Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.717
Filtrar
1.
Sci Total Environ ; 947: 174747, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004361

RESUMEN

La (oxy)hydroxide-based materials have been recognized as promising adsorbents for aqueous phosphate (P) removal. However, comprehending the adsorption behavior of P onto La (oxy)hydroxide particles remains challenging, given the heterogeneous low-crystalline surface encompassing La oligomers and free La3+ ions. In this study, a hydrogen (H) bond capping method was developed to construct La (oxy)hydroxide oligomers (LHOs) to simulate the low-crystalline La on the surface of La (oxy)hydroxide particles. The P uptake capacity was compared among free La3+ ions, LHOs, and La nanoparticle (La-NP) with maximum capacities of 1967.3 ± 30.8 mg/g, 461.1 ± 53.7 mg/g and 62.5 ± 6.0 mg/g, respectively. The FT-IR, Raman, in situ-XRD and XPS deconvolution analyses revealed that the removal of P by free La3+ ions mainly involve the process of chemical precipitation to form LaPO4·0.5H2O. Conversely, the elimination of P by LHOs is primarily attributed to inner-sphere complexation and hydroxyl exchange effect between LaOOH and P. Based on this study, the free La3+ ions and La oligomers on the surface of La (oxy)hydroxide particles play a primary role in P adsorption. These results also suggest that the successively decreased adsorption capacity of La (oxy)hydroxide-based adsorbents in the continuously adsorption/desorption cycles might be due to the irreversible inactivation and recrystallization of free La3+ ions and La oligomers on the surface.

2.
ACS Chem Neurosci ; 15(14): 2586-2599, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38979921

RESUMEN

Aß oligomers are being investigated as cytotoxic agents in Alzheimer's disease (AD). Because of their transient nature and conformational heterogeneity, the relationship between the structure and activity of these oligomers is still poorly understood. Hence, methods for stabilizing Aß oligomeric species relevant to AD are needed to uncover the structural determinants of their cytotoxicity. Here, we build on the observation that metal ions and metabolites have been shown to interact with Aß, influencing its aggregation and stabilizing its oligomeric species. We thus developed a method that uses zinc ions, Zn(II), to stabilize oligomers produced by the 42-residue form of Aß (Aß42), which is dysregulated in AD. These Aß42-Zn(II) oligomers are small in size, spanning the 10-30 nm range, stable at physiological temperature, and with a broad toxic profile in human neuroblastoma cells. These oligomers offer a tool to study the mechanisms of toxicity of Aß oligomers in cellular and animal AD models.


Asunto(s)
Péptidos beta-Amiloides , Fragmentos de Péptidos , Zinc , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Humanos , Zinc/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Línea Celular Tumoral , Enfermedad de Alzheimer/metabolismo , Supervivencia Celular/efectos de los fármacos
3.
ACS Biomater Sci Eng ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981095

RESUMEN

Popularized on social media, hand-moldable plastics are formed by consumers into tools, trinkets, and dental prosthetics. Despite the anticipated dermal and oral contact, manufacturers share little information with consumers about these materials, which are typically sold as microplastic-sized resin pellets. Inherent to their function, moldable plastics pose a risk of dermal and oral exposure to unknown leachable substances. We analyzed 12 moldable plastics advertised for modeling and dental applications and determined them to be polycaprolactone (PCL) or thermoplastic polyurethane (TPU). The bioactivities of the most popular brands advertised for modeling applications of each type of polymer were evaluated using a zebrafish embryo bioassay. While water-borne exposure to the TPU pellets did not affect the targeted developmental end points at any concentration tested, the PCL pellets were acutely toxic above 1 pellet/mL. The aqueous leachates of the PCL pellets demonstrated similar toxicity. Methanolic extracts from the PCL pellets were assayed for their bioactivity using the Attagene FACTORIAL platform. Of the 69 measured end points, the extracts activated nuclear receptors and transcription factors for xenobiotic metabolism (pregnane X receptor, PXR), lipid metabolism (peroxisome proliferator-activated receptor γ, PPARγ), and oxidative stress (nuclear factor erythroid 2-related factor 2, NRF2). By nontargeted high-resolution comprehensive two-dimensional gas chromatography (GC × GC-HRT), we tentatively identified several compounds in the methanolic extracts, including PCL oligomers, a phenolic antioxidant, and residues of suspected antihydrolysis and cross-linking additives. In a follow-up zebrafish embryo bioassay, because of its stated high purity, biomedical grade PCL was tested to mitigate any confounding effects due to chemical additives in the PCL pellets; it elicited comparable acute toxicity. From these orthogonal and complementary experiments, we suggest that the toxicity was due to oligomers and nanoplastics released from the PCL rather than chemical additives. These results challenge the perceived and assumed inertness of plastics and highlight their multiple sources of toxicity.

4.
Brain Res Bull ; 215: 111030, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996935

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative brain disorder that progressively impairs long-term and working memory. The function and mechanism of PA(Patchouli alcohol) in improving AD in the external treatment of encephalopathy remain unclear. This study aimed to investigate the therapeutic effect of PA on AD using an Aß1-42 induced AD mouse model with LPS(Lipopolysaccharide) stimulation of BV2 microglial cells. Additionally, we aimed to explore the potential mechanism of PA in enhancing autophagy and reducing neuroinflammation through the AMPK (AMP-activated protein kinase)/mTOR (Mammaliam target of rapamycin) signaling pathway. The Morris water maze was used to assess cognitive function, and cortical and hippocampal tissues were collected for further analysis of the corresponding signaling pathways and inflammatory changes through biological experiments. Our research findings demonstrate that PA has a significant positive impact on cognitive and memory impairments in mice that have been induced with Aß1-42-induced AD. Additionally, PA was also found to revert the activation of microglia induced by LPS. These effects may be attributed to the reduction of neuroinflammation and enhancement of the AMPK/mTOR autophagy pathway. Therefore, PA may serve as an effective therapeutic option to prevent or delay the progression of AD-associated memory dysfunction.

5.
J Pept Sci ; : e3644, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010660

RESUMEN

Oligourea foldamers are known to fold into 2.5-helices, stabilized by three-centered hydrogen bonds, which makes them conformationally more rigid than peptides. Nevertheless, the folding propensity and conformational stability in solution depend on the length of the oligomer, as well as the temperature, solvent, and so forth. In the peptide field, there are many approaches known for constraining the backbone in the folded conformation, including the stapling of side chains by disulfide bridges, lactam formation, ring closing metathesis reaction, and others. In this work, we linked side chains by lactam bridges of short oligoureas (four residues), containing Glu- and Lys-like residues. The designed oligoureas differed in the position of the Glu-like residue. Next, the conformational properties of linear and cyclic compounds were studied in protic solvent (methanol) by nuclear magnetic resonance and circular dichroism. Importantly, it was discovered that larger macrocycles (24-membered) are more tolerated with respect to the helical turn than smaller macrocycles (19-membered) under the studied conditions.

6.
Mitochondrion ; 78: 101929, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986923

RESUMEN

Type 2 diabetes (T2D) is a chronic metabolic disease that accounts for more than 90% of diabetic patients. Its main feature is hyperglycemia due to insulin resistance or insulin deficiency. With changes in diet and lifestyle habits, the incidence of T2D in adolescents has burst in recent decades. The deterioration in the exposure to the environmental pollutants further aggravates the prevalence of T2D, and consequently, it imposes a significant economic burden. Therefore, early prevention and symptomatic treatment are essential to prevent diabetic complications. Mitochondrial number and electron transport chain activity are decreased in the patients with T2D. Voltage-Dependent Anion Channel 1 (VDAC1), as a crucial channel protein on the outer membrane of mitochondria, regulates signal transduction between mitochondria and other cellular components, participating in various biological processes. When VDAC1 exists in oligomeric form, it additionally facilitates the entry and exit of macromolecules into and from mitochondria, modulating insulin secretion. We summarize and highlight the interplay between VDAC1 and T2D, especially in the environmental pollutants-related T2D, shed light on the potential therapeutic implications of targeting VDAC1 monomers and oligomers, providing a new possible target for the treatment of T2D.

7.
Polymers (Basel) ; 16(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000752

RESUMEN

Semiconducting conjugated polymers (CPs) are pivotal in advancing organic electronics, offering tunable properties for solar cells and field-effect transistors. Here, we carry out first-principle calculations to study individual cis-polyacetylene (cis-PA) oligomers and their ensembles. The ground electronic structures are obtained using density functional theory (DFT), and excited state dynamics are explored by computing nonadiabatic couplings (NACs) between electronic and nuclear degrees of freedom. We compute the nonradiative relaxation of charge carriers and photoluminescence (PL) using the Redfield theory. Our findings show that electrons relax faster than holes. The ensemble of oligomers shows faster relaxation compared to the single oligomer. The calculated PL spectra show features from both interband and intraband transitions. The ensemble shows broader line widths, redshift of transition energies, and lower intensities compared to the single oligomer. This comparative study suggests that the dispersion forces and orbital hybridizations between chains are the leading contributors to the variation in PL. It provides insights into the fundamental behaviors of CPs and the molecular-level understanding for the design of more efficient optoelectronic devices.

8.
Subcell Biochem ; 104: 119-137, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963486

RESUMEN

Transporters of the monoamine transporter (MAT) family regulate the uptake of important neurotransmitters like dopamine, serotonin, and norepinephrine. The MAT family functions using the electrochemical gradient of ions across the membrane and comprises three transporters, dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). MAT transporters have been observed to exist in monomeric states to higher-order oligomeric states. Structural features, allosteric modulation, and lipid environment regulate the oligomerization of MAT transporters. NET and SERT oligomerization are regulated by levels of PIP2 present in the membrane. The kink present in TM12 in the MAT family is crucial for dimer interface formation. Allosteric modulation in the dimer interface hinders dimer formation. Oligomerization also influences the transporters' function, trafficking, and regulation. This chapter will focus on recent studies on monoamine transporters and discuss the factors affecting their oligomerization and its impact on their function.


Asunto(s)
Multimerización de Proteína , Humanos , Animales , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/química , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Regulación Alostérica
9.
Biomol NMR Assign ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963588

RESUMEN

Synucleinopathies are neurodegenerative diseases characterized by the accumulation of α-synuclein protein aggregates in the neurons and glial cells. Both ex vivo and in vitro α-synuclein fibrils tend to show polymorphism. Polymorphism results in structure variations among fibrils originating from a single polypeptide/protein. The polymorphs usually have different biophysical, biochemical and pathogenic properties. The various pathologies of a single disease might be associated with distinct polymorphs. Similarly, in the case of different synucleinopathies, each condition might be associated with a different polymorph. Fibril formation is a nucleation-dependent process involving the formation of transient and heterogeneous intermediates from monomers. Polymorphs are believed to arise from heterogeneous oligomer populations because of distinct selection mechanisms in different conditions. To test this hypothesis, we isolated and incubated different intermediates during in vitro fibrillization of α-synuclein to form different polymorphs. Here, we report 13C and 15N chemical shifts and the secondary structure of fibrils prepared from the helical intermediate using solid-state nuclear magnetic spectroscopy.

10.
Bioresour Technol ; 404: 130915, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823561

RESUMEN

This work proposes the pyrolysis of the cassava plant shoot system biomass and a comprehensive chemical characterization of the resulting bio-oil. The highest yields of liquid products were obtained at 600 °C, with 12.6 % bio-oil (organic fraction), which presented the lowest total acid number of 65.7 mg KOH g-1. The bio-oil produced at 500 °C exhibited the highest total phenolic content of approximately 41 % GAE, confirmed by GC/MS analysis (33.8 % of the total area). FT-Orbitrap MS analysis found hundreds of oxygenated constituents in the bio-oils, belonging to the O2-7 classes, as well as nitrogen compounds from the Ny and OxNy classes. Higher pyrolysis temperatures resulted in more oxygenated phenolics (O4-7) undergoing secondary degradation and deoxygenation reactions, generating O2-3 compounds. Additional classes affected were O3-5N2-3, while O1-2N1 presented more stable compounds. These findings show that cassava bio-oils are promising sources of renewable chemicals.


Asunto(s)
Manihot , Oxígeno , Brotes de la Planta , Pirólisis , Manihot/química , Brotes de la Planta/química , Oxígeno/metabolismo , Nitrógeno , Biocombustibles , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas/métodos , Compuestos de Nitrógeno/química , Aceites de Plantas , Polifenoles
11.
ACS Appl Mater Interfaces ; 16(25): 32503-32515, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38875477

RESUMEN

Hierarchically structural particles (HSPs) are highly regarded as favorable nanomaterials for superhydrophobic coating due to their special multiscale structure and surface physicochemical properties. However, most of the superhydrophobic coatings constructed from HSPs are monofunctional, constraining their broader applications. Moreover, traditional methods for constructing HSPs mostly rely on complicated chemical routes and template removal. Herein, we propose an innovative strategy (one-pot method) for producing multifunctional hierarchical hybrid particles (HHPs). Polysilsesquioxane (PSQ), generated from hydrolysis condensation of methyltriethoxylsilane, is used as the sole stabilizer to anchor on the surface of styrene and short fluoroalkyl compound tridecafluorooctyl acrylate comonomers droplets, forming a mesoporous PSQ shell. Subsequently, the comonomers inside of the shell perform restricted polymerization to generate the HHP due to the driving of the mesoporous capillary force. The HHP is then mixed with waterborne polyurethane (WPU) to develop a robust nanocomposite coating (WPU-HHP). Through the deliberate design of the HHP components, the WPU-HHP coating has thermal insulation, photoluminescence properties, and the ability to achieve a wettability transition during abrasion. Our research has achieved the integration of multifunctionality in one waterborne hybrid system, broadening the application areas of nanocomposite coatings.

12.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230234, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853565

RESUMEN

How the two pathognomonic proteins of Alzheimer's disease (AD); amyloid ß (Aß) and tau, cause synaptic failure remains enigmatic. Certain synthetic and recombinant forms of these proteins are known to act concurrently to acutely inhibit long-term potentiation (LTP). Here, we examined the effect of early amyloidosis on the acute disruptive action of synaptotoxic tau prepared from recombinant protein and tau in patient-derived aqueous brain extracts. We also explored the persistence of the inhibition of LTP by different synaptotoxic tau preparations. A single intracerebral injection of aggregates of recombinant human tau that had been prepared by either sonication of fibrils (SτAs) or disulfide bond formation (oTau) rapidly and persistently inhibited LTP in rat hippocampus. The threshold for the acute inhibitory effect of oTau was lowered in amyloid precursor protein (APP)-transgenic rats. A single injection of synaptotoxic tau-containing AD or Pick's disease brain extracts also inhibited LTP, for over two weeks. Remarkably, the persistent disruption of synaptic plasticity by patient-derived brain tau was rapidly reversed by a single intracerebral injection of different anti-tau monoclonal antibodies, including one directed to a specific human tau amino acid sequence. We conclude that patient-derived LTP-disrupting tau species persist in the brain for weeks, maintaining their neuroactivity often in concert with Aß. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Encéfalo , Potenciación a Largo Plazo , Proteínas tau , Potenciación a Largo Plazo/efectos de los fármacos , Animales , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratas , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Ratas Transgénicas , Masculino , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos
13.
Molecules ; 29(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893409

RESUMEN

Merging the functionality of an organic field-effect transistor (OFET) with either a light emission or a photoelectric effect can increase the efficiency of displays or photosensing devices. In this work, we show that an organic semiconductor enables a multifunctional OFET combining electroluminescence (EL) and a photoelectric effect. Specifically, our computational and experimental investigations of a six-ring thiophene-phenylene co-oligomer (TPCO) revealed that this material is promising for OFETs, light-emitting, and photoelectric devices because of the large oscillator strength of the lowest-energy singlet transition, efficient luminescence, pronounced delocalization of the excited state, and balanced charge transport. The fabricated OFETs showed a photoelectric response for wavelengths shorter than 530 nm and simultaneously EL in the transistor channel, with a maximum at ~570 nm. The devices demonstrated an EL external quantum efficiency (EQE) of ~1.4% and a photoelectric responsivity of ~0.7 A W-1, which are among the best values reported for state-of-the-art organic light-emitting transistors and phototransistors, respectively. We anticipate that our results will stimulate the design of efficient materials for multifunctional organic optoelectronic devices and expand the potential applications of organic (opto)electronics.

14.
Molecules ; 29(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893532

RESUMEN

Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood-brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency.


Asunto(s)
Péptidos de Penetración Celular , Atrofia Muscular Espinal , Oligonucleótidos Antisentido , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Humanos , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacología , Animales , Oligonucleótidos/química , Oligonucleótidos/farmacología , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos
15.
Materials (Basel) ; 17(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38893819

RESUMEN

We present a comparative study of the optical and dielectric anisotropy of a laterally fluorinated liquid crystal dimer and its homologous trimer, both exhibiting two nematic phases. In the high-temperature nematic phase, both oligomers exhibit positive optical anisotropy with similar magnitude, which, however, is lower in comparison with the optical anisotropy of the monomer. In the same temperature range, the dielectric permittivity along and perpendicular to the nematic director, measured on magnetically aligned samples, reveals negative dielectric anisotropy for both oligomers, which saturates as the temperature approaches the N-N phase transition temperature. Comparison of the dielectric anisotropies of the oligomers with the corresponding anisotropy of the monomer indicates a systematic variation of its magnitude with the number of the linked mesogenic units. Results are compared with the corresponding anisotropies of the cyanobiphenyl dimers, the archetypal compounds with two nematic phases, and are discussed in terms of the dipolar structure of the mesogens and the dipolar correlations in their nematic phases.

16.
ACS Nano ; 18(27): 17469-17482, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38916260

RESUMEN

Parkinson's disease (PD) is an increasingly prevalent and currently incurable neurodegenerative disorder linked to the accumulation of α-synuclein (αS) protein aggregates in the nervous system. While αS binding to membranes in its monomeric state is correlated to its physiological role, αS oligomerization and subsequent aberrant interactions with lipid bilayers have emerged as key steps in PD-associated neurotoxicity. However, little is known of the mechanisms that govern the interactions of oligomeric αS (OαS) with lipid membranes and the factors that modulate such interactions. This is in large part due to experimental challenges underlying studies of OαS-membrane interactions due to their dynamic and transient nature. Here, we address this challenge by using a suite of microfluidics-based assays that enable in-solution quantification of OαS-membrane interactions. We find that OαS bind more strongly to highly curved, rather than flat, lipid membranes. By comparing the membrane-binding properties of OαS and monomeric αS (MαS), we further demonstrate that OαS bind to membranes with up to 150-fold higher affinity than their monomeric counterparts. Moreover, OαS compete with and displace bound MαS from the membrane surface, suggesting that disruption to the functional binding of MαS to membranes may provide an additional toxicity mechanism in PD. These findings present a binding mechanism of oligomers to model membranes, which can potentially be targeted to inhibit the progression of PD.


Asunto(s)
Membrana Dobles de Lípidos , alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Humanos , Unión Proteica , Multimerización de Proteína
17.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930988

RESUMEN

In-depth insights into the oligomers of carbon dots (CDs) prepared from small-molecule precursors are important in the study of the carbonization mechanism of CDs and for our knowledge of their complex structure. Herein, citric acid (CA) and ethylenediamine (EDA) were used as small-molecule precursors to prepare CDs in an aqueous solution. The structure of oligomers acquired from CA and EDA in different molar ratios and their formation process were first studied using density functional theory, including the dispersion correction (DFT-D3) method. The results showed that the energy barrier of dimer cyclization was higher than that of its linear polymerization, but the free energy of the cyclized product was much lower than that of its reactant, and IPCA (5-oxo-1,-2,3,5-tetrahydroimidazo [1,2-a]pyridine-7-carboxylic acid) could therefore be obtained under certain conditions. The oligomers obtained from different molar ratios of EDA and CA were molecular clusters formed by short polyamide chains through intermolecular forces; with the exception of when the molar ratio of EDA to CA was 0.5, excessive CA did not undergo an amidation reaction but rather attained molecular clusters directly through intermolecular forces. These oligomers exhibited significant differences in their surface functional groups, which would affect the carbonization process and the surface structure of CDs.

18.
Neurobiol Dis ; 199: 106575, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914170

RESUMEN

CT1812 is a novel, brain penetrant small molecule modulator of the sigma-2 receptor (S2R) that is currently in clinical development for the treatment of Alzheimer's disease (AD). Preclinical and early clinical data show that, through S2R, CT1812 selectively prevents and displaces binding of amyloid beta (Aß) oligomers from neuronal synapses and improves cognitive function in animal models of AD. SHINE is an ongoing phase 2 randomized, double-blind, placebo-controlled clinical trial (COG0201) in participants with mild to moderate AD, designed to assess the safety and efficacy of 6 months of CT1812 treatment. To elucidate the mechanism of action in AD patients and pharmacodynamic biomarkers of CT1812, the present study reports exploratory cerebrospinal fluid (CSF) biomarker data from 18 participants in an interim analysis of the first set of patients in SHINE (part A). Untargeted mass spectrometry-based discovery proteomics detects >2000 proteins in patient CSF and has documented utility in accelerating the identification of novel AD biomarkers reflective of diverse pathophysiologies beyond amyloid and tau, and enabling identification of pharmacodynamic biomarkers in longitudinal interventional trials. We leveraged this technique to analyze CSF samples taken at baseline and after 6 months of CT1812 treatment. Proteome-wide protein levels were detected using tandem mass tag-mass spectrometry (TMT-MS), change from baseline was calculated for each participant, and differential abundance analysis by treatment group was performed. This analysis revealed a set of proteins significantly impacted by CT1812, including pathway engagement biomarkers (i.e., biomarkers tied to S2R biology) and disease modification biomarkers (i.e., biomarkers with altered levels in AD vs. healthy control CSF but normalized by CT1812, and biomarkers correlated with favorable trends in ADAS-Cog11 scores). Brain network mapping, Gene Ontology, and pathway analyses revealed an impact of CT1812 on synapses, lipoprotein and amyloid beta biology, and neuroinflammation. Collectively, the findings highlight the utility of this method in pharmacodynamic biomarker identification and providing mechanistic insights for CT1812, which may facilitate the clinical development of CT1812 and enable appropriate pre-specification of biomarkers in upcoming clinical trials of CT1812.

19.
Biomolecules ; 14(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38927020

RESUMEN

Deposition of extracellular Amyloid Beta (Aß) and intracellular tau fibrils in post-mortem brains remains the only way to conclusively confirm cases of Alzheimer's Disease (AD). Substantial evidence, though, implicates small globular oligomers instead of fibrils as relevant biomarkers of, and critical contributors to, the clinical symptoms of AD. Efforts to verify and utilize amyloid oligomers as AD biomarkers in vivo have been limited by the near-exclusive dependence on conformation-selective antibodies for oligomer detection. While antibodies have yielded critical evidence for the role of both Aß and tau oligomers in AD, they are not suitable for imaging amyloid oligomers in vivo. Therefore, it would be desirable to identify a set of oligomer-selective small molecules for subsequent development into Positron Emission Tomography (PET) probes. Using a kinetics-based screening assay, we confirm that the triarylmethane dye Crystal Violet (CV) is oligomer-selective for Aß42 oligomers (AßOs) grown under near-physiological solution conditions in vitro. In postmortem brains of an AD mouse model and human AD patients, we demonstrate that A11 antibody-positive oligomers but not Thioflavin S (ThioS)-positive fibrils colocalize with CV staining, confirming in vitro results. Therefore, our kinetic screen represents a robust approach for identifying new classes of small molecules as candidates for oligomer-selective dyes (OSDs). Such OSDs, in turn, provide promising starting points for the development of PET probes for pre-mortem imaging of oligomer deposits in humans.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Encéfalo , Violeta de Genciana , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Humanos , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Ratones , Violeta de Genciana/química , Amiloide/metabolismo , Amiloide/química , Tomografía de Emisión de Positrones , Femenino
20.
Biomolecules ; 14(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38927031

RESUMEN

The primary nucleation process of α-synuclein (AS) that forms toxic oligomeric species is the early stage of the pathological cause of Parkinson's disease. It is well-known that copper influences this primary nucleation process. While significant efforts have been made to solve the structures of polymorphic AS fibrils, the structures of AS oligomers and the copper-bound AS oligomers at the molecular level and the effect of copper concentrations on the primary nucleation are elusive. Here, we propose and demonstrate new molecular mechanism pathways of primary nucleation of AS that are tuned by distinct copper concentrations and by a specific copper-binding site. We present the polymorphic AS dimers bound to different copper-binding sites at the atomic resolution in high- and low-copper concentrations, using extensive molecular dynamics simulations. Our results show the complexity of the primary nucleation pathways that rely on the copper concentrations and the copper binding site. From a broader perspective, our study proposes a new strategy to control the primary nucleation of other toxic amyloid oligomers in other neurodegenerative diseases.


Asunto(s)
Cobre , Simulación de Dinámica Molecular , Multimerización de Proteína , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Cobre/metabolismo , Cobre/química , Sitios de Unión , Humanos , Unión Proteica , Enfermedad de Parkinson/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...