, 56,999 from seven animal species, and 269 from eight microbial species. Furthermore, NCPbook encompasses 9,166 functionally characterized NCPs playing important roles in immunity, stress resistance, growth, and development. Equipped with a user-friendly interface, NCPbook allows users to search, browse, visualize, and retrieve data, making it an indispensable platform for researching NCPs in various plant, animal, and microbial species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...