Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Circulation ; 150(9): 724-735, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39186530

RESUMEN

Familial hypercholesterolemia (FH) is a genetic disease that leads to elevated low-density lipoprotein cholesterol levels and risk of coronary heart disease. Current therapeutic options for FH remain relatively limited and only partially effective in both lowering low-density lipoprotein cholesterol and modifying coronary heart disease risk. The unique characteristics of nucleic acid therapies to target the underlying cause of the disease can offer solutions unachievable with conventional medications. DNA- and RNA-based therapeutics have the potential to transform the care of patients with FH. Recent advances are overcoming obstacles to clinical translation of nucleic acid-based medications, including greater stability of the formulations as well as site-specific delivery, making gene-based therapy for FH an alternative approach for treatment of FH.


Asunto(s)
Terapia Genética , Hiperlipoproteinemia Tipo II , Humanos , Hiperlipoproteinemia Tipo II/terapia , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Terapia Genética/métodos , Animales , LDL-Colesterol/sangre
2.
ACS Appl Bio Mater ; 7(6): 3587-3604, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38833534

RESUMEN

Nature continually refines its processes for optimal efficiency, especially within biological systems. This article explores the collaborative efforts of researchers worldwide, aiming to mimic nature's efficiency by developing smarter and more effective nanoscale technologies and biomaterials. Recent advancements highlight progress and prospects in leveraging engineered nucleic acids and proteins for specific tasks, drawing inspiration from natural functions. The focus is developing improved methods for characterizing, understanding, and reprogramming these materials to perform user-defined functions, including personalized therapeutics, targeted drug delivery approaches, engineered scaffolds, and reconfigurable nanodevices. Contributions from academia, government agencies, biotech, and medical settings offer diverse perspectives, promising a comprehensive approach to broad nanobiotechnology objectives. Encompassing topics from mRNA vaccine design to programmable protein-based nanocomputing agents, this work provides insightful perspectives on the trajectory of nanobiotechnology toward a future of enhanced biomimicry and technological innovation.


Asunto(s)
Materiales Biocompatibles , Nanotecnología , Materiales Biocompatibles/química , Humanos , Biotecnología , Sistemas de Liberación de Medicamentos
3.
Mol Ther Nucleic Acids ; 35(1): 102086, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38204913

RESUMEN

Peptide nucleic acids (PNAs) are synthetic nucleic acid analogs with a neutral N-(2-aminoethyl) glycine backbone. PNAs possess unique physicochemical characteristics such as increased resistance to enzymatic degradation, ionic strength and stability over a wide range of temperatures and pH, and low intrinsic electrostatic repulsion against complementary target oligonucleotides. PNA has been widely used as an antisense oligonucleotide (ASO). Despite the favorable characteristics of PNA, in comparison with other ASO technologies, the use of antisense PNA for novel therapeutics has lagged. This review provides a brief overview of PNA, its antisense mechanisms of action, delivery strategies, and highlights successful applications of PNA, focusing on anti-pathogenic, anti-neurodegenerative disease, anti-cancer, and diagnostic agents. For each application, several studies are discussed focusing on the different target sites of the PNA, design of different PNAs and the therapeutic outcome in different cell lines and animal models. Thereafter, persisting limitations slowing the successful integration of antisense PNA therapeutics are discussed in order to highlight actionable next steps in the development and optimization of PNA as an ASO.

4.
Cells ; 12(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37759507

RESUMEN

Interleukin-6 (IL-6) is a pleiotropic cytokine that plays a crucial role in maintaining normal homeostatic processes under the pathogenesis of various inflammatory and autoimmune diseases. This context-dependent effect from a cytokine is due to two distinctive forms of signaling: cis-signaling and trans-signaling. IL-6 cis-signaling involves binding IL-6 to the membrane-bound IL-6 receptor and Glycoprotein 130 (GP130) signal-transducing subunit. By contrast, in IL-6 trans-signaling, complexes of IL-6 and the soluble form of the IL-6 receptor (sIL-6R) signal via membrane-bound GP130. Various strategies have been employed in the past decade to target the pro-inflammatory effect of IL-6 in numerous inflammatory disorders. However, their development has been hindered since these approaches generally target global IL-6 signaling, also affecting the anti-inflammatory effects of IL-6 signaling too. Therefore, novel strategies explicitly targeting the pro-inflammatory IL-6 trans-signaling without affecting the IL-6 cis-signaling are required and carry immense therapeutic potential. Here, we have developed a novel approach to specifically decoy IL-6-mediated trans-signaling by modulating alternative splicing in GP130, an IL-6 signal transducer, by employing splice switching oligonucleotides (SSO), to induce the expression of truncated soluble isoforms of the protein GP130. This isoform is devoid of signaling domains but allows for specifically sequestering the IL-6/sIL-6R receptor complex with high affinity in serum and thereby suppressing inflammation. Using the state-of-the-art Pip6a cell-penetrating peptide conjugated to PMO-based SSO targeting GP130 for efficient in vivo delivery, reduced disease phenotypes in two different inflammatory mouse models of systemic and intestinal inflammation were observed. Overall, this novel gene therapy platform holds great potential as a refined therapeutic intervention for chronic inflammatory diseases.


Asunto(s)
Citocinas , Interleucina-6 , Animales , Ratones , Receptor gp130 de Citocinas , Inflamación , Oligonucleótidos
5.
ACS Appl Bio Mater ; 6(9): 3566-3576, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-35014835

RESUMEN

Nucleic acid therapeutics hold an unprecedented promise toward treating many challenging diseases; however, their use is hampered by delivery issues. Microfluidics, dealing with fluids in the microscale dimensions, have provided a robust means to screening raw materials for development of nano delivery vectors, in addition to controlling their size and minimizing their polydispersity. In this mini-review, we are briefly highlighting the different types of nucleic acid therapies with emphasis on the delivery requirement for each type. We provide a thorough review of available methods for the development of nanoparticles, especially lipid nanoparticles (LNPs) that resulted in FDA approval of the first ever nucleic acid nanomedicine. We then focus on recent research attempts for how microfluidic synthesis of lipid nanoparticles and discuss the various parameters required for successful formulation of LPNs including chip design, flow regimes, and lipid composition. We then identify key areas of research in microfluidics and related fields that require attention for future success in clinical translation of nucleic acid nanomedicines.


Asunto(s)
Microfluídica , Nanopartículas , Microfluídica/métodos , Lípidos , Nanomedicina
6.
Front Cell Neurosci ; 16: 954912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36385948

RESUMEN

Understanding and ameliorating neurodegenerative diseases represents a key challenge for supporting the health span of the aging population. Diverse protein aggregates have been implicated in such neurodegenerative disorders, including amyloid-ß, α-synuclein, tau, fused in sarcoma (FUS), and transactivation response element (TAR) DNA-binding protein 43 (TDP-43). Recent years have seen significant growth in our mechanistic knowledge of relationships between these proteins and some of the membrane-less nuclear structures that fulfill key roles in the cell function. These include the nucleolus, nuclear speckles, and paraspeckles. The ability of macromolecular protein:RNA complexes to partition these nuclear condensates through biophysical processes that involve liquid-liquid phase separation (LLPS) has also gained attention recently. The paraspeckle, which is scaffolded by the architectural long-non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) plays central roles in RNA processing and metabolism and has been linked dynamically to TDP-43. In this mini-review, we outline essential early and recent insights in relation to TDP-43 proteinopathies. We then appraise the relationships between TDP-43 and NEAT1 in the context of neuronal paraspeckles and neuronal stress. We highlight key areas for investigation based on recent advances in our understanding of how TDP-43 affects neuronal function, especially in relation to messenger ribosomal nucleic acid (mRNA) splicing. Finally, we offer perspectives that should be considered for translational pipelines in order to improve health outcomes for the management of neurodegenerative diseases.

7.
Front Cell Neurosci ; 16: 1108593, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589289

RESUMEN

[This corrects the article DOI: 10.3389/fncel.2022.954912.].

8.
Adv Drug Deliv Rev ; 156: 4-22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32593642

RESUMEN

The liposomes have continued to be well-recognized as an important nano-sized drug delivery system with attractive properties, such a characteristic bilayer structure assembling the cellular membrane, easy-to-prepare and high bio-compatibility. Extensive effort has been devoted to the development of liposome-based drug delivery systems during the past few decades. Many drug candidates have been encapsulated in liposomes and investigated for reduced toxicity and extended duration of therapeutic effect. The liposomal encapsulation of hydrophilic and hydrophobic small molecule therapeutics as well as other large molecule biologics have been established among different academic and industrial research groups. To date, there has been an increasing number of FDA-approved liposomal-based therapeutics together with more and more undergoing clinical trials, which involve a wide range of applications in anticancer, antibacterial, and antiviral therapies. In order to meet the continuing demand for new drugs in clinics, more recent advancements have been investigated for optimizing liposomal-based drug delivery system with more reproducible preparation technique and a broadened application to novel modalities, including nucleic acid therapies, CRISPR/Cas9 therapies and immunotherapies. This review focuses on the recent liposome' preparation techniques, the excipients of liposomal formulations used in various novel studies and the routes of administration used to deliver liposomes to targeted areas of disease. It aims to update the research in liposomal delivery and highlights future nanotechnological approaches.


Asunto(s)
Sistemas de Liberación de Medicamentos/historia , Farmacia , Historia del Siglo XX , Historia del Siglo XXI
9.
Cell Metab ; 29(3): 727-735.e3, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30840913

RESUMEN

The liver plays a central role in metabolism; however, xenobiotic metabolism variations between human hepatocytes and those in model organisms create challenges in establishing functional test beds to detect the potential drug toxicity and efficacy of candidate small molecules. In the emerging areas of RNA interference, viral gene therapy, and genome editing, more robust, long-lasting, and predictive human liver models may accelerate progress. Here, we apply a new modality to a previously established, functionally stable, multi-well bioengineered microliver-fabricated from primary human hepatocytes and supportive stromal cells-in order to advance both small molecule and nucleic acid therapeutic pipelines. Specifically, we achieve robust and durable gene silencing in vitro to tune the human metabolism of small molecules, and demonstrate its capacity to query the potential efficacy and/or toxicity of candidate therapeutics. Additionally, we apply this engineered platform to test siRNAs designed to target hepatocytes and impact human liver genetic and infectious diseases.


Asunto(s)
Descubrimiento de Drogas/métodos , Hepatocitos/metabolismo , Hígado/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Células del Estroma/metabolismo , Células 3T3 , Animales , Hepatocitos/citología , Humanos , Hígado/citología , Ratones , Plasmodium falciparum , Células del Estroma/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...