Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.971
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 25-34, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39079213

RESUMEN

HYPOTHESIS: Through the rational design of nanomaterial composites, broadband light harvesting and good thermal insulation can be achieved simultaneously to improve the efficiency of water evaporation. EXPERIMENT: Solar evaporation experiments were carried out on liquid marbles (LMs) coated with Fe3O4 nanoparticles, carbon nanotubes (CNTs) and hybrid nanomaterials (Fe3O4/CNTs) with different mass ratios of 2:1, 1:1 and 1:2. FINDING: The results showed that the mixture of Fe3O4/CNTs enhances the light harvesting ability and solar interfacial evaporation performance. Fe3O4/CNT-LM at the mass ratio of 2:1 case provides the highest evaporation rate of 11.03 µg/s, which is about 1.22 and 1.34 times higher than that of Fe3O4 and CNT, respectively. This high performance is mainly due to the synergistic effect between Fe3O4 nanoparticles and CNTs, as the hybrid nanostructure significantly improves the both photothermal conversion and heat localization capability. Numerical simulation further supports that the composite can concentrate the electromagnetic field and heat at the phase-change interface. This leads to a rapid evaporation of the boundary region. This study provides a novel approach to a three-dimensional interface by assembling nanomaterials on the drop surface to enhance evaporation, which may have far-reaching implications for seawater desalination.

2.
Sci Rep ; 14(1): 23476, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379473

RESUMEN

Blasting vibration(BV) may cause the instability and damage to the surrounding structures and infrastructures, even leading to serious accident. As far as slope blasting is concerned, more and more attention has been paid to the elevation effect of BV of rock mass. However, scarce information is available on the influence of the elevation effect of slope blasting on the BV of surrounding structures, especially the existing buried pipes. As a consequence, the influence of the elevation effect of slope blasting on the BV of steel pipes was numerically investigated according to finite element model, which was verified against the experimental result. Moreover, the formula is presented to predict the peak vibration velocity (PVV) of steel pipes under slope blasting. It is found that PVV of the steel pipes has the elevation amplification effect in the terrain with positive or negative elevation difference. PVV of the pipes in the terrain with positive elevation difference is greater than that in the terrain with the same negative elevation difference. The elevation effect is more obvious under the condition of the positive elevation difference (2.1-5.1 m). The modified Sadovsky's empirical formula is more suitable to predict PVV of the buried steel pipes during the slope blasting process.

3.
3D Print Addit Manuf ; 11(4): 1471-1494, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39360137

RESUMEN

Metal-based additive manufacturing (MAM) method with high freedom and special fabricate technology has presented great universality in the aerospace and biomedicine field. However, a wide range of process parameters in the MAM method challenge the experimental study on the formation and evolution of defects. The numerical simulation presents its excellent accuracy and economy in predicting the evolution of multiphysics phenomena and was hence widely applied. In the current review, the available MAM methods with the fundamental phenomena were reviewed. Based on scales, numerical approaches divided into three categories were discussed and focused on their main prediction objectives and strengths or weaknesses of all the scales. To display the prediction results closer to real physical phenomena, advanced multiscale models coupled with various single-scale models are provided. The high prediction accuracy and computational efficiency enable better parameter control and defect avoidance. As a supplement and development to the physical-driven model, the data-driven model provides a new perspective on MAM methods. Based on the database generated by the physical-driven model and experiment, the data-driven models without calibration of input parameters are shown. In addition, this review discussed the development direction of numerical simulation, aiming to provide a reference for technical research in this field.

4.
Mar Pollut Bull ; 208: 117071, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366061

RESUMEN

The disposal of sewage water in Gaza City has emerged as a significant issue with extensive environmental repercussions. This study seeks to investigate the pollution plume resulting from the discharge of untreated or partially treated sewage water through Gaza City's main outlet into the Mediterranean Sea. Additionally, it aims to predict scenarios for various design configurations of submerged outfalls with either single-port or multi-port diffusers and compare these scenarios against the Environmental Protection Agency (EPA) recreational water quality criteria. According to the EPA, the concentration of Enterococci bacteria at the edge of the mixing zone should not exceed 35 CFU/100 ml to minimize the adverse environmental impact on the marine ecosystem. CORMIX software was utilized as a modeling tool to simulate the dispersion and attenuation behavior of pollutants resulting from this process and to conduct a sensitivity analysis to optimize the design configuration of the sewage disposal system. The simulation considered the influence of ambient conditions (ambient velocity, wind, and seawater density), effluent characteristics (density, flow rate, pollutant concentration, and pollutant decay rate), outfall configuration, and sea bathymetry. Simulation results indicate that a single-port diffuser is unsuitable according to EPA recreation standards. Multi-port unidirectional diffusers, extending 490 m from the shore into the water, meet the required standards. To a lesser extent, the multi-port staged distributor also meets the standards and is more recommended for counter-current situations.

5.
Sci Rep ; 14(1): 23167, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369044

RESUMEN

This study aims to investigate the responses of shield tunnel structures subjected to disturbances caused by bilateral pit excavation, and it systematically reveals for the first time the impact mechanism of bilateral pit excavation on the distribution of perimeter pressure and deformation patterns of shield tunnels. Using a bilateral pit excavation project in Nanjing as a case study, this research establishes methods for calculating longitudinal displacement and circumferential pressure of tunnels under bilateral pit excavation conditions, employing the image source method for analysis. A refined three-ring segment model is developed, and the load structure method is used to analyze the impact of deep foundation excavation on the tunnel located between the two excavation sites. The results indicate that, compared to unilateral excavation, bilateral excavation significantly increases the perimeter pressure at the top and bottom of the tunnel, with a smaller increase in pressure at the arch waist. The deformation pattern is characterized by contraction at the top and bottom and expansion at the waist, forming a transverse elliptical deformation. The maximum vertical convergence values of the middle segment ring are 25.00 mm at the top and 25.88 mm at the bottom, with a vertical absolute convergence value of 44.5 mm and a convergence ratio (ΔDt/Dt) of 0.72%. As the foundation coefficient increases, the perimeter pressure at the top and bottom of the tunnel also increases. When the tunnel is closer to the foundation pits (Sp decreases), the perimeter pressure at the bottom of the tunnel increases. Conversely, as the distance between the two foundation pits (S) increases, the impact of excavation on the tunnel shifts from the upper part to the lower part, resulting in decreased upper perimeter pressure and increased lower perimeter pressure. The research findings provide important references for similar engineering projects.

6.
Water Res ; 267: 122492, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39353346

RESUMEN

Microplastics have been identified as a potentially emerging threat to water environment and human health. Therefore, there is a pressing demand for effective strategies to remove microplastics from water. Hydrocyclone offers a rapid separation and low energy consumption alternative but require reduction of microparticle entrainment by short flow, which limits the effectiveness for small density differentials and ultralow concentrations separation. We proposed an enhanced mini-hydrocyclone with overflow microchannels (0.72 mm width) based on the active control of short flow in hydrocyclone for microplastic removal from water. The overflow microchannels effectively redirect the particles that would typically be entrained by the short flow, leading to higher separation efficiency. Simulation results show overflow microchannels effectively reduced short flow to 0.7 %, a reduction of up to 94 % compared to conventional hydrocyclones. The hydrocyclone with overflow microchannel demonstrated a removal efficiency exceeding 98 % for 8 µm plastic microbeads at ultralow concentrations (10 ppm), which is a 33.7 % improvement over conventional hydrocyclone. Compared with other methods (e.g., filtration, adsorption, coagulation) for microplastic removal, this work achieves rapid separation capability and long period operation, highlighting hydrocyclone as a promising approach for microplastic removal in industry-scale water treatment.

7.
Heliyon ; 10(17): e37164, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286107

RESUMEN

In order to explore the self-priming characteristics of the self-priming pump at the mobile pump truck, this paper established a complete three-dimensional circulatory piping system including the self-priming pump, tank, valves, inlet pipe and outlet pipe. The UDF(User Defined Functions) was used to realize the acceleration-constant speed operation process of the impeller, thus reflecting the actual changing state of the rotational speed. Based on the VOF(Volume Of Fluid) multiphase flow model and the Realizable k-ε turbulence model, a coupled numerical calculation of unsteady incompressible viscous flow was conducted for its self-priming process. The results show that the self-priming process of the pump can be roughly divided into four stages: the rapid suction stage, the shock exhaust stage, the rapid exhaust period and the pump residual gas discharge stage. The proportion of each stage in the total self-priming time showed an increasing trend. During the rapid suction stage, the water level in the vertical section of the inlet pipe showed a slow and then fast-rising pattern. During the shock exhaust stage, the average gas-phase volume fraction in the volute is lower than that of the impeller, and the gas content at the volute outlet is lower than that of the impeller inlet. The region at the inlet and outer edge of the impeller consistently experience significant energy losses.

8.
Sci Rep ; 14(1): 21235, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261635

RESUMEN

Predictive models for spatial correlation play an effective role in the assessment of seismic risk associated with distributed infrastructure and building portfolios. However, existing models often rely on simplified approaches, assuming isotropy and stationarity. This paper verifies these assumptions by presenting a comprehensive study using a database of 3D physics-based simulated broadband ground motions for Istanbul, generated by the SPEED software. The results reveal significant event-to-event variability and nonstationary and anisotropic characteristics of spatial correlation influenced by source, path, and site effects. The development of nonstationary correlation models requires exploring influential metrics beyond spatial proximity and gaining a deep understanding of their impact, which is the focus of this study. Analysis of the spatial correlations of peak ground displacement, peak ground velocity, peak ground acceleration, and response spectral accelerations at different periods, employing both stationary and nonstationary correlation modelling methods and considering the finite fault model, indicates that the slip distribution pattern, direction and distance of station pairs relative to earthquake rupture, soil softness, and homogeneity of soil properties significantly influence the spatial correlations of near-field earthquake ground motions. Implementation of the introduced parameters in predictive spatial correlation models enhances the precision of regional seismic hazard assessments.

9.
Heliyon ; 10(16): e36341, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39262948

RESUMEN

In field hydraulic fracturing operation of shale gas development, the high pressure and large displacement liquid-particle two-phase fracturing fluid can be forced to change direction many times through high-pressure double-elbow, and be transported from the outlet pipeline of the fracturing pump to the main pipeline. The high-pressure double-elbow is prone to be affected by erosion wear and Fluid-Structure Interaction (FSI), resulting in perforation and fracture, posing a potential safety threat to field operation. In this study, we conducted the erosion wear experiments on 35CrMo steel used for high-pressure double-elbow in shale-gas fracturing. The erosion rates under different impact angles and flow velocities were obtained, and proposed a novel model of erosion prediction for high-pressure double-elbow. Then the numerical investigation was employed to conduct a comprehensive analysis of erosion wear, structural stress and deformation by the coupling of Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA). The effects of structural parameters such as connection straight pipe length, pipe inner diameter and fluid turning direction were discussed. The results indicate that with the increase of connection straight pipe length, the flow erosion decreases first then varies little, and the deformation gradually increases. Slight erosion wear but large structural stress and deformation in major inner diameter pipe. And the minimum degree of erosion and flow-induced deformation present with the fluid turning direction of double-elbow as 0°. The study can provide references for the design, installation and detection of high-pressure double-elbow and ensure safety in the process of shale gas fracturing.

10.
Comput Methods Programs Biomed ; 257: 108383, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39260163

RESUMEN

INTRODUCTION: This study aimed to investigate the efficacy of a small-gauge microwave ablation antenna (MWA) with an enhanced cooling system (ECS) for generating more spherical ablation zones. METHODS: A comparison was made between two types of microwave ablation antennas, one with ECS and the other with a conventional cooling system (CCS). The finite element method was used to simulate in vivo ablation. Two types of antennas were used to create MWA zones for 5, 8, 10 min at 50, 60, and 80 W in ex vivo bovine livers (n = 6) and 5 min at 60 W in vivo porcine livers (n = 16). The overtreatment ratio, ablation aspect ratio, carbonization area, and other characteristcs of antennas were measured and compared using numerical simulation and gross pathologic examination. RESULTS: In numerical simulation, the ECS antenna demonstrated a lower overtreatment ratio than the CCS antenna (1.38 vs 1.43 at 50 W 5 min, 1.19 vs 1.35 at 50 W 8 min, 1.13 vs 1.32 at 50 W 10 min, 1.28 vs 1.38 at 60 W 5 min, 1.14 vs 1.32 at 60 W 8 min, 1.10 vs 1.30 at 60 W 10 min). The experiments revealed that the ECS antenna generated ablation zones with a more significant aspect ratio (0.92 ± 0.03 vs 0.72 ± 0.01 at 50 W 5 min, 0.95 ± 0.02 vs 0.70 ± 0.01 at 50 W 8 min, 0.96 ± 0.01 vs 0.71 ± 0.04 at 50 W 10 min, 0.96 ± 0.01 vs 0.73 ± 0.02 at 60 W 5 min, 0.94 ± 0.03 vs 0.71 ± 0.03 at 60 W 8 min, 0.96 ± 0.02 vs 0.69 ± 0.04 at 60 W 10 min) and a smaller carbonization area (0.00 ± 0.00 cm2 vs 0.54 ± 0.06 cm2 at 50 W 5 min, 0.13 ± 0.03 cm2 vs 0.61 ± 0.09 cm2 at 50 W 8 min, 0.23 ± 0.05 cm2 vs 0.73 ± 0.05 m2 at 50 W 10 min, 0.00 ± 0.00 cm2 vs 1.59 ± 0.41 cm2 at 60 W 5 min, 0.23 ± 0.22 cm2 vs 2.11 ± 0.63 cm2 at 60 W 8 min, 0.57 ± 0.09 cm2 vs 2.55 ± 0.51 cm2 at 60 W 10 min). Intraoperative ultrasound images revealed a hypoechoic area instead of a hyperechoic area near the antenna. Hematoxylin-eosin staining of the dissected tissue revealed a correlation between the edge of the ablation zone and that of the hypoechoic area. CONCLUSIONS: The ECS antenna can produce more spherical ablation zones with less charring and a clearer intraoperative ultrasound image of the ablation area than the CCS antenna.

11.
Materials (Basel) ; 17(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274632

RESUMEN

The use of laser cladding technology to prepare coatings of AlCoCrFeNi high-entropy alloy holds enormous potential for application. However, the cladding quality will have a considerable effect on the properties of the coatings. In this study, considering the complex coupling relationship between cladding quality and the process parameters, an orthogonal experimental design was employed, with laser power, scanning speed, and powder feed rate as correlation factor variables, and microhardness, dilution rate, and aspect ratio as characteristic variables. The experimental data underwent gray correlation analysis to determine the effect of various process parameters on the quality of cladding. Then, the NSGA-II algorithm was used to establish a multi-objective optimization model of process parameters. Finally, the ANSYS Workbench simulation model was employed to conduct numerical simulations on a group of optimized process parameters and analyze the change rule of the temperature field. The results demonstrate that the laser cladding coating of AlCoCrFeNi high-entropy alloy with the single pass is of high quality within the determined orthogonal experimental parameters. The powder feed rate exerts the most significant influence on microhardness, while laser power has the greatest impact on dilution rate, and scanning speed predominantly affects aspect ratio. The designed third-order polynomial nonlinear regression model exhibits a high fitting accuracy, and the NSGA-II algorithm can be used for multi-objective optimization to obtain the Pareto front solution set. The numerical simulation results demonstrate that the temperature field of AlCoCrFeNi high-entropy alloy laser cladding exhibits a "comet tail" phenomenon, where the highest temperature of the molten pool is close to 3000 °C. The temperature variations in the molten pool align with the features of laser cladding technology. This study lays the groundwork for the widespread application of laser cladding AlCoCrFeNi high-entropy alloy in surface engineering, additive manufacturing, and remanufacturing. Researchers and engineering practitioners can utilize the findings from this research to judiciously manage processing parameters based on the results of gray correlation analysis. Furthermore, the outcomes of multi-objective optimization can assist in the selection of appropriate process parameters aligned with specific application requirements. Additionally, the methodological approach adopted in this study offers valuable insights applicable to the exploration of various materials and diverse additive manufacturing techniques.

12.
Materials (Basel) ; 17(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274695

RESUMEN

The existence of cracks is a key factor affecting the strength of concrete. However, traditional numerical methods still have some limitations in the simulation of crack growth in fissured concrete structures. Based on this background, the numerical treatment method of particle failure in smoothed particle hydrodynamics (SPH) is proposed, and the generation method for concrete meso-structures under the smoothed particle hydrodynamics (SPH) framework is developed. The concrete meso-models under different pre-existing micro-fissure inclinations and bridge angles (the inner tip line of the double pre-existing micro-fissure is defined as a bridge, and the angle between the bridge and the horizontal direction is defined as the bridge angle) were established, and numerical simulations of the crack propagation processes of concrete structures under tensile stress were carried out. The main findings were as follows: The concrete meso-structures and the pre-existing micro-fissures all have great impacts on the final failure modes of concrete. The stress-strain curve of the concrete model presents four typical stages. Finally, the crack initiation and propagation mechanisms of fissured concrete are discussed, and the application of smoothed particle hydrodynamics (SPH) in crack simulations of fissured concrete is prospected.

13.
Materials (Basel) ; 17(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39274804

RESUMEN

Welding experiments were conducted under different currents for single-pass butt welding of high-strength steel flat plates. The microstructure of welded joints was characterized using OM, SEM, and EBSD, and the welding process was numerically simulated using a finite element method. According to the grain size obtained by electron microscope characterization and the temperature data obtained by simulation, the microstructure and mechanical properties of coarse grain and fine grain areas of the heat-affected zone were predicted by using the material microstructure and property simulation software. Finally, the results of mechanical properties simulation were verified through mechanical property testing.

14.
Heliyon ; 10(18): e37626, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309909

RESUMEN

This study utilized FLUENT dynamic mesh simulation technology to simulate the temperature field distribution characteristics during the continuous casting (CC) process of 5 mm thick Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 (Vit1) bulk metallic glass (BMG), analyzed and discussed the amorphous forming ability of the Vit1 BMG plate prepared through CC. The results indicate that during the CC process, the temperature gradient and cooling rate of Vit1 BMG plate decrease with increasing distance from the cooling copper block surface and prolonged solidification time. Even at the lowest cooling rate, it still remains significantly higher than the critical cooling rate (R c) of Vit1 bulk amorphous alloy. The temperature variations recorded by the thermocouple during the alloy melt solidification process are in basic agreement with the simulation data. The experimental test and simulation results show that 5 mm thick Vit1 BMG slab can be prepared theoretically by continuous casting technology. Finally, XRD, DSC and TEM were used to analyze the amorphous formation ability and microstructure of the Vit1 BMG slab.

15.
Heliyon ; 10(18): e37513, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309937

RESUMEN

Theoretical and experimental investigation of two-stage optical parametric generator based on magnesium oxide doped periodically poled lithium niobate (MgO:PPLN) crystal and optical parametric amplifier based on lithium triborate (LBO) crystal is presented. The first stage crystal was pumped by the subnanosecond fundamental harmonic at 1064 nm wavelength. In the theoretical description, the input signal and idler photons are described by the quantum model and their further amplification is tracked by simulating the nonlinear coupling equations. Such description allows the analysis of pulsed beam evolution during the propagation in the nonlinear crystal under strong pump depletion regime. The second stage crystal was seeded by the output signal wave of the first stage and pumped by the third harmonic of the laser radiation. Experimentally, tuning in the visible wavelength ranges and high pulse power (up to 20 mW at 475 nm wavelength) were achieved.

16.
Front Cell Dev Biol ; 12: 1351974, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39310225

RESUMEN

Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensures the equitable treatment of all molecular entities, such as DNA, proteins, H2O, and hydrogen ions (H+), in biological systems. Central to NNS is its use of stoichiometric formulas, simplifying the modeling process and facilitating efficient and accurate simulations of diverse biochemical reactions. The advantage of this method is its ability to manage all molecules uniformly, ensuring a balanced representation in simulations. Detailed in Python, NNS is adept at simulating various reactions, ranging from water ionization to Michaelis-Menten kinetics and complex gene-based systems, making it an effective tool for scientific and engineering research.

17.
Sci Total Environ ; 954: 176241, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299308

RESUMEN

Theoretical research has explained the process of dioxin (DXN) formation in the municipal solid waste incineration (MSWI). This process includes the generation, adsorption, and emission of DXN. Actual DXN concentrations often significantly deviate from theoretical models. This discrepancy is influenced by several key factors: the type of integrated municipal solid waste (MSW) treatment process, the characteristics of the waste, and the operational controls. The progression of DXN generation, adsorption, and emission concentrations within the MSWI process remains unclear. This lack of clarity is especially pronounced when examining the accounting for the specific components of the MSW. To unravel the evolution of DXN, this article proposes a comprehensive numerical simulation model for the entire process of DXN concentration in an MSWI plant. The model is designed based on existing knowledge of MSW combustion and DXN mechanisms, leveraging FLIC and ASPEN simulation software. It incorporates six key stages to facilitate the DXN simulation: precipitation and formation, high-temperature pyrolysis, high-temperature gas-phase synthesis, low-temperature catalytic synthesis, adsorption on activated carbon, and emission to the atmosphere. Under both benchmark and multiple operating conditions, the simulated experiments confirm the effective representation of the evolution of DXN concentrations throughout the process. Consequently, this study presents a model designed to enhance the development of strategies aimed at reducing DXN emissions and to foster innovation in intelligent control technologies.

18.
Heliyon ; 10(18): e37667, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309802

RESUMEN

There are a series of engineering risks, such as ground subsidence, building tilt and cracking, in the process of shield tunnel driving through buildings, which have many adverse effects on urban residents and engineers. In particular, the differences in the effects of the interaction of two-lane tunnels on the building structure and ground deformation field are less often considered under different spatial effects such as construction sequences and tunnel spacings. As well as the problem of analyzing the building as a whole out of reality. To solve these problems, the spatial effect of the shield tunnel underpassing the shallow foundation building is simulated by Plaxis3D software to study the sensitivity analysis of surface settlement and the internal forces and deformation law of the building above in the process of tunneling underpassing with different depths of burial H and horizontal distance D of the double line tunnel. The engineering impact zoning method can investigate the safety of tunnels and buildings under different spatial effects when tunnels pass through buildings. The splitting of the building into plates and columns can reveal the forces and deformation laws of different structural parts. The results show that during the construction process of the double-line tunnel, the tunnel constructed first has a "blocking effect" on the tunnel constructed later, which affects the distribution of the disturbance area to a certain extent and changes the curve shape of the settlement trough. When the "blocking effect" occurs, the surface settlement and building deformation will be significantly reduced. In the internal forces of the building, the plate structure is mainly subjected to changes in axial forces, while the column structure is mainly affected by shear forces and bending moments. The factor of safety of tunnels decreases as the tunnel spacing decreases and as the building loads above increase.

19.
Ultrason Sonochem ; 111: 107066, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39288594

RESUMEN

Cavitation noise is the major noise in underwater, and the study of acoustic radiation from bubble clusters is the primary means to reveal the mechanism of cavitation noise. In this study, direct numerical simulation (DNS) of bubble clusters with volume fractions of 20-40 % with different bubble sizes and bubble position distributions are performed, and the far-field sound pressure is calculated using the Ffowcs Williams-Hawkings (FW-H) method. Then, we compare the collapse and acoustic radiation of bubble clusters with equivalent bubble. The results show that the collapse times of bubble clusters at the same volume fraction are identical and close to equivalent bubble, despite the different bubble sizes and positions in the bubble cluster. Further, in terms of acoustic radiation, the layered arrangement of bubble positions results in bubble clusters exhibiting layer-by-layer collapse and emitting multiple sound pressure pulses. In contrast, a random arrangement of bubble positions lacks this feature, resulting in the collapse of the bubble cluster without a layered phenomenon and radiating only a single primary sound pulse, which is consistent with the equivalent bubble. Additionally, the distribution of bubble sizes in the bubble cluster has almost no effect on the acoustic radiation of the bubble cluster. Notably, when the volumetric fraction exceeds 25 %, the sound pressure levels of bubble clusters with different distributions in the frequency domain are nearly identical, with differences from the equivalent bubble within 5 dB.

20.
Heliyon ; 10(16): e36320, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39247337

RESUMEN

In this study, the process of catalytic oxidation of methane considering radiative heat transfer was simulated using FLUENT computational software to study the effect of thermal radiation on the oxidation performance of the simulated device, and to investigate the extent to which radiative heat transfer affects the oxidation performance of the device under different operating conditions. The results show that the extent to which thermal radiation affects the oxidative performance of the equipment increases with increasing inlet temperature. When the intake temperature reaches 900K, its proportion is close to 45 %. At the same time, as the inlet gas temperature increases, the maximum reaction temperature of the oxidation unit is 1154 K, and the methane conversion rate reaches up to 89 %. The main factor affecting the oxidation performance of the unit at this time is radiation heat transfer. The extent to which thermal radiation affects the oxidative performance of the device diminishes with increasing inlet velocity. When the wind speed reaches 2 m/s, the proportion of radiative heat transfer is only 10 %, the maximum reaction temperature of the plant falls to 993 K, and the methane conversion rate drops to 68 %. At this time, the main factor affecting the oxidation performance of the plant is convective heat transfer. The influence of thermal radiation on oxidation performance gradually diminishes with an increase in intake velocity, and the proportion of radiative heat transfer decreases continuously. At methane concentrations above 1 %, the proportion of radiative heat transfer is less than 25 per cent, the maximum reaction temperature of the unit increases to 1087 K, and the methane conversion rises to 88 %. At this point, the main factor affecting the oxidation performance of the plant is convective heat transfer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...