Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Anal Chim Acta ; 1326: 343123, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39260913

RESUMEN

BACKGROUND: N,N'-disubstituted p-phenylenediamine-quinones (PPDQs) are oxidization derivatives of p-phenylenediamines (PPDs) and have raised extensive concerns recently, due to their toxicities and prevalence in the environment, particularly in water environment. PPDQs are derived from tire rubbers, in which other PPD oxidization products besides reported PPDQs may also exist, e.g., unknown PPDQs and PPD-phenols (PPDPs). RESULTS: This study implemented nontarget analysis and profiling for PPDQ/Ps in aged tire rubbers using liquid chromatography-high-resolution mass spectrometry and a species-specific algorithm. The algorithm took into account the ionization behaviors of PPDQ/Ps in both positive and negative electrospray ionization, and their specific carbon isotopologue distributions. A total of 47 formulas of PPDQ/Ps were found and elucidated with tentative or accurate structures, including 25 PPDQs, 18 PPDPs and 4 PPD-hydroxy-quinones (PPDHQs). The semiquantified total concentrations of PPDQ/Ps were 14.08-30.62 µg/g, and the concentrations followed the order as: PPDPs (6.48-17.39) > PPDQs (5.86-12.14) > PPDHQs (0.16-1.35 µg/g). SIGNIFICANCE: The high concentrations and potential toxicities indicate that these PPDQ/Ps could seriously threaten the eco-environment, as they may finally enter the environment, accordingly requiring further investigation. The analysis strategy and data-processing algorithm can be extended to nontarget analysis for other zwitterionic pollutants, and the analysis results provide new understandings on the environmental occurrence of PPDQ/Ps from source and overall perspectives.

2.
Mikrochim Acta ; 191(9): 563, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39186109

RESUMEN

A fluorescent and colorimetric dual-mode strategy based on carbon dots (CDs) was rationally designed for sensitive determination of Cu2+. Green fluorescent CDs with high absolute quantum yield of 72.9% were synthesized by facile one-step hydrothermal treatment of triethylenetetramine and Rose Bengal. Cu2+ could trigger the oxidative and chromogenic reaction of p-phenylenediamine (PPD) to generate chromogenic PPDox, accompanied by the fluorescence quenching of the CDs. The quenching mechanism was identified as the inner filter effect between PPDox and CDs. Therefore, a colorimetric/fluorescent dual-mode detection method for Cu2+ recognition was constructed. The limits of detection for Cu2+ were 4.14 µM and 1.28 µM for colorimetric and fluorescent mode, respectively. In addition, this method had achieved satisfactory results in the detection of Cu2+ in real serum samples.

3.
Mikrochim Acta ; 191(9): 529, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39123066

RESUMEN

A ratiometric fluorescence probe based on carbon quantum dots with 420 nm emission (bCQDs) and a p-phenylenediamine-derived fluorescence probe with 550 nm emission (yprobe) is constructed for the detection of Mn2+. The presence of Mn2+ results in the enhanced absorption band at 400 nm of yprobe, and the fluorescence of yprobe is significantly enhanced based on the chelation-enhanced fluorescence mechanism. The fluorescence of bCQDs is then quenched based on the inner filtration effect. The ratio (I550/I420) linearly increases with the increase of Mn2+ concentration within 2.00 × 10-7-1.50 × 10-6 M, and the limit of detection is 1.76 × 10-9 M. Given the fluorescence color changing from blue to yellow, the visual sensing of Mn2+ is feasible based on bCQDs/yprobe coupled with RGB value analysis. The practicability of the proposed method has been verified in tap water, lake water, and sparkling water beverage, indicating that bCQDs/yprobe has promising application in Mn2+ monitoring.

4.
Environ Sci Technol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120070

RESUMEN

The tire rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its quinone product (6PPDQ) are prevalent emerging contaminants, yet their biotransformation profiles remain poorly understood, hampering the assessment of environmental and health risks. This study investigated the phase-I metabolism of 6PPD and 6PPDQ across aquatic and mammalian species through in vitro liver microsome (LM) incubations and in silico simulations. A total of 40 metabolites from seven pathways were identified using the highly sensitive nano-electrospray ionization mass spectrometry. Notably, 6PPDQ was consistently detected as a 6PPD metabolite with an approximate 2% yield, highlighting biotransformation as a neglected indirect exposure pathway for 6PPDQ in organisms. 6PPDQ was calculated to form through a facile two-step phenyl hydroxylation of 6PPD, catalyzed by cytochrome P450 enzymes. Distinct species-specific metabolic kinetics were observed, with fish LM demonstrating retarded biotransformation rates for 6PPD and 6PPDQ compared to mammalian LM, suggesting the vulnerability of aquatic vertebrates to these contaminants. Intriguingly, two novel coupled metabolites were identified for 6PPD, which were predicted to exhibit elevated toxicity compared to 6PPDQ and result from C-N oxidative coupling by P450s. These unveiled metabolic profiles offer valuable insights for the risk assessment of 6PPD and 6PPDQ, which may inform future studies and regulatory actions.

5.
J Chromatogr A ; 1731: 465195, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39038416

RESUMEN

N,N'-Substituted p-phenylenediamine quinones (PPD-Qs) are the emerging toxicant, which transform from the rubber tire antioxidant N,N'-substituted p-phenylenediamines (PPDs). Because of their potential toxic and widespread occurrence in the environment, PPD-Qs have received great attention. However, efficiently extracting PPD-Qs from complex samples is still a challenge. Herein, a cysteine functional covalent organic framework (Cys-COF) designed according to the "donor-acceptor" sites of hydrogen bonding of PPD-Qs was synthesized via click reaction and then used as solid-phase extraction (SPE) adsorbent. Cys-COF can form the seven-member ring adsorption structure with PPD-Qs via hydrogen bonding. The adsorption mechanism was tentatively revealed by density functional theory (DFT). After optimizing the Cys-COF-SPE parameters, PPD-Qs were efficiently extracted from water, soil, sediment, and fish, followed by detection using ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The Cys-COF-SPE-UHPLC-MS/MS method exhibited ideal linearity (R2 ≥ 0.9932), high relative recoveries (80.4-111 %), and low limits of detection (0.0001-0.0013 ng mL-1). In addition, the bioconcentration kinetics in goldfish provides a feasible platform to investigate the toxicity and accumulated ability of PPD-Qs.


Asunto(s)
Química Clic , Cisteína , Fenilendiaminas , Quinonas , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Fenilendiaminas/química , Cisteína/química , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Quinonas/química , Quinonas/aislamiento & purificación , Química Clic/métodos , Cromatografía Líquida de Alta Presión/métodos , Animales , Límite de Detección , Adsorción , Estructuras Metalorgánicas/química , Peces
6.
ACS Appl Mater Interfaces ; 16(30): 39251-39265, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39021197

RESUMEN

The cubic α-CsPbI3 phase stands out as one of the most promising perovskite compounds for solar cell applications due to its suitable electronic band gap of 1.7 eV. However, it exhibits structural instability under operational conditions, often transforming into the hexagonal non-perovskite δ-CsPbI3 phase, which is unsuitable for solar cell applications because of the large band gap (e.g., ∼2.9 eV). Thus, there is growing interest in identifying possible mechanisms for increasing the stability of the cubic α-CsPbI3 phase. Here, we report a theoretical investigation, based on density functional theory calculations, of the surface passivation of the α-, γ-, and δ-CsPbI3(100) surfaces using the C6H4(NH3)2 [p-phenylenediamine (PPD)] and Cs species as passivation agents. Our calculations and analyses corroborate recent experimental findings, showing that PPD passivation effectively stabilizes the cubic α-CsPbI3 perovskite against the cubic-to-hexagonal phase transition. The PPD molecule exhibits covalent-dominating bonds with the substrate, which makes it more resistant to distortion than the ionic bonds dominant in perovskite bulks. By contrasting these results with the natural Cs passivation, we highlight the superior stability of the PPD passivation, as evidenced by the negative surface formation energies, unlike the positive values observed for the Cs passivation. This disparity is due to the covalent characteristics of the molecule/surface interaction of PPD, as opposed to the purely ionic interaction seen with the Cs passivation. Notably, the PPD passivation maintains the optoelectronic properties of the perovskites because the electronic states derived from the PPD molecules are localized far from the band gap region, which is crucial for optoelectronic applications.

7.
Sci Total Environ ; 948: 174449, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38969117

RESUMEN

Substituted p-phenylenediamines (PPDs), a class of antioxidants, have been widely used to extend the lifespan of rubber products, such as tires and pipes. During use, PPDs will generate their quinone derivatives (PPD-Qs). In recent years, PPDs and PPD-Qs have been detected in the global environment. Among them, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q), the oxidation product of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), has been identified as highly toxic to coho salmon, with the lethal concentration of 50 % (LC50) being 95 ng/L, highlighting it as an emerging pollutant of great concern. This review summarizes the physicochemical properties, global environmental distribution, bioaccessibility, potential toxicity, human exposure risk, and green measures of PPDs and PPD-Qs. These chemicals exhibit lipophilicity, bioaccumulation potential, and poor aqueous stability. They have been found in water, air, dust, soil, and sediment worldwide, indicating their significance as emerging pollutants. Notably, current studies have identified electronic waste (e-waste), such as discarded wires and cables, as a non-negligible source of PPDs and PPD-Qs, in addition to tire wear. PPDs and PPD-Qs exhibit strong bioaccumulation in aquatic organisms and mammals, with a tendency for biomagnification within the food web, posing health threats to humans. Available toxicity data indicate that PPDs and PPD-Qs have negative effects on aquatic organisms, mammals, and invertebrates. Acute exposure leads to death and acute damage, and long-term exposure can cause a series of adverse effects, including growth and development toxicity, reproductive toxicity, neurotoxicity, intestinal toxicity, and multi-organ damage. This paper discusses current research gaps and offers recommendations to understand better the occurrence, behavior, toxicity, and environmental exposure risks of PPDs and PPD-Qs.


Asunto(s)
Antioxidantes , Contaminantes Ambientales , Fenilendiaminas , Fenilendiaminas/toxicidad , Humanos , Contaminantes Ambientales/toxicidad , Quinonas/toxicidad , Exposición a Riesgos Ambientales , Monitoreo del Ambiente
8.
Environ Sci Technol ; 58(23): 10275-10286, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38825773

RESUMEN

The pronounced lethality of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone or 6PPDQ) toward specific salmonids, while sparing other fish species, has received considerable attention. However, the underlying cause of this species-specific toxicity remains unresolved. This study explored 6PPDQ toxicokinetics and intestinal microbiota composition in adult zebrafish during a 14-day exposure to environmentally realistic concentrations, followed by a 7-day recovery phase. Predominant accumulation occurred in the brain, intestine, and eyes, with the lowest levels in the liver. Six metabolites were found to undergo hydroxylation, with two additionally undergoing O-sulfonation. Semiquantitative analyses revealed that the predominant metabolite featured a hydroxy group situated on the phenyl ring adjacent to the quinone. This was further validated by assessing enzyme activity and determining in silico binding interactions. Notably, the binding affinity between 6PPDQ and zebrafish phase I and II enzymes exceeded that with the corresponding coho salmon enzymes by 1.04-1.53 times, suggesting a higher potential for 6PPDQ detoxification in tolerant species. Whole-genome sequencing revealed significant increases in the genera Nocardioides and Rhodococcus after exposure to 6PPDQ. Functional annotation and pathway enrichment analyses predicted that these two genera would be responsible for the biodegradation and metabolism of xenobiotics. These findings offer crucial data for comprehending 6PPDQ-induced species-specific toxicity.


Asunto(s)
Biotransformación , Microbioma Gastrointestinal , Pez Cebra , Animales , Pez Cebra/metabolismo
9.
J Hazard Mater ; 476: 134818, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38901252

RESUMEN

With increasing concerns about N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and 6PPD-quinone (6PPD-Q), relevant environmental investigations and toxicological research have sprung up in recent years. However, limited information could be found for human body burden assessment. This work collected and analyzed 200 samples consisting of paired urine and plasma samples from participants (50 male and 50 female) in Tianjin, China. Low detection frequencies (DF, <15 %) were found except for urinary 6PPD-Q (86 %), which suggested the poor residue tendency of 6PPD and 6PPD-Q in blood. The low DFs also lead to no substantial association between two chemicals. Data analysis based on urinary 6PPD-Q showed a significant difference between males and females (p < 0.05). No significant correlation was found for other demographic factors (Body Mass Index (BMI), age, drinking, and smoking). The mean values of daily excretion (ng/kg bw/day) calculated using urinary 6PPD-Q for females and males were 7.381 ng/kg bw/day (female) and 3.360 ng/kg bw/day (male), and apparently female suffered higher daily exposure. Further analysis with daily excretion and ALT (alanine aminotransferase)/TSH (thyroid stimulating hormone)/ blood cell analysis indicators found a potential correlation with 6PPD-Q daily excretion and liver/immune functions. Considering this preliminary assessment, systematic research targeting the potential organs at relevant concentrations is required.


Asunto(s)
Fenilendiaminas , Humanos , Masculino , Femenino , China , Adulto , Persona de Mediana Edad , Adulto Joven , Contaminantes Ambientales/orina , Contaminantes Ambientales/sangre , Quinonas
10.
J Fluoresc ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642300

RESUMEN

Herein, a visual and luminescent dual-mode (colorimetric and fluorometric) method for the detection of P-phenylenediamine (PPD) in hair dye was successfully established based on cerium-nitrogen co-doped carbon dots (Ce, N-CDs) that displayed remarkable luminescence and peroxidase activity. Ce, N-CDs catalyzed H2O2 to produce superoxide anion, which then oxidized the colorless 3,3,5,5-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB), capable of quenching the fluorescence through fluorescence resonance energy transfer (FRET) between Ce, N-CDs and oxTMB. The reducing properties of PPD could reduce oxTMB back to TMB, leading to a decrease in the absorption intensity of oxTMB and a fluorescence recovery of Ce, N-CDs. As a result, the quantitative detection of PPD could be achieved by measuring the absorption values of oxTMB and the fluorescence signal of Ce, N-CDs. The detection limits for PPD were calculated as 0.36 µM and 0.10 µM for colorimetry and fluorimetry, respectively. Furthermore, smartphone application (ColorPicker) capable of measuring the RGB value of the color was utilized in the detection system, facilitating on-site quantitative detection. This approach effectively shortens the detection time and simplifies the operation, offering a powerful and convenient tool for real-time monitoring of PPD.

11.
Environ Toxicol Chem ; 43(6): 1332-1338, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38651991

RESUMEN

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) is a widespread contaminant of emerging concern resulting from oxidation of 6PPD, which is an antidegradant substance added to tires. The recent identification of 6PPD-quinone as the cause of acute mortality in coho salmon has quickly motivated studies on 6PPD-quinone toxicity to other species. Subsequent findings have shown that 6PPD-quinone toxicity is highly species specific. Closely related species can differ widely in response to 6PPD-quinone from extremely sensitive to tolerant. Hence toxicity testing is currently the only way to establish whether a species exhibits 6PPD-quinone toxicity. We investigated the acute toxicity of 6PPD-quinone in pink salmon alevins (sac fry). This species has is the only Pacific salmon that so far has not been tested for 6PPD-quinone sensitivity. Fish were exposed in static water in eight treatments with initial concentrations ranging from 0.1 to 12.8 µg/L. Fish were observed for 48 h, and changes in concentrations of 6PPD-quinone were monitored throughout the experiment. No mortalities or substantial changes in behavior were recorded. Environ Toxicol Chem 2024;43:1332-1338. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Fenilendiaminas , Salmón , Animales , Fenilendiaminas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Goma/toxicidad , Pruebas de Toxicidad Aguda
12.
Foodborne Pathog Dis ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38483346

RESUMEN

Alpha-hemolysin (Hla) is a major virulence factor secreted by Staphylococcus aureus (S. aureus), which can lyse a variety of mammalian cells and help bacteria evade the host immune system or antibiotics, posing a safety hazard to human health. Therefore, it is critical to establish a quick-responsive and sensitive method for Hla detection to ensure food safety. In this work, a dual-mode immunoassay was developed with both colorimetric and fluorescent readouts for discriminative detection of Hla. The proposed sensing system consists of p-phenylenediamine (PPD) and fluorescein, where fluorescein functions as a fluorescent reporter, and PPD serves a dual function as a colorimetric reporter and fluorescence quencher. Subsequently, the reaction system of this method was optimized, and the detection limit, sensitivity, and specificity were evaluated. Under optimal conditions, the proposed method possesses excellent analytical performance in the range from 0.5 to 500 ng/mL with a limit of detection as low as 0.5 ng/mL. Noteworthy, this method was successfully employed for the detection of Hla in milk with good selectivity and high accuracy. Overall, the dual-mode immunoassay provides a superior platform for the on-site, quantitative, and accurate detection of Hla in food samples.

13.
J Hazard Mater ; 469: 133900, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38442600

RESUMEN

Substituted para-phenylenediamines (PPDs) are synthetic chemicals used globally for rubber antioxidation, with their quinone derivatives (PPD-Qs) raising particular environmental concerns due to their severe toxicity to aquatic organisms. Emerging research has identified a variety of novel PPD-Qs ubiquitously detected in the environment, yet experimental proof for the toxicity of PPD-Qs has not been forthcoming due to the unavailability of bulk standards, leaving substantial gaps in the prioritization and mechanistic investigation of such novel pollutants. Here, we use synthesized chemical standards to study the acute toxicity and underlying mechanism of 18 PPD-Qs and PPDs to the aquatic bacterium V. fischeri. Bioluminescence inhibition EC50 of PPD-Qs ranged from 1.76-15.6 mg/L, with several emerging PPD-Qs demonstrating significantly higher toxicity than the well-studied 6PPD-Q. This finding suggests a broad toxicological threat PPD-Qs pose to the aquatic bacterium, other than 6PPD-Q. Biological response assays revealed that PPD-Qs can reduce the esterase activity, cause cell membrane damage and intracellular oxidative stress. Molecular docking unveiled multiple interactions of PPD-Qs with the luciferase in V. fischeri, suggesting their potential functional impacts on proteins through competitive binding. Our results provided crucial toxicity benchmarks for PPD-Qs, prioritized these novel pollutants and shed light on the potential toxicological mechanisms.


Asunto(s)
Contaminantes Ambientales , Quinonas , Quinonas/toxicidad , Antioxidantes , Simulación del Acoplamiento Molecular , Fenilendiaminas/toxicidad , Benzoquinonas/toxicidad
15.
Contact Dermatitis ; 90(1): 41-50, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37793990

RESUMEN

BACKGROUND: Previous studies reported a low-to-moderate benefit from patch testing regarding allergen recall and avoidance. OBJECTIVES: To determine the allergen recall and avoidance rates of patients with allergic contact dermatitis (ACD) in Turkey. METHODS: This was a retrospective cohort study based on a phone questionnaire of 465 patients diagnosed with ACD from major allergen groups, that is, metals, preservatives, rubber, fragrances (ubiquitous allergens) and hair dye/black henna, topical drug and resins (nonubiquitous allergens), at our tertiary referral centre between 1996 and 2018. RESULTS: Among 176 responders, allergen groups were remembered better (53.4%) than the individual allergens (36.9%). Age <40 years and keeping the allergy pass had a significantly positive impact on the recall rate of methylchloroisothiazolinone/methylisothiazolinone and nickel, particularly non-occupational nickel allergy from metal jewellery in females, respectively. Exacerbations of ACD (56.3%) were mainly due to reexposures to ubiquitous allergens. 42.9% of patients with occupational ACD changed or quit their job, most of them being construction workers and hairdressers, showing a high share (83.3%) of benefit. CONCLUSIONS: The overall rates of allergen recall and avoidance were moderate. New strategies are needed to improve the recall and avoidance rates of contact allergens, such as increased use of allergy pass, smartphone applications and legal precautions.


Asunto(s)
Alérgenos , Dermatitis Alérgica por Contacto , Femenino , Humanos , Adulto , Alérgenos/efectos adversos , Dermatitis Alérgica por Contacto/epidemiología , Dermatitis Alérgica por Contacto/etiología , Dermatitis Alérgica por Contacto/diagnóstico , Níquel , Turquía/epidemiología , Estudios Retrospectivos , Pruebas del Parche , Metales
16.
J Hazard Mater ; 465: 133312, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38147746

RESUMEN

The emerging toxicant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) is of wide concern due to its ubiquitous occurrence and high toxicity. Despite regular human exposure, limited evidence exists about its presence in the body and potential health risks. Herein, we analyzed cerebrospinal fluid (CSF) samples from Parkinson's disease (PD) patients and controls. The CSF levels of 6PPD-Q were twice as high in PD patients compared to controls. Immunostaining assays performed with primary dopaminergic neurons confirm that 6PPD-Q at environmentally relevant concentrations can exacerbate the formation of Lewy neurites induced by α-synuclein preformed fibrils (α-syn PFF). Assessment of cellular respiration reveals a considerable decrease in neuronal spare respiratory and ATP-linked respiration, potentially due to changes in mitochondrial membrane potential. Moreover, 6PPD-Q-induced mitochondrial impairment correlates with an upsurge in mitochondrial reactive oxygen species (mROS), and Mito-TEMPO-driven scavenging of mROS can lessen the amount of pathologic phospho-serine 129 α-synuclein. Untargeted metabolomics provides supporting evidence for the connection between 6PPD-Q exposure and changes in neuronal metabolite profiles. In-depth targeted metabolomics further unveils an overall reduction in glycolysis metabolite pool and fluctuations in the quantity of TCA cycle intermediates. Given its potentially harmful attributes, the presence of 6PPD-Q in human brain could potentially be a risk factor for PD.


Asunto(s)
Enfermedades Mitocondriales , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Enfermedades Mitocondriales/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Quinonas/metabolismo
17.
J Hazard Mater ; 465: 133220, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38101020

RESUMEN

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is one of the most widely used antioxidant agents in tire additives. Its ozonation by-product 6PPD-quinone has recently been recognized as inducing acute mortality in aquatic organisms such as coho salmon. In this study, we aimed to develop an in-silico method to design environmentally friendly 6PPD derivatives and evaluate the joint toxicity of 6PPD with other commonly used tire additives on coho salmon through full factorial design-molecular docking and molecular dynamic simulation. The toxicity mentioned in this study is represented by the binding energy of chemical(s) binding to the coho salmon growth hormone. The recommended formula for tire additives with relatively low toxicity was then proposed. To further reduce the toxicity of 6PPD, 129 6PPD derivatives were designed based on the N-H bond dissociation reaction, and three of these derivatives showed improved antioxidant activity and 6PPD-106 was finally screened as the optimum alternative with lower toxicity to coho salmon. Besides, the mechanism of free radical oxidation (i.e., antioxidation and ozonation metabolic pathway) for 6PPD-106 was also analyzed and found that after ozonation, the toxicity of 6PPD-106's by-products is much lower than that of 6PPD's by-products. This study provided a molecular modelling-based examination of 6PPD, which comprehensively advanced the understanding of 6PPD's environmental behaviors and provided more environmentally friendly 6PPD alternatives with desired functional property and lower ecological risks.


Asunto(s)
Antioxidantes , Ozono , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Benzoquinonas , Radicales Libres , Fenilendiaminas
18.
Molecules ; 28(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38067463

RESUMEN

Sodium percarbonate (SPC) concentration can be determined spectrophotometrically by using N, N-diethyl-p-phenylenediamine (DPD) as an indicator for the first time. The ultraviolet-visible spectrophotometry absorbance of DPD•+ measured at 551 nm was used to indicate SPC concentration. The method had good linearity (R2 = 0.9995) under the optimized experimental conditions (pH value = 3.50, DPD = 4 mM, Fe2+ = 0.5 mM, and t = 4 min) when the concentration of SPC was in the range of 0-50 µM. The blank spiked recovery of SPC was 95-105%. The detection limit and quantitative limit were 0.7-1.0 µM and 2.5-3.3 µM, respectively. The absorbance values of DPD•+ remained stable within 4-20 min. The method was tolerant to natural water matrix and low concentration of hydroxylamine (<0.8 mM). The reaction stoichiometric efficiency of SPC-based advanced oxidation processes in the degradation of ibuprofen was assessed by the utilization rate of SPC. The DPD and the wastewater from the reaction were non-toxic to Escherichia coli. Therefore, the novel Fe2+/SPC-DPD spectrophotometry proposed in this work can be used for accurate and safe measurement of SPC in water.


Asunto(s)
Ibuprofeno , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Carbonatos/química , Oxidación-Reducción , Agua , Espectrofotometría/métodos
19.
Materials (Basel) ; 16(24)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38138829

RESUMEN

Carbon dots (CDs) doped with heteroatoms have garnered significant interest due to their chemically modifiable luminescence properties. Herein, nitrogen- and sulfur-codoped carbon dots (NS-CDs) were successfully prepared using p-phenylenediamine and thioacetamide via a facile process. The as-developed NS-CDs had high photostability against photobleaching, good water dispersibility, and excitation-independent spectral emission properties due to the abundant amino and sulfur functional groups on their surface. The wine-red-colored NS-CDs exhibited strong green emission with a large Stokes shift of up to 125 nm upon the excitation wavelength of 375 nm, with a high quantum yield (QY) of 28%. The novel NS-CDs revealed excellent sensitivity for quercetin (QT) detection via the fluorescence quenching effect, with a low detection limit of 17.3 nM within the linear range of 0-29.7 µM. The fluorescence was quenched only when QT was brought near the NS-CDs. This QT-induced quenching occurred through the strong inner filter effect (IFE) and the complex bound state formed between the ground-state QT and excited-state NS-CDs. The quenching-based detection strategies also demonstrated good specificity for QT over various interferents (phenols, biomolecules, amino acids, metal ions, and flavonoids). Moreover, this approach could be effectively applied to the quantitative detection of QT (with good sensing recovery) in real food samples such as red wine and onion samples. The present work, consequently, suggests that NS-CDs may open the door to the sensitive and specific detection of QT in food samples in a cost-effective and straightforward manner.

20.
Chemosphere ; 342: 140124, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37709058

RESUMEN

We report a simple and easy method to synthesize Ag nanoparticles (Ag NPs) and demonstrate its potential for the detection of glutathione (GSH) and dopamine (DA) via colorimetric assay. The Ag NPs were found to be monodispersed and spherical with a size of 5 ± 2 nm. The X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM) investigations revealed the formation of crystalline Ag NPs. The colour of N, N-dimethyl-p-phenylenediamine assay changed from dark pink to colourless when the concentration of GSH was increased from 1 to 40 µM. Notably, the suspension colour changed from dark pink to blue when a similar set of experiments were performed with DA. The UV/Visible and interference experiments of Ag NPs exhibited excellent sensitivity and selectivity against both GSH and DA even after the addition of 40 µM of different interference biomolecules. The calculated limit of detection (LOD) was 141 and 245 nM for GSH and DA, respectively. The real-time analysis with serum samples showed satisfactory recovery percentages of >95 and 80-90% for GSH and DA, respectively. Hence, the Ag NPs reported here have huge potential to serve as a sensitive and selective colorimetric sensor for the detection of GSH and DA for diverse applications ranging from catalysis to cancer therapy and theranostics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...