Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO Mol Med ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358603

RESUMEN

HIV-1 capsids cross nuclear pore complexes (NPCs) by engaging with the nuclear import machinery. To identify compounds that inhibit HIV-1 nuclear import, we screened drugs in silico on a three-dimensional model of a CA hexamer bound by Transportin-1 (TRN-1). Among hits, compound H27 inhibited HIV-1 with a low micromolar IC50. Unlike other CA-targeting compounds, H27 did not alter CA assembly or disassembly, inhibited nuclear import specifically, and retained antiviral activity against PF74- and Lenacapavir-resistant mutants. The differential sensitivity of divergent primate lentiviral capsids, capsid stability and H27 escape mutants, together with structural analyses, suggest that H27 makes multiple low affinity contacts with assembled capsid. Interaction experiments indicate that H27 may act by preventing CA from engaging with components of the NPC machinery such as TRN-1. H27 exhibited good metabolic stability in vivo and was efficient against different subtypes and circulating recombinant forms from treatment-naïve patients as well as strains resistant to the four main classes of antiretroviral drugs. This work identifies compounds that demonstrate a novel mechanism of action by specifically blocking HIV-1 nuclear import.

2.
Viruses ; 16(10)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39459943

RESUMEN

Expansion microscopy has recently emerged as an alternative technique for achieving high-resolution imaging of biological structures. Improvements in resolution are achieved by physically expanding samples through embedding in a swellable hydrogel before microscopy. However, expansion microscopy has been rarely used in the field of virology. Here, we evaluate and characterize the ultrastructure expansion microscopy (U-ExM) protocol, which facilitates approximately four-fold sample expansion, enabling the visualization of different post-entry stages of the HIV-1 life cycle, focusing on nuclear events. Our findings demonstrate that U-ExM provides robust sample expansion and preservation across different cell types, including cell-culture-adapted and primary CD4+ T-cells as well as monocyte-derived macrophages, which are known HIV-1 reservoirs. Notably, cellular targets such as nuclear bodies and the chromatin landscape remain well preserved after expansion, allowing for detailed investigation of HIV-1-cell interactions at high resolution. Our data indicate that morphologically distinct HIV-1 capsid assemblies can be differentiated within the nuclei of infected cells and that U-ExM enables detection of targets that are masked in commonly used immunofluorescence protocols. In conclusion, we advocate for U-ExM as a valuable new tool for studying virus-host interactions with enhanced spatial resolution.


Asunto(s)
Linfocitos T CD4-Positivos , Infecciones por VIH , VIH-1 , VIH-1/fisiología , Humanos , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/virología , Macrófagos/virología , Núcleo Celular/virología , Núcleo Celular/ultraestructura , Microscopía/métodos
3.
Insect Biochem Mol Biol ; 174: 104190, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39389319

RESUMEN

The conservative post-transcriptional modification in mammals and Drosophila is adenosine-to-inosine (A-to-I) deamination in double-stranded RNA, catalyzed by RNA-editing enzymes known as adenosine deaminases acting on RNA (ADARs). The traditional nuclear import pathway for ADARs involves the recognition of a putative classical nuclear localization sequence (NLS) by importin α4 and α5. In our previous research, ADAR in silkworm, Bombyx mori (BmADARa) was confirmed predominantly located in the nucleus. However, the location of the NLS in BmADARa and its impact on nuclear import and self-dimerization remained unclear. Utilizing NLS prediction software, we predicted the presence of a bipartite NLS within the amino-terminal, 85 amino acids of BmADARa (N85). This prediction was validated through point mutation, which demonstrated that the bipartite NLS could directly mediate nuclear import of BmADARa. Co-immunoprecipitation analysis revealed that BmADARa is mainly dependent on BmKaryopherin α3 (homologous to mammalian importin α4) for nuclear import, although both BmKaryopherin α3 and BmImportin α5 could recognize bipartite NLS. The N-terminal truncated mutants and the bipartite NLS mutants of BmADARa suggest that the bipartite NLS is the major nuclear import site and a crucial structure for self-dimerization of BmADARa. In conclusion, the N-terminal bipartite NLS of BmADARa is recognized by BmKaryopherin α3 and BmImportin α5, facilitating its nuclear import. This promotes BmADARa self-dimerization and maintains the stability of dimerization, thereby enhancing its editing efficiency on target substrates. The results of this research demonstrate the role of bipartite NLS in BmADARa editing and laying a foundation for further research on the regulation of BmADARa in the growth and development in B. mori.


Asunto(s)
Transporte Activo de Núcleo Celular , Bombyx , Proteínas de Insectos , Señales de Localización Nuclear , Animales , Bombyx/metabolismo , Bombyx/genética , Señales de Localización Nuclear/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Núcleo Celular/metabolismo , Secuencia de Aminoácidos , Multimerización de Proteína
4.
bioRxiv ; 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39463973

RESUMEN

We conducted a genome-wide CRISPR/Cas9 screen in suspension 293-F cells transduced with rAAV5. The highly selected genes revealed after two rounds of screens included the previously reported KIAA039L, TM9SF2, and RNF121, along with a cluster of genes involved in glycan biogenesis, Golgi apparatus localization and endoplasmic reticulum penetration. In this report, we focused on solute carrier family 35 member A1 (SLC35A1), a Golgi apparatus-localized cytidine 5'-monophosphate-sialic acid (CMP-SIA) transporter. We confirmed that SLC35A1 knockout (KO) significantly decreased rAAV5 transduction to a level lower than that observed in KIAA0319L or TM9SF2 KO cells. Although SLC35A1 KO drastically reduced the expression of α2,6-linked SIA on the cell surface, the expression of α2,3-linked SIA, as well as the cell binding and internalization of rAAV5, were only moderately affected. Moreover, SLC35A1 KO significantly diminished the transduction of AAV multi-serotypes, including rAAV2 and rAAV3 which do not utilize SIAs for primary attachment. Notably, the SLC35A1 KO markedly increased transduction of rAAV9 and rAAV11, which primarily attach to cells via binding to galactose. Further analyses revealed that SLC35A1 KO significantly decreased vector nuclear import. More importantly, although the C-terminal cytoplasmic tail deletion (ΔC Tail) mutant of SLC35A1 did not drastically decrease SIA expression, it significantly decreased rAAV transduction, as well as vector nuclear import, suggesting the C-tail is critical in these processes. Furthermore, the T128A mutant significantly decreased SIA expression, but still supported rAAV transduction and nuclear import. These findings highlight the involvement of the CMP-SIA transporter in the intracellular trafficking of rAAV vectors post-internalization.

5.
Front Cell Dev Biol ; 12: 1436369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161589

RESUMEN

Formation of the Dorsal nuclear-cytoplasmic gradient is important for the proper establishment of gene expression patterns along the dorsal-ventral (DV) axis during embryogenesis in Drosophila melanogaster. Correct patterning of the DV axis leads to formation of the presumptive mesoderm, neurogenic ectoderm, dorsal ectoderm, and amnioserosa, which are tissues necessary for embryo viability. While Toll signaling is necessary for Dorsal gradient formation, a gradient still forms in the absence of Toll, suggesting there are additional mechanisms required to achieve correct nuclear Dorsal levels. Potential mechanisms include post-translational modification, shuttling, and nuclear spacing. Post-translational modification could affect import and export rates either directly through modification of a nuclear localization sequence or nuclear export sequence, or indirectly by affecting interactions with binding partners that alter import and export rates. Shuttling, which refers to the facilitated diffusion of Dorsal through its interaction with its cytoplasmic inhibitor Cactus, could regulate nuclear levels by delivering more Dorsal ventrally. Finally, nuclear spacing could result in higher nuclear levels by leaving fewer nuclei in the ventral domain to uptake Dorsal. This review details how each of these mechanisms may help establish Dorsal nuclear levels in the early fly embryo, which serves as a paradigm for understanding how the dynamics of graded inputs can influence patterning and target gene expression. Furthermore, careful analysis of nuclear Dorsal levels is likely to provide general insights as recent studies have suggested that the regulation of nuclear import affects the timing of gene expression at the maternal-to-zygotic transition.

6.
Genes Cells ; 29(10): 820-837, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39140385

RESUMEN

In eukaryotes, DNA is housed within the cell nucleus. Molecules required for the formation of a nucleus have been identified using in vitro systems with frog egg extracts and in vivo imaging of somatic cells. However, little is known about the physicochemical factors and conditions required for nuclear formation in mouse oocytes. In this study, using a reconstitution approach with purified DNA, we aimed to determine factors, such as the amount and timing of DNA introduction, required for the formation of nuclei with nuclear transport activity in mouse oocytes. T4 phage DNA (~166 kbp) was microinjected into strontium-activated oocytes to evaluate the conditions appropriate for nuclear formation. Microinjection of 100-500 ng/µL of T4 DNA, but not 20 ng/µL, was sufficient for the formation of nucleus-like structures. Furthermore, microinjection of DNA during metaphase II to telophase II, but not during interphase, was sufficient. Electron and fluorescence microscopy showed that T4 DNA-induced nucleus-like structures had nuclear lamina and nuclear pore complex structures similar to those of natural nuclei, as well as nuclear import activity. These results suggest that exogenous DNA can form artificial nuclei with nuclear transport functions in mouse oocytes, regardless of the sequence or source of the DNA.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular , Oocitos , Animales , Oocitos/metabolismo , Ratones , Núcleo Celular/metabolismo , Femenino , Microinyecciones/métodos
7.
Emerg Microbes Infect ; 13(1): 2387439, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39139051

RESUMEN

Avian influenza viruses (AIVs) are the origin of multiple mammal influenza viruses. The genetic determinants of AIVs adapted to humans have been widely elucidated, however, the molecular mechanism of cross-species transmission and adaptation of AIVs to canines are still poorly understood. In this study, two H3N2 influenza viruses isolated from a live poultry market (A/environment/Guangxi/13431/2018, GX13431) and a swab sample from a canine (A/canine/Guangdong/0601/2019, GD0601) were used to investigate the possible molecular basis that determined H3N2 AIV adapting to canine. We found that GD0601 exhibited more robust polymerase activity in cells and higher pathogenicity in mice compared with its evolution ancestor H3N2 AIV GX13431. A series of reassortments of the ribonucleoprotein (RNP) complex showed that the PB2 subunit was the crucial factor that conferred high polymerase activity of GD0601, and the substitution of I714S in the PB2 subunit of GD0601 attenuated the replication and pathogenicity in mammal cells and the mouse model. Mechanistically, the reverse mutation of I714S in the PB2 polymerase subunit which was identified in AIV GX13431 reduced the nuclear import efficiency of PB2 protein and interfered with the interactions of PB2-PA/NP that affected the assembly of the viral RNP complex. Our study reveals amino acid mutation at the position of 714 in the nuclear localization signal (NLS) area in PB2 plays an important role in overcoming the barrier from poultry to mammals of the H3N2 canine influenza virus and provides clues for further study of mammalian adaptation mechanism of AIVs.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , ARN Polimerasa Dependiente del ARN , Ribonucleoproteínas , Proteínas Virales , Animales , Perros , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/fisiología , Ratones , Proteínas Virales/genética , Proteínas Virales/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Infecciones por Orthomyxoviridae/virología , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Transporte Activo de Núcleo Celular , Replicación Viral , Mutación , Células de Riñón Canino Madin Darby , Enfermedades de los Perros/virología , Ratones Endogámicos BALB C , Células HEK293 , Virus Reordenados/genética
8.
Mol Oncol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965815

RESUMEN

The mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5) is emerging as a promising target in cancer. Indeed, alterations of the MEK5/ERK5 pathway are present in many types of cancer, including melanoma. One of the key events in MAPK signalling is MAPK nuclear translocation and its subsequent regulation of gene expression. Likewise, the effects of ERK5 in supporting cancer cell proliferation have been linked to its nuclear localization. Despite many processes regulating ERK5 nuclear translocation having been determined, the nuclear transporters involved have not yet been identified. Here, we investigated the role of importin subunit alpha (α importin) and importin subunit beta-1 (importin ß1) in ERK5 nuclear shuttling to identify additional targets for cancer treatment. Either importin ß1 knockdown or the α/ß1 importin inhibitor ivermectin reduced the nuclear amount of overexpressed and endogenous ERK5 in HEK293T and A375 melanoma cells, respectively. These results were confirmed in single-molecule microscopy in HeLa cells. Moreover, immunofluorescence analysis showed that ivermectin impairs epidermal growth factor (EGF)-induced ERK5 nuclear shuttling in HeLa cells. Both co-immunoprecipitation experiments and proximity ligation assay provided evidence that ERK5 and importin ß1 interact and that this interaction is further induced by EGF administration and prevented by ivermectin treatment. The combination of ivermectin and the ERK5 inhibitor AX15836 synergistically reduced cell viability and colony formation ability in A375 and HeLa cells and was more effective than single treatments in preventing the growth of A375 and HeLa spheroids. The increased reduction of cell viability upon the same combination was also observed in patient-derived metastatic melanoma cells. The combination of ivermectin and ERK5 inhibitors other than AX15836 provided similar effects on cell viability. The identification of importin ß1 as the nuclear transporter of ERK5 may be exploited for additional ERK5-inhibiting strategies for cancer therapy.

9.
Microorganisms ; 12(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38792846

RESUMEN

Both pandemic and seasonal influenza are major health concerns, causing significant mortality and morbidity. Current influenza drugs primarily target viral neuraminidase and RNA polymerase, which are prone to drug resistance. Polyoxometalates (POMs) are metal cation clusters bridged by oxide anions. They have exhibited potent anti-tumor, antiviral, and antibacterial effects. They have remarkable activity against various DNA and RNA viruses, including human immunodeficiency virus, herpes simplex virus, hepatitis B and C viruses, dengue virus, and influenza virus. In this study, we have identified sodium polyoxotungstate (POM-1) from an ion channel inhibitor library. In vitro, POM-1 has been demonstrated to have potent antiviral activity against H1N1, H3N2, and oseltamivir-resistant H1N1 strains. POM-1 can cause virion aggregation during adsorption, as well as endocytosis. However, the aggregation is reversible; it does not interfere with virus adsorption and endocytosis. Our results suggest that POM-1 exerts its antiviral activity by inhibiting the nuclear import of viral ribonucleoprotein (vRNP). This distinct mechanism of action, combined with its wide range of efficacy, positions POM-1 as a promising therapeutic candidate for influenza treatment and warrants further investigation.

10.
Methods Mol Biol ; 2807: 141-151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743226

RESUMEN

To integrate with host chromatin and establish a productive infection, HIV-1 must translocate the viral Ribonucleoprotein (RNP) complex through the nuclear pore complex (NPC). Current assay to measure HIV-1 nuclear import relies on a transient byproduct of HIV-1 integration failure called 2-LTR circles. However, 2-LTR circles require complete or near-complete reverse transcription and association with the non-homologous end joining (NHEJ) machinery in the nucleus, which can complicate interpretation of 2-LTR circle formation as a measure of nuclear import kinetics. Here, we describe an approach to measure nuclear import of infectious HIV-1 particles. This involves chemically induced dimerization of Nup62, a central FG containing nucleoporin. Using this technique, nuclear import of infectious particles can be monitored in both primary and cell culture models. In response to host factor depletion or restriction factors, changes in HIV-1 nuclear import can be effectively measured using the nuclear import kinetics (NIK) assay.


Asunto(s)
Transporte Activo de Núcleo Celular , VIH-1 , Proteínas de Complejo Poro Nuclear , Poro Nuclear , VIH-1/metabolismo , VIH-1/fisiología , Humanos , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Cinética , Núcleo Celular/metabolismo , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Integración Viral
11.
Methods Mol Biol ; 2807: 127-138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743225

RESUMEN

The initial stages of HIV-1 infection involve the transport of the viral core into the nuclear compartment. The presence of the HIV-1 core in the nucleus triggers the translocation of CPSF6/CPSF5 from paraspeckles into nuclear speckles, forming puncta-like structures. While this phenomenon is well-documented, the efficiency of CPSF6 translocation to nuclear speckles upon HIV-1 infection varies depending on the type of cell used. In some human cell lines, only 1-2% of the cells translocate CPSF6 to nuclear speckles when exposed to a 95% infection rate. To address the issue that only 1-2% of cells translocate CPSF6 to nuclear speckles when a 95% infection rate is achieved, we screened several human cell lines and identified a human a cell line in which approximately 85% of the cells translocate CPSF6 to nuclear speckles when 95% infection rate is achieved. This cellular system has enabled the development of a robust fluorescence microscopy method to quantify the translocation of CPSF6 into nuclear speckles following HIV-1 infection. This assay holds the potential to support studies aimed at understanding the role of CPSF6 translocation to nuclear speckles in HIV-1 infection. Additionally, since the translocation of CPSF6 into nuclear speckles depends on the physical presence of the viral core in the nucleus, our method also serves as a reporter of HIV-1 nuclear import.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular , VIH-1 , Factores de Escisión y Poliadenilación de ARNm , Humanos , Línea Celular , Núcleo Celular/metabolismo , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , VIH-1/genética , VIH-1/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética
12.
Methods Mol Biol ; 2807: 153-161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743227

RESUMEN

Recent evidence has shown that uncoating and reverse transcription precede nuclear import. These recent breakthroughs have been made possible through the development of innovative biochemical and imaging techniques. This method outlines the biochemical assay used for detecting the presence of the HIV-1 core in the nuclear compartment. In this procedure, human cells are infected with HIV-1NL4-3, with or without the inclusion of PF74, a small molecule that inhibits core entry into the nuclear compartment. Subsequently, cells are separated into cytosolic and nuclear fractions. To assess whether the capsid protein has reached the nuclear compartment, cytosolic and nuclear fractions are subjected to Western blot analysis, utilizing antibodies specific to the HIV-1 capsid protein p24. To validate the true origin of these fractions, Western blot analysis employing antibodies against cytosolic and nuclear markers are also performed. In summary, this assay provides a reliable and efficient means to detect the presence of the HIV-1 capsid protein in the nucleus during infection under various conditions.


Asunto(s)
Cápside , Infecciones por VIH , VIH-1 , Humanos , Western Blotting/métodos , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Proteína p24 del Núcleo del VIH/metabolismo , Proteína p24 del Núcleo del VIH/análisis , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados
13.
J Cell Biochem ; 125(7): e30573, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38780165

RESUMEN

Nucleocytoplasmic transport of macromolecules is essential in eukaryotic cells. In this process, the karyopherins play a central role when they transport cargoes across the nuclear pore complex. Importin 4 belongs to the karyopherin ß family. Many studies have focused on finding substrates for importin 4, but no direct mechanism studies of its precise transport function have been reported. Therefore, this paper mainly aimed to study the mechanism of nucleoporins in mediating nuclear import and export of importin 4. To address this question, we constructed shRNAs targeting Nup358, Nup153, Nup98, and Nup50. We found that depletion of Nup98 resulted in a shift in the subcellular localization of importin 4 from the cytoplasm to the nucleus. Mutational analysis demonstrated that Nup98 physically and functionally interacts with importin 4 through its N-terminal phenylalanine-glycine (FG) repeat region. Mutation of nine of these FG motifs to SG motifs significantly attenuated the binding of Nup98 to importin 4, and we further confirmed the essential role of the six FG motifs in amino acids 121-360 of Nup98 in binding with importin 4. In vitro transport assay also confirmed that VDR, the substrate of importin 4, could not be transported into the nucleus after Nup98 knockdown. Overall, our results showed that Nup98 is required for efficient importin 4-mediated transport. This is the first study to reveal the mechanism of importin 4 in transporting substrates into the nucleus.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Complejo Poro Nuclear , beta Carioferinas , Humanos , beta Carioferinas/metabolismo , beta Carioferinas/genética , Núcleo Celular/metabolismo , Células HeLa , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Unión Proteica
14.
bioRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38645162

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) capsid, which is the target of the antiviral lenacapavir, protects the viral genome and binds multiple host proteins to influence intracellular trafficking, nuclear import, and integration. Previously, we showed that capsid binding to cleavage and polyadenylation specificity factor 6 (CPSF6) in the cytoplasm is competitively inhibited by cyclophilin A (CypA) binding and regulates capsid trafficking, nuclear import, and infection. Here we determined that a capsid mutant with increased CypA binding affinity had significantly reduced nuclear entry and mislocalized integration. However, disruption of CypA binding to the mutant capsid restored nuclear entry, integration, and infection in a CPSF6-dependent manner. Furthermore, relocalization of CypA expression from the cell cytoplasm to the nucleus failed to restore mutant HIV-1 infection. Our results clarify that sequential binding of CypA and CPSF6 to HIV-1 capsid is required for optimal nuclear entry and integration targeting, informing antiretroviral therapies that contain lenacapavir.

15.
Cell Rep ; 43(3): 113941, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38478523

RESUMEN

Resting CD4 T cells resist productive HIV-1 infection. The HIV-2/simian immunodeficiency virus protein viral accessory protein X (Vpx) renders these cells permissive to infection, presumably by alleviating blocks at cytoplasmic reverse transcription and subsequent nuclear import of reverse-transcription/pre-integration complexes (RTC/PICs). Here, spatial analyses using quantitative virus imaging techniques reveal that HIV-1 capsids containing RTC/PICs are readily imported into the nucleus, recruit the host dependency factor CPSF6, and translocate to nuclear speckles in resting CD4 T cells. Reverse transcription, however, remains incomplete, impeding proviral integration and viral gene expression. Vpx or pharmacological inhibition of the deoxynucleotide triphosphohydrolase (dNTPase) activity of the restriction factor SAM domain and HD domain-containing protein 1 (SAMHD1) increases levels of nuclear reverse-transcribed cDNA and facilitates HIV-1 integration. Nuclear import and intranuclear transport of viral complexes therefore do not pose important blocks to HIV-1 in resting CD4 T cells, and the limitation to reverse transcription by SAMHD1's dNTPase activity constitutes the main pre-integration block to infection.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Proteínas de Unión al GTP Monoméricas , Animales , Humanos , VIH-1/genética , Linfocitos T CD4-Positivos/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , VIH-2/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Células HEK293
16.
J Gen Virol ; 105(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38441555

RESUMEN

Adeno-associated viruses (AAV) are one of the world's most promising gene therapy vectors and as a result, are one of the most intensively studied viral vectors. Despite a wealth of research into these vectors, the precise characterisation of AAVs to translocate into the host cell nucleus remains unclear. Recently we identified the nuclear localization signals of an AAV porcine strain and determined its mechanism of binding to host importin proteins. To expand our understanding of diverse AAV import mechanisms we sought to determine the mechanism in which the Cap protein from a bat-infecting AAV can interact with transport receptor importins for translocation into the nucleus. Using a high-resolution crystal structure and quantitative assays, we were able to not only determine the exact region and residues of the N-terminal domain of the Cap protein which constitute the functional NLS for binding with the importin alpha two protein, but also reveal the differences in binding affinity across the importin-alpha isoforms. Collectively our results allow for a detailed molecular view of the way AAV Cap proteins interact with host proteins for localization into the cell nucleus.


Asunto(s)
Quirópteros , Dependovirus , Animales , Porcinos , Transporte Activo de Núcleo Celular , Dependovirus/genética , Proteínas de la Cápside/genética , Carioferinas , Señales de Localización Nuclear , alfa Carioferinas/genética
17.
Chin J Dent Res ; 27(1): 39-46, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546518

RESUMEN

Coordination and information exchange among the various organelles ensure the precise and orderly functioning of eukaryotic cells. Interaction between the cytoplasm and nucleoplasm is crucial for many physiological processes. Macromolecular protein transport into the nucleus requires assistance from the nuclear transport system. These proteins typically contain a nuclear localisation sequence that guides them to enter the nucleus. Understanding the mechanism of nuclear import of macromolecular proteins is important for comprehending cellular processes. Investigation of disease-related alterations can facilitate the development of novel therapeutic strategies and provide additional evidence for clinical trials. This review provides an overview of the proteins involved in nuclear transport and the mechanisms underlying macromolecular protein transport.


Asunto(s)
Núcleo Celular , Células Eucariotas , Transporte Activo de Núcleo Celular , Transporte de Proteínas , Citoplasma
18.
Cancer Commun (Lond) ; 44(3): 361-383, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38407929

RESUMEN

BACKGROUND: Lymphatic metastasis is one of the most common metastatic routes and indicates a poor prognosis in clear-cell renal cell carcinoma (ccRCC). N-acetyltransferase 10 (NAT10) is known to catalyze N4-acetylcytidine (ac4C) modification of mRNA and participate in many cellular processes. However, its role in the lymphangiogenic process of ccRCC has not been reported. This study aimed to elucidate the role of NAT10 in ccRCC lymphangiogenesis, providing valuable insights into potential therapeutic targets for intervention. METHODS: ac4C modification and NAT10 expression levels in ccRCC were assessed using public databases and clinical samples. Functional investigations involved manipulating NAT10 expression in cellular and mouse models to study its role in ccRCC. Mechanistic insights were gained through a combination of RNA sequencing, mass spectrometry, co-immunoprecipitation, RNA immunoprecipitation, immunofluorescence, and site-specific mutation analyses. RESULTS: We found that ac4C modification and NAT10 expression levels increased in ccRCC. NAT10 promoted tumor progression and lymphangiogenesis of ccRCC by enhancing the nuclear import of Yes1-associated transcriptional regulator (YAP1). Subsequently, we identified ankyrin repeat and zinc finger peptidyl tRNA hydrolase 1 (ANKZF1) as the functional target of NAT10, and its upregulation in ccRCC was caused by NAT10-mediated ac4C modification. Mechanistic analyses demonstrated that ANKZF1 interacted with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) to competitively inhibit cytoplasmic retention of YAP1, leading to transcriptional activation of pro-lymphangiogenic factors. CONCLUSIONS: These results suggested a pro-cancer role of NAT10-mediated acetylation in ccRCC and identified the NAT10/ANKZF1/YAP1 axis as an under-reported pathway involving tumor progression and lymphangiogenesis in ccRCC.


Asunto(s)
Proteínas 14-3-3 , Carcinoma de Células Renales , Proteínas Portadoras , Neoplasias Renales , Acetiltransferasas N-Terminal , Proteínas Señalizadoras YAP , Animales , Ratones , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Linfangiogénesis/genética , Procesos Neoplásicos , Proteínas Portadoras/metabolismo , Acetiltransferasas N-Terminal/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas Señalizadoras YAP/metabolismo
19.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261399

RESUMEN

Adenovirus protein VII (pVII) plays a crucial role in the nuclear localization of genomic DNA following viral infection and contains nuclear localization signal (NLS) sequences for the importin (IMP)-mediated nuclear import pathway. However, functional analysis of pVII in adenoviruses to date has failed to fully determine the underlying mechanisms responsible for nuclear import of pVII. Therefore, in the present study, we extended our analysis by examining the nuclear trafficking of adenovirus pVII from a non-human species, psittacine siadenovirus F (PsSiAdV). We identified a putative classical (c)NLS at pVII residues 120-128 (120PGGFKRRRL128). Fluorescence polarization and electrophoretic mobility shift assays demonstrated direct, high-affinity interaction with both IMPα2 and IMPα3 but not IMPß. Structural analysis of the pVII-NLS/IMPα2 complex confirmed a classical interaction, with the major binding site of IMPα occupied by K124 of pVII-NLS. Quantitative confocal laser scanning microscopy showed that PsSiAdV pVII-NLS can confer IMPα/ß-dependent nuclear localization to GFP. PsSiAdV pVII also localized in the nucleus when expressed in the absence of other viral proteins. Importantly, in contrast to what has been reported for HAdV pVII, PsSiAdV pVII does not localize to the nucleolus. In addition, our study demonstrated that inhibition of the IMPα/ß nuclear import pathway did not prevent PsSiAdV pVII nuclear targeting, indicating the existence of alternative pathways for nuclear localization, similar to what has been previously shown for human adenovirus pVII. Further examination of other potential NLS signals, characterization of alternative nuclear import pathways, and investigation of pVII nuclear targeting across different adenovirus species is recommended to fully elucidate the role of varying nuclear import pathways in the nuclear localization of pVII.


Asunto(s)
Siadenovirus , Transporte Activo de Núcleo Celular , Transporte de Proteínas , Señales de Localización Nuclear/genética , Carioferinas
20.
Plants (Basel) ; 13(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256832

RESUMEN

The mechanical damage of plant tissues leads to the activation of methanol production and its release into the atmosphere. The gaseous methanol or vapors emitted by the damaged plant induce resistance in neighboring intact plants to bacterial pathogens but create favorable conditions for viral infection spread. Among the Nicotiana benthamiana methanol-inducible genes (MIGs), most are associated with plant defense and intercellular transport. Here, we characterize NbMIG21, which encodes a 209 aa protein (NbMIG21p) that does not share any homology with annotated proteins. NbMIG21p was demonstrated to contain a nucleolus localization signal (NoLS). Colocalization studies with fibrillarin and coilin, nucleolus and Cajal body marker proteins, revealed that NbMIG21p is distributed among these subnuclear structures. Our results show that recombinant NbMIG21 possesses DNA-binding properties. Similar to a gaseous methanol effect, an increased NbMIG21 expression leads to downregulation of the nuclear import of proteins with nuclear localization signals (NLSs), as was demonstrated with the GFP-NLS model protein. Moreover, upregulated NbMIG21 expression facilitates tobacco mosaic virus (TMV) intercellular transport and reproduction. We identified an NbMIG21 promoter (PrMIG21) and showed that it is methanol sensitive; thus, the induction of NbMIG21 mRNA accumulation occurs at the level of transcription. Our findings suggest that methanol-activated NbMIG21 might participate in creating favorable conditions for viral reproduction and spread.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...