Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.188
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; : 167329, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960053

RESUMEN

Gestational diabetes mellitus (GDM) disrupts glucolipid metabolism, endangering maternal and fetal health. Despite limited research on its pathogenesis and treatments, we conducted a study using serum samples from GDM-diagnosed pregnant women. We performed metabolic sequencing to identify key small molecule metabolites and explored their molecular interactions with FGF21. We also investigated FGF21's impact on GDM using blood samples from affected women. Our analysis revealed a novel finding: elevated levels of L-Cystine in GDM patients. Furthermore, we observed a positive correlation between L-Cystine and FGF21 levels, and found that L-Cystine induces NRF2 expression via FGF21 for a period of 96 h. Under high glucose (HG) conditions, FGF21 upregulates NRF2 and downstream genes NQO1 and EPHX1 via AKT phosphorylation induced by activation of IRS1, enhancing endothelial function. Additionally, we confirmed that levels of FGF21, L-Cystine, and endothelial function at the third trimester were effectively enhanced through appropriate exercise and diet during pregnancy in GDM patients (GDM + ED). These findings suggest FGF21 as a potential therapeutic agent for GDM, particularly in protecting endothelial cells. Moreover, elevated L-Cystine via appropriate exercise and diet might be a potential strategy to enhance FGF21's efficacy.

2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000120

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) affects squamous cells in the head and neck region and is currently ranked as the sixth most common cancer worldwide. NF-E2-related factor 2 (NRF2) plays a crucial role in cellular protection and defence mechanisms and NRF2 over-expression has been linked to various cancers; however, its role in the response of HNSCC cells remains elusive. We investigated the effects of ML385, a selective NRF2 inhibitor, on HNSCC to understand the underlying molecular mechanisms, and to assess the potential of ML385 as a therapeutic agent. We treated HNSCC cell lines with ML385 and observed a significant reduction in the expression of NRF2 and its downstream target, heme oxygenase-1 (HO-1), using Western blotting. We evaluated its effects on various cellular processes, including cell proliferation, cloning, migration, and wound healing, in HNSCC cell lines. ML385 treatment substantially reduced NRF2 expression, promoting a decrease in the investigated cellular activities. Additionally, we examined changes in the expression of cell-cycle-related proteins and found that ML385 induced cell cycle arrest at the G1/S phase in HNSCC cell lines. Our findings suggest that ML385 can regulate cell cycle progression, inhibit HNSCC growth, and have potential as a therapeutic agent for HNSCC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Neoplasias de Cabeza y Cuello , Factor 2 Relacionado con NF-E2 , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Movimiento Celular/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Acetamidas , Benzodioxoles
3.
J Agric Food Chem ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980703

RESUMEN

Aloe-emodin, a natural hydroxyanthraquinone, exerts both adverse and protective effects. This study aimed at investigating these potential effects of aloe-emodin in humans upon the use of food supplements and herbal medicines using a physiologically based kinetic (PBK) modeling-facilitated quantitative in vitro to in vivo extrapolation (QIVIVE) approach. For this, PBK models in rats and humans were established for aloe-emodin including its active metabolite rhein and used to convert in vitro data on hepatotoxicity, nephrotoxicity, reactive oxidative species (ROS) generation, and Nrf2 induction to corresponding in vivo dose-response curves, from which points of departure (PODs) were derived by BMD analysis. The derived PODs were subsequently compared to the estimated daily intakes (EDIs) resulting from the use of food supplements or herbal medicines. It is concluded that the dose levels of aloe-emodin from food supplements or herbal medicines are unlikely to induce toxicity, ROS generation, or Nrf2 activation in liver and kidney.

4.
Brain Res ; : 149116, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977238

RESUMEN

BACKGROUND: Diallyl trisulfide (DATS) has a direct antioxidant capacity and emerges as a promising neuroprotective agent. This study was designed to investigate the role of DATS in traumatic brain injury (TBI). METHODS: TBI mouse models were established using the controlled weight-drop impact, followed by DATS administration. The effects of DATS on neurological deficit, brain damage, inflammation and phosphoglycerate kinase 1 (PGK1) expression were detected using mNSS test, histological analysis, TUNEL assay, enzyme-linked immunosorbent assay and immunofluorescence. PC12 cells were subjected to H2O2-induced oxidative injury after pre-treatment with DATS, followed by cell counting kit-8 assay, flow cytometry and ROS production detection. Apoptosis-related proteins and the PGK1/nuclear factor erythroid-2 related factor 2 (Nrf2) pathway were examined using Western blot. RESULTS: DATS ameliorated the cerebral cortex damage, neurological dysfunction and apoptosis, as well as decreased PGK1 positivity and expressions of pro-inflammatory cytokines (IL-6, IL-1ß, TNF-α) in mice after TBI. DATS also enhanced viability, blocked apoptosis and inhibited ROS production in H2O2-induced PC12 cells. DATS downregulated Cleaved-Caspase3, Bax and PGK1 levels, and upregulated Bcl-2 and Nrf2 levels in TBI mouse models and the injured cells. CONCLUSION: DATS regulates PGK1/Nrf2 expression and inflammation to alleviate neurological damage in mice after TBI.

5.
Biomed Pharmacother ; 177: 116926, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906016

RESUMEN

Obesity aggravates ferroptosis, and vitamin D (VD) may inhibit ferroptosis. We hypothesized that weight reduction and/or calcitriol administration have benefits against the sepsis-induced liver redox imbalance and ferroptosis in obese mice. Mice were fed a high-fat diet for 11 weeks, then half of the mice continued to consume the diet, while the other half were transferred to a low-energy diet for 5 weeks. After feeding the respective diets for 16 weeks, sepsis was induced by cecal ligation and puncture (CLP). Septic mice were divided into four experimental groups: OS group, obese mice injected with saline; OD group, obese mice with calcitriol; WS group, weight-reduction mice with saline; and WD group, weight-reduction mice with calcitriol. Mice in the respective groups were euthanized at 12 or 24 h after CLP. Results showed that the OS group had the highest inflammatory mediators and lipid peroxide levels in the liver. Calcitriol treatment reduced iron content, enhanced the reduced glutathione/oxidized glutathione ratio, upregulated nuclear factor erythroid 2-related factor 2, ferroptosis-suppressing protein 1, and solute carrier family 7 member 11 expression levels. Also, mitochondrion-associated nicotinamide adenine dinucleotide phosphate oxidase 1, peroxisome proliferator-activated receptor-γ coactivator 1, hypoxia-inducible factor-1α, and heme oxidase-1 expression levels increased in the late phase of sepsis. These results were not noted in the WS group. These findings suggest that calcitriol treatment elicits a more-balanced glutathione redox status, alleviates liver ferroptosis, and enhances mitochondrial biogenesis-associated gene expressions. Weight reduction alone had minimal influences on liver ferroptosis and mitochondrial biogenesis in obese mice with sepsis.

6.
Adv Healthc Mater ; : e2400474, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875525

RESUMEN

Ferroptosis induction is particularly promising for cancer therapy when the apoptosis pathway is compromised. Current strategies in nanomedicine for inducing ferroptosis primarily focus on promoting the accumulation of reactive oxygen species (ROS). However, the presence of intracellular antioxidants, such as nuclear factor erythroid 2-related factor 2 (Nrf2), can limit the effectiveness of such therapy by activating detoxification systems and eliminating ROS. To overcome this challenge, we developed a synergistic ferroptosis-inducing agent by modifying manganese (Mn2+)-1,8-dihydroxy-3-hydroxymethyl-anthraquinone (aloe-emodin, AE) with polyvinyl pyrrolidone (PVP) to create nanoparticles (MAP NPs). In the tumor microenvironment, these NPs degraded and released AE and Mn(II), facilitating the generation of ROS and Mn(IV) through a Fenton-like reaction between hydrogen peroxide (H2O2) and Mn(II). Mn(IV) subsequently interacts with glutathione (GSH) to induce a cyclic catalytic effect, and the depletion of GSH diminished the activation of glutathione-dependent peroxidase 4 (GPX4). Furthermore, AE inhibits the activity of Nrf2 and depleted GSH, thereby synergistically enhancing antitumor efficacy. Here it is demonstrated that MAP NPs effectively generate a robust ROS storm within tumor cells, suggesting that high-performance ferroptosis therapy is effective. Additionally, the inclusion of Mn(II) in the MAP NPs enables real-time monitoring of therapeutic efficacy via magnetic resonance T1-weighted contrast imaging.

7.
Biol Pharm Bull ; 47(7): 1248-1254, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38866477

RESUMEN

Ethanol (alcohol) is a risk factor that contributes to non-communicable diseases. Chronic abuse of ethanol is toxic to both the heart and overall health, and even results in death. Ethanol and its byproduct acetaldehyde can harm the cardiovascular system by impairing mitochondrial function, causing oxidative damage, and reducing contractile proteins. Endothelial cells are essential components of the cardiovascular system, are highly susceptible to ethanol, either through direct or indirect exposure. Thus, protection against endothelial injury is of great importance for persons who chronic abuse of ethanol. In this study, an in vitro model of endothelial injury was created using ethanol. The findings revealed that a concentration of 20.0 mM of ethanol reduced cell viability and Bcl-2 expression, while increasing cell apoptosis, intracellular reactive oxygen species (ROS) levels, mitochondrial depolarization, and the expression of Bax and cleaved-caspase-3 in endothelial cells. Further study showed that ethanol promoted nuclear translocation of nuclear factor kappa B (NF-κB), increased the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 in the culture medium, and inhibited nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway. The aforementioned findings suggest that ethanol has a harmful impact on endothelial cells. Nevertheless, the application of epigallocatechin-3-gallate (EGCG) to the cells can effectively mitigate the detrimental effects of ethanol on endothelial cells. In conclusion, EGCG alleviates ethanol-induced endothelial injury partly through alteration of NF-κB translocation and activation of the Nrf2 signaling pathway. Therefore, EGCG holds great potential in safeguarding individuals who chronically abuse ethanol from endothelial dysfunction.


Asunto(s)
Catequina , Etanol , Factor 2 Relacionado con NF-E2 , FN-kappa B , Transducción de Señal , Etanol/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Catequina/análogos & derivados , Catequina/farmacología , Catequina/uso terapéutico , FN-kappa B/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
8.
Nitric Oxide ; 149: 75-84, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879114

RESUMEN

Obesity is commonly linked with white adipose tissue (WAT) dysfunction, setting off inflammation and oxidative stress, both key contributors to the cardiometabolic complications associated with obesity. To improve metabolic and cardiovascular health, countering these inflammatory and oxidative signaling processes is crucial. Offering potential in this context, the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by nitro-fatty acids (NO2-FA) promote diverse anti-inflammatory signaling and counteract oxidative stress. Additionally, we previously highlighted that nitro-oleic acid (NO2-OA) preferentially accumulates in WAT and provides protection against already established high fat diet (HFD)-mediated impaired glucose tolerance. The precise mechanism accounting for these protective effects remained largely unexplored until now. Herein, we reveal that protective effects of improved glucose tolerance by NO2-OA is absent when Nrf2 is specifically ablated in adipocytes (ANKO mice). NO2-OA treatment did not alter body weight between ANKO and littermate controls (Nrf2fl/fl) mice on both the HFD and low-fat diet (LFD). As expected, at day 76 (before NO2-OA treatment) and notably at day 125 (daily treatment of 15 mg/kg NO2-OA for 48 days), both HFD-fed Nrf2fl/fl and ANKO mice exhibited increased fat mass and reduced lean mass compared to LFD controls. However, throughout the NO2-OA treatment, no distinction was observed between Nrf2fl/fl and ANKO in the HFD-fed mice as well as in the Nrf2fl/fl mice fed a LFD. Glucose tolerance tests revealed impaired glucose tolerance in HFD-fed Nrf2fl/fl and ANKO compared to LFD-fed Nrf2fl/fl mice. Notably, NO2-OA treatment improved glucose tolerance in HFD-fed Nrf2fl/fl but did not yield the same improvement in ANKO mice at days 15, 30, and 55 of treatment. Unraveling the pathways linked to NO2-OA's protective effects in obesity-mediated impairment in glucose tolerance is pivotal within the realm of precision medicine, crucially propelling future applications and refining novel drug-based strategies.

9.
Int J Med Sci ; 21(7): 1257-1264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818460

RESUMEN

Background: Ferroptosis is an iron-driven cell-death mechanism that plays a central role in various diseases. Recent studies have suggested that baicalein inhibits ferroptosis, making it a promising therapeutic candidate. Materials and Methods: Fibroblast cultures were treated with different agents to determine the effects of baicalein on ferroptosis. Ferroptosis-related gene expression, lipid peroxidation, and post-treatment cellular structural changes were measured using real-time quantitative polymerase chain reaction, C11-BODIPY dye, and transmission electron microscopy, respectively. Results: Baicalein significantly inhibited rat sarcoma virus selective lethal 3-induced ferroptosis in fibroblasts. Moreover, in baicalein-treated groups, reduced ferroptosis-related gene expression, decreased lipid peroxidation, and maintained cell structure was observed when compared with those of the controls. Discussion: The ability of baicalein to counteract RSL3-induced ferroptosis underscores its potential protective effects, especially in diseases characterized by oxidative stress and iron overload in fibroblasts. Conclusion: Baicalein may serve as a potent therapeutic agent against conditions in which ferroptosis is harmful. The compound's efficacy in halting RSL3-triggered ferroptosis in fibroblasts paves the way for further in vivo experiments and clinical trials.


Asunto(s)
Ferroptosis , Fibroblastos , Flavanonas , Peroxidación de Lípido , Ferroptosis/efectos de los fármacos , Flavanonas/farmacología , Flavanonas/uso terapéutico , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Humanos , Animales , Estrés Oxidativo/efectos de los fármacos , Ratas , Hierro/metabolismo , Carbolinas
10.
Front Pharmacol ; 15: 1335786, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774211

RESUMEN

Background: Polygonatum sibiricum (PS) is a traditional Chinese medicine (TCM) first recorded in Mingyi Bielu. The book documents that PS can nourish five internal organs, be taken for a long time, relax the body and prolong lifespan. Presently, PS is widely used in TCM to prevent premature graying of hair. Based on TCM theory and clinical trials, the wine steaming processed product from PS provides a better effect. However, no published study has elucidated the anti-aging mechanism. Purpose: The study aim was to investigate the anti-aging mechanism of PS and its wine steaming processed product in mice, specifically focusing on the effect of D-galactose (D-gal) surrounding the intestinal flora and the Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2-antioxidant response elements (Keap1/Nrf2/ARE) pathway. Methods: The chemical components in Raw PS (RPS) and Wine-steamed PS (WPS) were identified by ultra-performance liquid chromatography-hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS). An aging model using Kunming mice was established through intraperitoneally injected D-gal. Concentrations of RPS and WPS at 5, 10, or 15 g/kg/day levels were administered intragastrically, respectively. The body weight, liver and spleen indexes, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) activities in serum and brain tissue were recorded. Hematoxylin and eosin (HE) stained brain tissue was histopathologically examined. The expressions of Keap1, Nrf2 and heme oxygenase 1 (HO-1) in the brain tissue at the mRNA and protein levels were respectively detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot (WB). Moreover, an Illumina Hiseq platform was used for 16S ribosomal RNA (16S rRNA) high-throughput sequencing to evaluate the proportions of intestinal flora in aging mice. Results: The proportions of saccharides, flavonoids, and triterpene acids were different between RPS and WPS. In the aging model mice, WPS outperformed RPS in improving body weight and mental state by increasing the spleen index, SOD and GSH-PX activities, decreasing the liver index and MDA activities, and restoring the histopathological morphology in D-gal-induced aging mice. At the mRNA levels, RPS and WPS significantly reduced the expression of Keap1 and increased the expressions of Nrf2 and HO-1. The trend in protein expressions was similar to that of the mRNA results, and WPS had a stronger effect than RPS. Fecal microbiota analysis showed that RPS and WPS restored intestinal microbiota proportions to normal levels. Conclusion: The results demonstrated that PS and its WPS had a positive effect in relieving oxidative stress in aging mice. WPS outperformed RPS, which might be related to the activation of the Keap1/Nrf2/ARE pathway and regulation of intestinal flora.

11.
Am J Chin Med ; 52(3): 821-839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699996

RESUMEN

Panax notoginseng saponins (PNS), the primary medicinal ingredient of Panax notoginseng, mitigates cerebral ischemia-reperfusion injury (CIRI) by inhibiting inflammation, regulating oxidative stress, promoting angiogenesis, and improving microcirculation. Moreover, PNS activates nuclear factor erythroid 2-related factor 2 (Nrf2), which is known to inhibit ferroptosis and reduce inflammation in the rat brain. However, the molecular regulatory roles of PNS in CIRI-induced ferroptosis remain unclear. In this study, we aimed to investigate the effects of PNS on ferroptosis and inflammation in CIRI. We induced ferroptosis in SH-SY5Y cells via erastin stimulation and oxygen glucose deprivation/re-oxygenation (OGD/R) in vitro. Furthermore, we determined the effect of PNS treatment in a rat model of middle cerebral artery occlusion/reperfusion and assessed the underlying mechanism. We also analyzed the changes in the expression of ferroptosis-related proteins and inflammatory factors in the established rat model. OGD/R led to an increase in the levels of ferroptosis markers in SH-SY5Y cells, which were reduced by PNS treatment. In the rat model, combined treatment with an Nrf2 agonist, Nrf2 inhibitor, and PNS-Nrf2 inhibitor confirmed that PNS promotes Nrf2 nuclear localization and reduces ferroptosis and inflammatory responses, thereby mitigating brain injury. Mechanistically, PNS treatment facilitated Nrf2 activation, thereby regulating the expression of iron overload and lipid peroxidation-related proteins and the activities of anti-oxidant enzymes. This cascade inhibited ferroptosis and mitigated CIRI. Altogether, these results suggest that the ferroptosis-mediated activation of Nrf2 by PNS reduces inflammation and is a promising therapeutic approach for CIRI.


Asunto(s)
Ferroptosis , Factor 2 Relacionado con NF-E2 , Panax notoginseng , Ratas Sprague-Dawley , Daño por Reperfusión , Saponinas , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Ferroptosis/efectos de los fármacos , Panax notoginseng/química , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Saponinas/farmacología , Masculino , Ratas , Humanos , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Fitoterapia
12.
Ageing Res Rev ; 98: 102353, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38815934

RESUMEN

In recent years, the acronym NRF2 has garnered significant attention in scientific discourse. However, this attention has occasionally led to confusion due to the existence of two distinct proteins sharing the same acronym: Nuclear Respiratory Factor 2 (NRF2), also known as GA-binding protein transcription factor subunit alpha (GABPA), and Nuclear Factor Erythroid 2-related Factor 2 (NFE2L2 or NRF2). This confusion has been highlighted in various scientific forums, including PubPeer and anonymous reader comments, where the confusion between the two proteins has been expressed. In this article, we aim to elucidate the disparities between these two proteins. Both are transcription factors that play pivotal roles in cellular homeostasis and response to stress, with some overlapping functional aspects. Nuclear Factor Erythroid 2-related Factor 2 (NFE2L2) is a key regulator of the antioxidant response element (ARE) pathway. It functions by binding to antioxidant response elements in the promoters of target genes, thereby orchestrating the expression of various cytoprotective enzymes and proteins involved in detoxification, redox balance, and cellular defense against oxidative stress. Conversely, Nuclear Respiratory Factor 2 (GABPA) is primarily associated with the regulation of mitochondrial biogenesis, in relation to PGC1α, and maintaining cellular energy metabolism. It is important to recognize and differentiate between these two proteins to avoid misconceptions and misinterpretations in scientific literature and discussions. Our laboratories (Arubala P Reddy and P. Hemachandra Reddy) focued on Nuclear Respiratory Factor 2 (NRF2), but not on Nuclear Factor Erythroid 2-related Factor 2 (NFE2L2). We hope that the facts, figures, and discussions presented in this article will clarify the current controversy regarding the sizes, structural features, and functional aspects of these proteins.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Animales , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Factor de Transcripción de la Proteína de Unión a GA/genética , Estrés Oxidativo/fisiología
13.
Neuropsychobiology ; 83(2): 101-113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38744261

RESUMEN

INTRODUCTION: The brain-derived neurotrophic factor (BDNF) and transcription nuclear factor erythroid 2-related factor-2 (NRF-2) play an important role in Alzheimer's disease (AD). However, the interactive involvement of BDNF and NRF-2 in respect to antioxidant mechanisms in different parts of the AD brain is still unclear. Considering the above condition, used S-nitrosoglutathione (GSNO) to examine whether it modulates the BDNF and NRF-2 levels to activate signaling pathway to promote antioxidant levels in AD brains. METHOD: AD was induced by intracerebroventricular infusion of streptozotocin (ICV-STZ, 3 mg/kg) in Wistar rats. The effect of GSNO was analyzed by evaluating the retention of memory in months 1, 2, and 3. After the behavior study, rats were sacrificed and accessed the amyloid beta (Aß)-40, Aß42, glutathione (GSH), BDNF, and NRF-2 levels in the hippocampus, cortex, and amygdala tissue. RESULTS: Pretreatment with GSNO (50 µg/kg/intraperitoneal/day) restored the BDNF, and NRF-2 levels toward normalcy as compared with ICV-STZ + saline-treated animals. Also, GSNO treatment reversed the oxidative stress and increased the GSH levels toward normal levels. Further, reduced Aß levels and neuronal loss in different brain regions. As a result, GSNO treatment improved the cognitive deficits in ICV-STZ-treated rats. CONCLUSION: The results showed that endogenous nitric oxide donor GSNO improved the cognitive deficits and ICV-STZ-induced AD pathological conditions, possibly via attenuating the oxidative stress. Hence, the above finding supported that GSNO treatment may activate BDNF and NRF-2 antioxidant signaling pathways in the AD brain to normalize oxidative stress, which is the main causative factor for ICV-STZ-induced AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Factor Neurotrófico Derivado del Encéfalo , Modelos Animales de Enfermedad , Trastornos de la Memoria , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Ratas Wistar , S-Nitrosoglutatión , Transducción de Señal , Estreptozocina , Animales , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Estrés Oxidativo/efectos de los fármacos , S-Nitrosoglutatión/farmacología , S-Nitrosoglutatión/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Masculino , Estreptozocina/farmacología , Estreptozocina/administración & dosificación , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/administración & dosificación
14.
J Inflamm Res ; 17: 2951-2958, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38764500

RESUMEN

Objective: To investigate the correlation between the levels of serum lipopolysaccharide (LPS), nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase 1 (HO-1) and cognitive impairment in patients with obstructive sleep apnoea (OSA). Methods: Serum LPS, Nrf2, HO-1 levels and cognitive impairment were measured using the Montreal Cognitive Assessment (MoCA) score in 56 patients in the "severe" group, 67 patients in the "mild-to-moderate" group and 100 healthy people in the "control" group. The differences in general conditions and serological indexes between the three groups were compared, the correlation between the MoCA scores and the serological indexes was explored and the independent predictors of the MoCA scores were analysed. Results: Serum LPS, Nrf2 and HO-1 levels were higher in the severe group than in the mild-to-moderate group and the control group (p < 0.05). A total of 71 patients with OSA had combined cognitive impairment, accounting for 57.7%, and the MoCA scores were lower in the severe group than in the mild-to-moderate group and the control group (p = 0.018). Serum LPS, Nrf2 and HO-1 levels were significantly higher in the severe group and mild-to-moderate group than in the control group (p < 0.05) and were negatively correlated with the MoCA scores. Lipopolysaccharide (p < 0.001) and HO-1 (p = 0.002) could be considered independent predictors of the MoCA score. Conclusion: Serum LPS and HO-1 levels are closely related to cognitive impairment in patients with OSA and have potential clinical value in the diagnosis.

15.
Curr Alzheimer Res ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38766828

RESUMEN

BACKGROUND: As individuals age, they may develop Alzheimer's disease (AD), which is characterized by difficulties in speech, memory loss, and other issues related to neural function. Cycloastragenol is an active ingredient of Astragalus trojanus and has been used to treat inflammation, aging, heart disease, and cancer. OBJECTIVES: This study aimed to explore the potential therapeutic benefits of cycloastragenol in rats with experimentally induced AD. Moreover, the underlying molecular mechanisms were also evaluated by measuring Nrf2 and HO-1, which are involved in oxidative stress, NFκB and TNF-α, which are involved in inflammation, and BCL2, BAX, and caspase-3, which are involved in apoptosis. METHODS: Sprague-Dawley rats were given 70 mg/kg of aluminum chloride intraperitoneally daily for six weeks to induce AD. Following AD induction, the rats were given 25 mg/kg of cycloastragenol daily by oral gavage for three weeks. Hippocampal sections were stained with hematoxylin/ eosin and with anti-caspase-3 antibodies. The Nrf2, HO-1, NFκB, TNF-α, BCL2, BAX, and caspase-3 gene expressions and protein levels in the samples were analyzed. RESULTS: Cycloastragenol significantly improved rats' behavioral test performance. It also strengthened the organization of the hippocampus. Cycloastragenol significantly improved behavioral performance and improved hippocampal structure in rats. It caused a marked decrease in the expression of NFκB, TNF-α, BAX, and caspase-3, which was associated with an increase in the expression of BCL2, Nrf2, and HO-1. CONCLUSION: Cycloastragenol improved the structure of the hippocampus in rats with AD. It enhanced the outcomes of behavioral tests, decreased the concentration of AChE in the brain, and exerted antioxidant and anti-inflammatory effects. Antiapoptotic effects were also noted, leading to significant improvements in cognitive function, memory, and behavior in treated rats.

16.
J Orthop Surg Res ; 19(1): 309, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783358

RESUMEN

BACKGROUND: Elderly patients suffering from osteoporotic fractures are more susceptible to delayed union or nonunion, and their bodies then are in a state of low-grade chronic inflammation with decreased antioxidant capacity. Tanshinone IIA is widely used in treating cardiovascular and cerebrovascular diseases in China and has anti-inflammatory and antioxidant effects. We aimed to observe the antioxidant effects of Tanshinone IIA on mesenchymal stem cells (MSCs), which play important roles in bone repair, and the effects of local application of Tanshinone IIA using an injectable biodegradable hydrogel on osteoporotic fracture healing. METHODS: MSCs were pretreated with or without different concentrations of Tanshinone IIA followed by H2O2 treatment. Ovariectomized (OVX) C57BL/6 mice received a mid-shaft transverse osteotomy fracture on the left tibia, and Tanshinone IIA was applied to the fracture site using an injectable hydrogel. RESULTS: Tanshinone IIA pretreatment promoted the expression of nuclear factor erythroid 2-related factor 2 and antioxidant enzymes, and inhibited H2O2-induced reactive oxygen species accumulation in MSCs. Furthermore, Tanshinone IIA reversed H2O2-induced apoptosis and decrease in osteogenic differentiation in MSCs. After 4 weeks of treatment with Tanshinone IIA in OVX mice, the bone mineral density of the callus was significantly increased and the biomechanical properties of the healed tibias were improved. Cell apoptosis was decreased and Nrf2 expression was increased in the early stage of callus formation. CONCLUSIONS: Taken together, these results indicate that Tanshinone IIA can activate antioxidant enzymes to protect MSCs from H2O2-induced cell apoptosis and osteogenic differentiation inhibition. Local application of Tanshinone IIA accelerates fracture healing in ovariectomized mice.


Asunto(s)
Abietanos , Apoptosis , Curación de Fractura , Células Madre Mesenquimatosas , Ratones Endogámicos C57BL , Ovariectomía , Animales , Abietanos/administración & dosificación , Abietanos/farmacología , Femenino , Células Madre Mesenquimatosas/efectos de los fármacos , Apoptosis/efectos de los fármacos , Curación de Fractura/efectos de los fármacos , Ratones , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Peróxido de Hidrógeno , Osteogénesis/efectos de los fármacos , Fracturas Osteoporóticas/prevención & control
17.
Exp Ther Med ; 28(1): 275, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38800049

RESUMEN

Particulate matter 2.5 (PM2.5) imposes a heavy burden on the skin and respiratory system of human beings, causing side effects such as aging, inflammation and cancer. Astaxanthin (ATX) is a well-known antioxidant widely used for its anti-inflammatory and anti-aging properties. However, few studies have investigated the protective effects of ATX against PM2.5-induced senescence in HaCaT cells. In the present study, the levels of reactive oxygen species (ROS) and antioxidant enzymes were measured after treatment with PM2.5. The results revealed that PM2.5 generated excessive ROS and reduced the translocation of nuclear factor erythroid 2-related factor 2 (NRF2), subsequently reducing the expression of antioxidant enzymes. However, pretreatment with ATX reversed the ROS levels as well as the expression of antioxidant enzymes. In addition, ATX protected cells from PM2.5-induced DNA damage and rescued PM2.5-induced cell cycle arrest. The levels of senescence-associated phenotype markers, such as interleukin-1ß, matrix metalloproteinases, and ß-galactosidase, were increased by exposure to PM2.5, however these effects were reversed by ATX. After interfering with NRF2 mRNA expression and exposing cells to PM2.5, the levels of ROS and ß-galactosidase were higher compared with siControl RNA cells exposed to PM2.5. However, ATX inhibited ROS and ß-galactosidase levels in both the siControl RNA and the siNRF2 RNA groups. Thus, ATX protects HaCaT keratinocytes from PM2.5-induced senescence by partially inhibiting excessive ROS generation via the NRF2 signaling pathway.

18.
Behav Brain Res ; 469: 115006, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38692357

RESUMEN

The nuclear factor erythroid 2-related factor 2 (Nrf2) signalling pathway represents a crucial intrinsic protective system against oxidative stress and inflammation and plays a significant role in various neurological disorders. However, the effect of Nrf2 signalling on the regulation of cognitive impairment remains unknown. Dexmedetomidine (DEX) has neuroprotective effects and can ameliorate lipopolysaccharide (LPS)-induced cognitive dysfunction. Our objective was to observe whether Nrf2 knockout influences the efficacy of DEX in improving cognitive impairment and to attempt to understand its underlying mechanisms. An LPS-induced cognitive dysfunction model in wild-type and Nrf2 knockout mice (Institute of Cancer Research background; male; 8-12 weeks) was used to observe the impact of DEX on cognitive dysfunction. LPS was intraperitoneally injected, followed by novel object recognition and morris water maze experiments 24 h later. Hippocampal tissues were collected for histopathological and molecular analyses. Our research findings suggest that DEX enhances the expression of NQO1, HO-1, PSD95, and SYP proteins in hippocampal tissue, inhibits microglial proliferation, reduces pro-inflammatory cytokines IL-1ß and TNF-ɑ, increases anti-inflammatory cytokine IL-10, and improves dendritic spine density, thereby alleviating cognitive dysfunction induced by LPS. However, the knockout of the Nrf2 gene negated the aforementioned effects of DEX. In conclusion, DEX alleviates cognitive deficits induced by LPS through mechanisms of anti-oxidative stress and anti-inflammation, as well as by increasing synaptic protein expression and dendritic spine density. However, the knockout of the Nrf2 gene reversed the effects of DEX. The Nrf2 signaling pathway plays a crucial role in the mitigation of LPS-induced cognitive impairment by DEX.


Asunto(s)
Disfunción Cognitiva , Dexmedetomidina , Modelos Animales de Enfermedad , Hipocampo , Lipopolisacáridos , Ratones Noqueados , Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Dexmedetomidina/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/inducido químicamente , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Ratones , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Lipopolisacáridos/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Inflammation ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761250

RESUMEN

Abnormal activation of microglia, the resident macrophages in the central nervous system, plays an important role in the pathogenesis of multiple sclerosis (MS). The immune responsive gene 1(IRG1)/itaconate axis is involved in regulating microglia-mediated neuroinflammation. 4-Octyl itaconate (4-OI), a derivative of itaconate, plays a crucial immunomodulatory role in macrophages. This study investigated the effects and mechanisms of action of 4-OI on experimental autoimmune encephalomyelitis (EAE) and inflammatory BV2 microglia. In an EAE mouse model, clinical evaluation was conducted during the disease course. Hematoxylin and eosin staining was performed to assess inflammatory infiltration and Luxol Fast Blue was used to visualize pathological damage. Quantitative real-time polymerase chain reaction, western blotting and immunofluorescence were used to evaluate inflammatory response and microglial function status in EAE mice. BV2 microglia were used to further investigate the effects and mechanisms of action of 4-OI in vitro. 4-OI significantly alleviated the clinical symptoms of EAE, the inflammatory infiltration, and demyelination; reduced the levels of inflammatory factors; and inhibited the classical activation of microglia in the spinal cord. 4-OI successfully suppressed the classical activation of BV2 microglia and decreased the levels of inflammatory factors by activating the Nrf2/HO-1 signaling pathway. Furthermore, 4-OI downregulated IRG1 expression in both EAE mice and inflammatory BV2 microglia. 4-OI attenuates the microglia-mediated neuroinflammation and has promising therapeutic effects in MS.

20.
J Drug Target ; : 1-10, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38753446

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death globally, with oxidative stress (OS) identified as a primary contributor to their onset and progression. Given the elevated incidence and mortality rates associated with CVDs, there is an imperative need to investigate novel therapeutic strategies. Nuclear factor erythroid 2-related factor 2 (Nrf2), ubiquitously expressed in the cardiovascular system, has emerged as a promising therapeutic target for CVDs due to its role in regulating OS and inflammation. This review aims to delve into the mechanisms and actions of the Nrf2 pathway, highlighting its potential in mitigating the pathogenesis of CVDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...