Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.943
Filtrar
1.
Biomed Pharmacother ; 179: 117288, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146767

RESUMEN

Irreversible cardiotoxicity limits the clinical application of doxorubicin (DOX). DOX-induced cardiotoxicity has been associated with induction of senescence and activation of the p38 MAPK pathway. Losmapimod (LOSM), an orally active p38 MAPK inhibitor, is an anti-inflammatory agent with cardioprotective effects. Nevertheless, the effect of LOSM against DOX-induced cardiotoxicity has not been reported. In this study, we determined the effects of LOSM on DOX-induced chronic cardiotoxicity in C57BL/6 N mice. Five-week-old C57BL/6 N mice were fed diet containing LOSM (estimated daily intake 12 mg/kg/day) or a control diet for four days. Thereafter, mice were randomized to receive six weekly intraperitoneal injections of either DOX (4 mg/kg) or saline. Three days after the last injection, cardiac function was assessed by trans-thoracic echocardiography. Activation of p38, JNK, and ERK1/2 MAPKs were assessed by immunoblotting in the heart and liver. Gene expressions of senescence, inflammatory, oxidative stress, and mitochondrial function markers were quantified using real-time PCR and serum inflammatory markers were assessed by Luminex. Our results demonstrated that LOSM attenuated p38 MAPK activation, ameliorated DOX-induced cardiac dysfunction, and abrogated DOX-induced expression of the senescence marker p21Cip1. Additionally, LOSM demonstrated anti-inflammatory effects, with reduced cardiac Il-1α and Il-6 gene expression in DOX-treated mice. Systemic inflammation, assessed by serum cytokine levels, showed decreased IL-6 and CXCL1 in both DOX-treated mice and mice on LOSM diet. LOSM significantly increased mitofusin2 gene expression, which may enhance mitochondrial fusion. These findings underscore the potential therapeutic efficacy of p38 MAPK inhibition, exemplified by LOSM, in ameliorating DOX-induced cardiotoxicity, senescence, and inflammation.

2.
Heliyon ; 10(14): e34823, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149067

RESUMEN

The incidence of Parkinson's disease (PD) rises rapidly with the increase of age. With the advent of global aging, the number of patients with PD is rising along with the elderly population, especially in China. Previously, we found that Yishen chuchan decoction (YCD), prescribed based on clinical experience, has the potential of alleviating symptoms, delaying the progression, and controlling the development of PD. Nonetheless, the underlying mechanistic role is yet to be explored. Aim: This research examined the possible therapeutic effects of YCD in alleviating PD via a systematic approach with network pharmacology and experimental validation, aiming at providing a new understanding of traditional Chinese medicine management regarding PD. Methods: The chemical structure and properties of YCD were adopted from Traditional Chinese Medicine System Pharmacology Database (TCMSP), SwissADME, PubChem, and PubMed. The potential targets for YCD and PD were identified using Swiss Target Prediction, GeneCard, PubChem, and UniProt. The herbal-component-target network was created via the Cytoscape software. Moreover, by using the STRING database, the protein-protein interaction (PPI) network was screened. Gene function GO and KEGG pathway enrichment analyses were performed via the Metascape database. YCD-medicated Rat Serum from Sprague-Dawley (SD) Rats was prepared, and SH-SY5Y cells were preconditioned with rotenone to develop the PD model. To examine the impact of YCD on these cells and explore the mechanistic role of the p38 mitogen-activated protein kinase (MAPK) pathway, the cells were pretreated with either serum or a p38 MAPK pathway inhibitor. This study employed the Cell Counting Kit (CCK)-8 assay and Hoechst 33,342 staining to evaluate the viability and morphological changes induced by the YCD-medicated rat serum on rotenone-treated SH-SY5Y cells. Apoptosis was assessed by Flow cytometry. Immunofluorescence staining assessed the microtubule-associated protein 2 (MAP2) level. Enzyme-linked immunosorbent assay (ELISA) was employed to quantify the concentrations of inflammatory mediators interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Also, reactive oxygen species (ROS) and superoxide dismutase (SOD) levels were determined. Western Blotting measured the expression of total and phospho-p38 MAPK (p-p38). Results: This study identified 65 active components in YCD, which were found to target 801 specific genes. By screening, 63 potential core targets were identified from a pool of 172 overlapping targets between PD and YCD. These targets were examined by GO and KEGG analyses revealing their substantial correlation to MAPK, PI3K-Akt signaling pathways, positively controlling protein phosphorylation, and pathways of neurodegenerative diseases. SH-SY5Y cells were treated with 2 µM rotenone for 48 h, which reduced cell viability to 50 %, and reduced MAP2 expression, increased the rate of apoptosis, oxidative stress, inflammation, and p-p38 expressions. YCD-medicated rat serum significantly improved the viability, reduced the apoptosis rate, and increased the MAP2 expression. YCD-medicated serum increased SOD, reduced ROS and suppressed IL-6, IL-1ß and TNF-α levels, thus inhibiting oxidative stress and inflammation in rotenone-treated SH-SY5Y cells. Moreover, YCD-medicated serum substantially lowered the p-p38 expression induced by rotenone. SB203580, a specific inhibitor of p38 MAPK, could also inhibit the p-p38 expression, apoptosis, and restore morphological damage of cells, also improve inflammation and oxidative stress. Conclusion: YCD enhanced cell viability and reduced apoptosis rate, inflammation, and oxidative stress in vitro. These beneficial effects could potentially involve the suppression of p38 pathway and suppressed the phosphorylation of p38 MAPK.

3.
Foods ; 13(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39123618

RESUMEN

Chlorpyrifos (CPF) biocide, exposure to which is mainly produced in the human population through diet, induces several neurotoxic effects. CPF single and repeated exposure induces memory and learning disorders, although the mechanisms that produce these outcomes are complex and not well understood. CPF treatment (single and repeated) of cholinergic septal SN56 cells induced an increase in phosphorylated-P38α levels that led to WNT/ß-Catenin and NGF/P75NTR/TrkA pathways disruption and cell death. These results provide new knowledge on the mechanisms that mediate CPF basal forebrain cholinergic neuronal loss induced by CPF single and repeated exposure and can help unravel the way through which this compound produces cognitive decline and develop efficient treatments against these effects.

4.
Cells ; 13(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39120322

RESUMEN

Oxidative stress is a prominent causal factor in the premature senescence of microvascular endothelial cells and the ensuing blood-brain barrier (BBB) dysfunction. Through the exposure of an in vitro model of human BBB, composed of brain microvascular endothelial cells (BMECs), astrocytes, and pericytes to H2O2, this study examined whether a specific targeting of the p38MAPK/NF-κB pathway and/or senescent cells could delay oxidative stress-mediated EC senescence and protect the BBB. Enlarged BMECs, displaying higher ß-galactosidase activity, γH2AX staining, p16 expression, and impaired tubulogenic capacity, were regarded as senescent. The BBB established with senescent BMECs had reduced transendothelial electrical resistance and increased paracellular flux, which are markers of BBB integrity and function, respectively. Premature senescence disrupted plasma-membrane localization of the tight junction protein, zonula occludens-1, and elevated basement membrane-degrading matrix metalloproteinase-2 activity and pro-inflammatory cytokine release. Inhibition of p38MAPK by BIRB796 and NF-κB by QNZ and the elimination of senescent cells by a combination of dasatinib and quercetin attenuated the effects of H2O2 on senescence markers; suppressed release of the pro-inflammatory cytokines interleukin-8, monocyte chemoattractant protein-1, and intercellular adhesion molecule-1; restored tight junctional unity; and improved BBB function. In conclusion, therapeutic approaches that mitigate p38MAPK/NF-κB activity and senescent cell accumulation in the cerebrovasculature may successfully protect BBB from oxidative stress-induced BBB dysfunction.


Asunto(s)
Barrera Hematoencefálica , Senescencia Celular , Células Endoteliales , Peróxido de Hidrógeno , FN-kappa B , Estrés Oxidativo , Senoterapéuticos , Proteínas Quinasas p38 Activadas por Mitógenos , Estrés Oxidativo/efectos de los fármacos , Humanos , Senescencia Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Senoterapéuticos/farmacología , Peróxido de Hidrógeno/farmacología , Transducción de Señal/efectos de los fármacos , Proteína de la Zonula Occludens-1/metabolismo
5.
Brain Behav Immun Health ; 40: 100826, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39161874

RESUMEN

Background: Inhibition of p38 alpha mitogen activated protein kinase (p38α) has shown great promise as a treatment for Alzheimer's disease (AD) in preclinical tests. However, previous preclinical studies were performed in "pure" models of AD pathology. A vast majority of AD patients have comorbid dementia-contributing pathologies, particularly some form of vascular damage. The present study therefore aimed to test the potential of p38α inhibition to address dysfunction in the context of comorbid amyloid and vascular pathologies. Methods: An amyloid overexpressing mouse strain (5xFAD) was placed on an 8-week long diet to induce the hyperhomocysteinemia (HHcy) model of small vessel disease. Mice were treated with the brain-penetrant small molecule p38α inhibitor MW150 for the duration of the HHcy diet, and subsequently underwent behavioral, neuroimaging, electrophysiological, or biochemical/immunohistochemical analyses. Results: MW150 successfully reduced behavioral impairment in the Morris Water Maze, corresponding with attenuation of synaptic loss, reduction in tau phosphorylation, and a partial normalization of electrophysiological parameters. No effect of MW150 was observed on the amyloid, vascular, or neuroinflammatory endpoints measured. Conclusions: This study provides proof-of-principle that the inhibition of p38α is able to provide benefit even in the context of mixed pathological contributions to cognitive impairment. Interestingly, the benefit was mediated primarily via rescue of neuronal function without any direct effects on the primary pathologies. These data suggest a potential use for p38 inhibitors in the preservation of cognition across contexts, and in particular AD, either alone or as an adjunct to other AD therapies (i.e. anti-amyloid approaches). Future studies to delineate the precise neuronal pathways implicated in the benefit may help define other specific comorbid conditions amenable to this type of approach or suggest future refinement in pharmacological targeting.

6.
Sci Rep ; 14(1): 19349, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164287

RESUMEN

Inhibition of translation initiation using eIF4A inhibitors like (-)-didesmethylrocaglamide [(-)-DDR] and (-)-rocaglamide [(-)-Roc] is a potential cancer treatment strategy as they simultaneously diminish multiple oncogenic drivers. We showed that human and dog osteosarcoma cells expressed higher levels of eIF4A1/2 compared with mesenchymal stem cells. Genetic depletion of eIF4A1 and/or 2 slowed osteosarcoma cell growth. To advance preclinical development of eIF4A inhibitors, we demonstrated the importance of (-)-chirality in DDR for growth-inhibitory activity. Bromination of DDR at carbon-5 abolished growth-inhibitory activity, while acetylating DDR at carbon-1 was tolerated. Like (-)-DDR, (±)-DDR, and (-)-Roc, (±)-DDR-acetate increased γH2A.X levels and induced G2/M arrest and apoptosis. Consistent with translation inhibition, these rocaglates decreased the levels of several mitogenic kinases, the STAT3 transcription factor, and the stress-activated protein kinase p38. However, phosphorylated p38 was greatly enhanced in treated cells, suggesting activation of stress response pathways. RNA sequencing identified RHOB as a top upregulated gene in both (-)-DDR- and (-)-Roc-treated osteosarcoma cells, but the Rho inhibitor Rhosin did not enhance the growth-inhibitory activity of (-)-DDR or (-)-Roc. Nonetheless, these rocaglates potently suppressed tumor growth in a canine osteosarcoma patient-derived xenograft model. These results suggest that these eIF4A inhibitors can be leveraged to treat both human and dog osteosarcomas.


Asunto(s)
Factor 4A Eucariótico de Iniciación , Osteosarcoma , Perros , Animales , Humanos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/metabolismo , Línea Celular Tumoral , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4A Eucariótico de Iniciación/metabolismo , Ratones , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Benzofuranos/farmacología
7.
J Exp Clin Cancer Res ; 43(1): 234, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164711

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the third most common type of cancer and the second leading cause of cancer-related deaths worldwide, with a survival rate near to 10% when diagnosed at an advanced stage. Hence, the identification of new molecular targets to design more selective and efficient therapies is urgently required. The Mitogen activated protein kinase kinase 3 (MKK3) is a dual-specificity threonine/tyrosine protein kinase that, activated in response to cellular stress and inflammatory stimuli, regulates a plethora of biological processes. Previous studies revealed novel MKK3 roles in supporting tumor malignancy, as its depletion induces autophagy and cell death in cancer lines of different tumor types, including CRC. Therefore, MKK3 may represent an interesting new therapeutic target in advanced CRC, however selective MKK3 inhibitors are currently not available. METHODS: The study involved transcriptomic based drug repurposing approach and confirmatory assays with CRC lines, primary colonocytes and a subset of CRC patient-derived organoids (PDO). Investigations in vitro and in vivo were addressed. RESULTS: The repurposing approach identified the multitargeted kinase inhibitor AT9283 as a putative compound with MKK3 depletion-mimicking activities. Indeed, AT9283 drops phospho- and total-MKK3 protein levels in tested CRC models. Likely the MKK3 silencing, AT9283 treatment: i) inhibited cell proliferation promoting autophagy and cell death in tested CRC lines and PDOs; ii) resulted well-tolerated by CCD-18Co colonocytes; iii) reduced cancer cell motility inhibiting CRC cell migration and invasion; iv) inhibited COLO205 xenograft tumor growth. Mechanistically, AT9283 abrogated MKK3 protein levels mainly through the inhibition of aurora kinase A (AURKA), impacting on MKK3/AURKA protein-protein interaction and protein stability therefore uncovering the relevance of MKK3/AURKA crosstalk in sustaining CRC malignancy in vitro and in vivo. CONCLUSION: Overall, we demonstrated that the anti-tumoral effects triggered by AT9283 treatment recapitulated the MKK3 depletion effects in all tested CRC models in vitro and in vivo, suggesting that AT9283 is a repurposed drug. According to its good tolerance when tested with primary colonocytes (CCD-18CO), AT9283 is a promising drug for the development of novel therapeutic strategies to target MKK3 oncogenic functions in late-stage and metastatic CRC patients.


Asunto(s)
Neoplasias Colorrectales , MAP Quinasa Quinasa 3 , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Animales , Ratones , MAP Quinasa Quinasa 3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Proliferación Celular/efectos de los fármacos , Autofagia/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
8.
J Inflamm Res ; 17: 5311-5326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157588

RESUMEN

Objective: Knee osteoarthritis (KOA) is a chronic condition characterized by persistent pain that can lead to severe disability. In this study, we primarily investigated the analgesic effect of Huojing decoction on MIA-induced knee arthritis. Methods: The network pharmacology method was employed to acquire target information of Huojing decoction and KOA. MIA was intratibially injected to induce KOA pain in rats. Huojing decoction was then administered once daily via intragastric administration for 14 days. Pain level was assessed by paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). The levels of inflammatory cytokines were determined by ELISA and PCR. TRPV1 and CGRP were detected through immunohistochemistry. The protein expression of TrkA, MKK3/6 and p38 was assessed by Western blot. Results: Mechanical allodynia and thermal hyperalgesia were observed in KOA rats. The expression levels of inflammatory cytokines were significantly decreased after Huojing decoction infusion of KOA rats. TRPV1 and CGRP were reduced with treatment. Furthermore, the protein expressions of TrkA, MKK3/6 and p38 in the DRG of rats were significantly decreased. Conclusion: Our data suggested that Huojing decoction can alleviate inflammation in KOA pain rats. Additionally, it can inhibit the expression of TrKA, MKK3/6 and p38 signaling pathways, indicating its analgesic effect on KOA pain rats.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39104319

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible respiratory disease with limited therapeutic options. A hallmark of IPF is excessive fibroblast activation and extracellular matrix (ECM) deposition. The resulting increase in tissue stiffness amplifies fibroblast activation and drives disease progression. Dampening stiffness-dependent activation of fibroblasts could slow disease progression. We performed an unbiased, next generation sequencing (NGS) screen to identify signaling pathways involved in stiffness-dependent lung fibroblast activation. Adipocytokine signaling was downregulated in primary lung fibroblasts (PFs) cultured on stiff matrices. Re-activating adipocytokine signaling with adiponectin suppressed stiffness-dependent activation of human PFs. Adiponectin signaling depended on CDH13 expression and p38 mitogen-activated protein kinase gamma (p38MAPKγ) activation. CDH13 expression and p38MAPKγ activation were strongly reduced in lungs from IPF donors. Our data suggest that adiponectin-signaling via CDH13 and p38MAPKγ activation suppresses pro-fibrotic activation of fibroblasts in the lung. Targeting of the adiponectin signaling cascade may provide therapeutic benefits in IPF.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39104321

RESUMEN

In this study, we uncovered the novel mechanism of IL-1α-mediated DRA (SLC26A3) downregulation in the context of Brachyspira spp. induced malabsorptive diarrhea. Experimentally infected pigs with Brachyspira spp. had significantly reduced DRA expression in the colon accompanied by IL-1α upregulation. This response was recapitulated in vitro by exposing Caco-2 cells to either Brachyspira lysate or IL-1α. Both p38 and MK-2 showed an increased phosphorylation after exposure to either. SB203580 application, a p38 inhibitor blocked the MK-2 phosphorylation and attenuated the DRA and IL-1α response to both lysate and IL-1α. Exposure to IL-1 receptor antagonist (IL-1RA) produced a similar response. Additionally, exposure of cells to either of these blockers without IL-1α or lysate results in increased DRA and decreased IL-1α expression, revealing that DRA needs IL-1α signalling for basal physiological expression. Dual inhibition with both blockers completely inhibited the effect from IL-1α while significantly attenuating the response from Brachyspira lysate, suggesting a minor contribution from another pathway. Together this demonstrates that Brachyspira activates p38 MAPK signalling driving IL-1α expression which activates IL-1R1 causing DRA downregulation. While also driving upregulation of IL-1α through p38 in a positive feedback mechanism. In conclusion we elucidated a major pathway involved in DRA downregulation and its role in Brachyspira induced diarrhea. Additionally these observations will aid in our understanding of other inflammatory and infectious diarrhea conditions.

11.
Folia Neuropathol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39165217

RESUMEN

INTRODUCTION: The morbidity and mortality of spinal cord injury (SCI) are increasing year by year. It is of vital importance to ascertain the mechanism of SCI. Phosphoglycerate mutase family member 5 (PGAM5) is viewed as a molecular marker of SCI, but its specific role in SCI is elusive. MATERIAL AND METHODS: Following establishment of the SCI mouse model, the pathological examination of the spinal cord was initially assessed using H&E staining. PGAM5 expression in spinal cord tissues was appraised utilizing immunohistochemistry and RT-qPCR. Subsequently, after the expression of PGAM5 in SCI mice was inhibited by adenovirus transfection, the degree of SCI was determined, and the motor ability of hind limbs was estimated with the BBB score. In addition, the apoptosis of neurons, microglia activation and the generation of inflammatory cytokines in the spinal cord of mice were detected. Next, at the cellular level, PGAM5 expression was inhibited in the BV2 microglial cells induced by lipopolysaccharide (LPS), so as to explore the effects of down-regulation of PGAM5 on the activation, inflammation and apoptosis of neurons. Finally, western blot was applied for the appraisement of apoptosis signal-regulating kinase-1 (ASK-1)/p38/nuclear factor-kappa B (NF-kB) signaling-associated proteins. RESULTS: PGAM5 expression in SCI mice was found to be raised. Inhibition of PGAM5 expression in SCI mice can significantly reduce spinal cord pathological injury, SCI-induced neuronal apoptosis, microglial cell activation and inflammation. The above regulatory process might be realized through the ASK-1/p38/NF-kB signaling pathway mediated by PGAM5. CONCLUSIONS: Down-regulation of PGAM5 attenuated SCI-induced neuronal injury by inhibiting ASK-1/p38/NF-kB signaling.

12.
FASEB J ; 38(16): e23862, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39162681

RESUMEN

Anterior cruciate ligament (ACL) injuries pose a significant challenge due to their limited healing potential, often resulting in premature arthritis. The factors and mechanisms contributing to this inadequate healing process remain elusive. During the acute phase of injury, ACL tissues express elevated periostin levels that decline over time. The functional significance of periostin in ligament biology remains understudied. In this study, we investigated the functional and mechanistic implications of periostin deficiency in ACL biology, utilizing ligament fibroblasts derived from patients and a murine model of ACL rupture. Our investigations unveiled that periostin knockdown compromised fibroblast growth characteristics, hindered the egress of progenitor cells from explants, and arrested cell-cycle progression, resulting in the accumulation of cells in the G0/G1 phase and moderate apoptosis. Concurrently, a significant reduction in the expression of cell-cycle and matrix-related genes was observed. Moreover, periostin deficiency triggered apoptosis through STAT3Y705/p38MAPK signaling and induced cellular senescence through increased production of reactive oxygen species (ROS). Mechanistically, inhibition of ROS production mitigated cell senescence in these cells. Notably, in vivo data revealed that ACL in Postn-/- mice exhibited a higher tearing frequency than wild-type mice under equivalent loading conditions. Furthermore, injured ACL with silenced periostin expression, achieved through nanoparticle-siRNA complex delivery, displayed an elevated propensity for apoptosis and senescence compared to intact ACL in C57BL/6 mice. Together, our findings underscore the pivotal role of periostin in ACL health, injury, and potential for healing.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Moléculas de Adhesión Celular , Senescencia Celular , Fibroblastos , Especies Reactivas de Oxígeno , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Animales , Ratones , Fibroblastos/metabolismo , Senescencia Celular/fisiología , Humanos , Especies Reactivas de Oxígeno/metabolismo , Ligamento Cruzado Anterior/metabolismo , Lesiones del Ligamento Cruzado Anterior/metabolismo , Lesiones del Ligamento Cruzado Anterior/patología , Apoptosis , Ratones Endogámicos C57BL , Masculino , Factor de Transcripción STAT3/metabolismo , Femenino , Células Cultivadas , Periostina
13.
Immun Ageing ; 21(1): 52, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095841

RESUMEN

BACKGROUND: Proteostasis is a critical aging hallmark responsible for removing damaged or misfolded proteins and their aggregates by improving proteasomal degradation through the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS). Research on the impact of heat-killed probiotic bacteria and their structural components on aging hallmarks and innate immune responses is scarce, yet enhancing these effects could potentially delay age-related diseases. RESULTS: This study introduces a novel heat-killed Levilactobacillus brevis strain MKAK9 (HK MKAK9), along with its exopolysaccharide (EPS), demonstrating their ability to extend longevity by improving proteostasis and immune responses in wild-type Caenorhabditis elegans. We elucidate the underlying mechanisms through a comprehensive approach involving mRNA- and small RNA sequencing, proteomic analysis, lifespan assays on loss-of-function mutants, and quantitative RT-PCR. Mechanistically, HK MKAK9 and its EPS resulted in downregulation of the insulin-like signaling pathway in a DAF-16-dependent manner, enhancing protein ubiquitination and subsequent proteasomal degradation through activation of the ALP pathway, which is partially mediated by microRNA mir-243. Importantly, autophagosomes engulf ubiquitinylated proteins, as evidenced by increased expression of the autophagy receptor sqst-3, and subsequently fuse with lysosomes, facilitated by increased levels of the lysosome-associated membrane protein (LAMP) lmp-1, suggesting the formation of autolysosomes for degradation of the selected cargo. Moreover, HK MKAK9 and its EPS activated the p38 MAPK pathway and its downstream SKN-1 transcription factor, which are known to regulate genes involved in innate immune response (thn-1, ilys-1, cnc-2, spp-9, spp-21, clec-47, and clec-266) and antioxidation (sod-3 and gst-44), thereby reducing the accumulation of reactive oxygen species (ROS) at both cellular and mitochondrial levels. Notably, SOD-3 emerged as a transcriptional target of both DAF-16 and SKN-1 transcription factors. CONCLUSION: Our research sets a benchmark for future investigations by demonstrating that heat-killed probiotic and its specific cellular component, EPS, can downregulate the insulin-signaling pathway, potentially improving the autophagy-lysosome pathway (ALP) for degrading ubiquitinylated proteins and promoting organismal longevity. Additionally, we discovered that increased expression of microRNA mir-243 regulates insulin-like signaling and its downstream ALP pathway. Our findings also indicate that postbiotic treatment may bolster antioxidative and innate immune responses, offering a promising avenue for interventions in aging-related diseases.

14.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3348-3355, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041098

RESUMEN

To explore the effect of Hei Xiaoyaosan on autophagy levels in Alzheimer's disease(AD). A total of 100 4-month-old Wistar male rats were randomly selected as a blank group, and 10 rats were taken as a sham operation group and injected with 1 µL of normal saline on both sides of the hippocampus. The other rats were injected with Aß_(1-42) solution in the hippocampus to replicate the AD model. Fifty successfully modeled rats were selected and randomly divided into the model group, Aricatio group(0.5 mg·kg~(-1)), and high, medium, and low dose groups of Hei Xiaoyaosan(15.30, 7.65, and 3.82 g·kg~(-1)), with 10 rats in each group. The rats were administered by continuous gavage for 42 days. Morris water maze was used to detect the learning and memory ability of rats, and Hoechst staining was used to observe the pathological changes of nerve cells in the hippocampal CA1 region. The mRNA expression of p38MAPK, Beclin-1, and Bcl-2 was detected by RT-qPCR.Western blot was used to detect the expressions of p38MAPK, Beclin-1, Bcl-2, APP, and related proteins. The level of Aß_(1-42) in the hippocampus was detected by ELISA, and the expression level of LC3Ⅱ in the hippocampus was detected by immunohistochemistry. The experimental results showed that compared with the blank group, the learning and memory ability of rats in the model group decreased(P<0.01). The nuclei in the CA1 region of the hippocampus showed blue bright spots and were closely arranged. The mRNA expression of p38MAPK was up-regulated, and the mRNA expressions of Beclin-1 and Bcl-2 were down-regulated(P<0.01). The expressions of p38MAPK, p-p38MAPK, and APP were increased, while those of Beclin-1, Bcl-2, and p-Bcl-2 were decreased(P<0.01). The expression of Aß_(1-42) was increased(P<0.01). The relative expression of LC3Ⅱ decreased(P<0.01). Compared with the model group, the learning and memory ability of rats in each administration group was improved(P<0.05 or P<0.01). The nuclei in the CA1 region of the hippocampus gradually became clear, showing light blue. The mRNA expression of p38MAPK was down-regulated(P<0.01), and that of Beclin-1 and Bcl-2 was increased(P<0.05 or P<0.01). The expressions of p38MAPK, p-p38MAPK, and APP were down-regulated, while those of Beclin-1, Bcl-2, and p-Bcl-2 were up-regulated(P<0.05 or P<0.01). The expression of Aß_(1-42) was decreased(P<0.01). The relative expression of LC3Ⅱ was increased(P<0.01). It can be concluded that Hei Xiaoyaosan can improve the cognitive ability of AD model rats, and its potential mechanism may be related to regulating the p38MAPK/Beclin-1/Bcl-2 signaling pathway, increasing the level of autophagy, and reducing the accumulation of Aß_(1-42).


Asunto(s)
Enfermedad de Alzheimer , Autofagia , Beclina-1 , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Proteínas Proto-Oncogénicas c-bcl-2 , Ratas Wistar , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Masculino , Ratas , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Autofagia/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Beclina-1/metabolismo , Beclina-1/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Humanos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Int Immunopharmacol ; 138: 112659, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996665

RESUMEN

Autoimmune hepatitis (AIH) is a chronic liver disease characterized by immune dysregulation and hepatocyte damage. FKBP38, a member of the immunophilin family, has been implicated in immune regulation and the modulation of intracellular signaling pathways; however, its role in AIH pathogenesis remains poorly understood. In this study, we aimed to investigate the effects of hepatic FKBP38 deletion on AIH using a hepatic FKBP38 knockout (LKO) mouse model created via cre-loxP technology. We compared the survival rates, incidence, and severity of AIH in LKO mice with those in control mice. Our findings revealed that hepatic FKBP38 deletion resulted in an unfavorable prognosis in LKO mice with AIH. Specifically, LKO mice exhibited heightened liver inflammation and extensive hepatocyte damage compared to control mice, with a significant decrease in anti-apoptotic proteins and a marked increase in pro-apoptotic proteins. Additionally, transcriptional and translational levels of pro-inflammatory cytokines and chemokines were significantly increased in LKO mice compared to control mice. Immunoblot analysis showed that MCP-1 expression was significantly elevated in LKO mice. Furthermore, the phosphorylation of p38 was increased in LKO mice with AIH, indicating that FKBP38 deletion promotes liver injury in AIH by upregulating p38 phosphorylation and increasing MCP-1 expression. Immune cell profiling demonstrated elevated populations of T, NK, and B cells, suggesting a dysregulated immune response in LKO mice with AIH. Overall, our findings suggest that FKBP38 disruption exacerbates AIH severity by augmenting the immune response by activating the MCP-1/p38 signaling pathway.


Asunto(s)
Quimiocina CCL2 , Hepatitis Autoinmune , Proteínas de Unión a Tacrolimus , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Masculino , Ratones , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Concanavalina A , Modelos Animales de Enfermedad , Hepatitis Autoinmune/inmunología , Hígado/patología , Hígado/inmunología , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transducción de Señal , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
16.
J Ethnopharmacol ; 334: 118568, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38996949

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hyssopus cuspidatus Boriss., a classic Uyghur medicine, is used to treat inflammatory lung diseases such as asthma. But the therapeutic effect and mechanism of the volatile oil of Hyssopus cuspidatus Boriss.(HVO) in asthma therapy remain unclear. AIM OF THE STUDY: We aim to characterize the constituents of HVO, investigate the therapeutic effect in OVA-induced allergic asthmatic mice and further explore the molecular mechanism. MATERIALS AND METHODS: In this study, we applied two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOF MS) to identify the ingredients of HVO. We established OVA-induced asthmatic model to investigate the therapeutic effect of HVO. To further explore the potential molecular pathways, we used network pharmacology approach to perform GO and KEGG pathways enrichment, and then built an ingredient-target-pathway network to identify key molecular pathways. Finally, LPS-induced RAW 264.7 macrophages and OVA-induced asthmatic model were used to validate the potential signaling pathways. RESULTS: GC × GC-QTOF MS analysis revealed the presence of 123 compounds of HVO. The sesquiterpenes and monoterpenes are the main constituents. The in vivo study indicated that HVO suppressed OVA-induced eosinophilic infiltration in lung tissues, inhibited the elevation of IgE, IL-4, IL-5, and IL-13 levels, downregulated the expressions of phosphorylated PI3K, Akt, JNK and P38, and maintained epithelial barrier integrity via reducing the degradation of occludin, Zo-1, Zo-2, and E-cadherin. The in vitro study also revealed an inhibition of NO release and downregulation of phosphorylated PI3K, Akt, JNK and P38 levels. CONCLUSION: HVO alleviates airway inflammation in OVA-induced asthmatic mice by inhibiting PI3K/Akt/JNK/P38 signaling pathway and maintaining airway barrier integrity via reducing the degradation of occludin, Zo-1, Zo-2, and E-cadherin.


Asunto(s)
Asma , Aceites Volátiles , Ovalbúmina , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Animales , Femenino , Ratones , Antiasmáticos/farmacología , Asma/tratamiento farmacológico , Asma/inducido químicamente , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos BALB C , Aceites Volátiles/farmacología , Aceites Volátiles/química , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pyroglyphidae/inmunología , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
17.
J Cardiothorac Surg ; 19(1): 435, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997740

RESUMEN

BACKGROUND: Cerebral ischemia-reperfusion injury (I/R) can affect patient outcomes and can even be life-threatening. This study aimed to explore the role of Shionone in cerebral I/R and reveal its mechanism of action through the cerebral I/R in vitro model. METHODS: SH-SY5Y cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to induce cerebral I/R in vitro model. SH-SY5Y cells were treated with different concentrations of Shionone. Cell counting kit-8 and flow cytometry assays were used to detect cell viability and apoptosis levels. The levels of superoxide dismutase, catalase, and malondialdehyde were determined using their corresponding kits to examine the level of oxidative stress. The inflammation response was detected by IL-6, IL-1ß, and TNF-α levels, using enzyme-linked-immunosorbent-assay. RT-qPCR was performed to measure the mRNA levels of p38 and NF-κB. Western blotting was used to quantify the apoptosis-related proteins and p38MAPK/NF-κB signaling pathway proteins. RESULTS: Shionone exhibited no toxic effects on SH-SY5Y cells. Shionone inhibited OGD/R-induced cell apoptosis, improved the inflammatory response caused by OGD/R, and reduced the level of oxidative stress in cells. Western blot assay results showed that Shionone alleviated OGD/R-induced injury by inhibiting the activity of the p38 MAPK/NF-κB signaling pathway. The p38/MAPK agonist P79350 reversed the beneficial effects of Shionone. CONCLUSION: Shionone alleviates cerebral I/R and may thus be a novel therapeutic strategy for treating cerebral I/R.


Asunto(s)
Apoptosis , Glucosa , FN-kappa B , Oxígeno , Daño por Reperfusión , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Glucosa/deficiencia , FN-kappa B/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Apoptosis/efectos de los fármacos , Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral
18.
Virusdisease ; 35(2): 329-337, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39071879

RESUMEN

The inhibition of p38 mitogen-activated protein kinase (p38-MAPK) by small molecule chemical inhibitors was previously shown to impair severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, however, mechanisms underlying antiviral activity remains unexplored. In this study, reduced growth of SARS-CoV-2 in p38-α knockout Vero cells, together with enhanced viral yield in cells transfected with construct expressing p38α, suggested that p38-MAPK is essential for the propagation of SARS-CoV-2. The SARS-CoV-2 was also shown to induce phosphorylation (activation) of p38, at time when transcription/translational activities are considered to be at the peak levels. Further, we demonstrated that p38 supports viral RNA/protein synthesis without affecting viral attachment, entry, and budding in the target cells. In conclusion, we provide mechanistic insights on the regulation of SARS-CoV-2 replication by p38 MAPK.

19.
World J Gastrointest Oncol ; 16(7): 3230-3240, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39072174

RESUMEN

BACKGROUND: Aldehyde (ALDH2) dysfunction has been verified to contribute to human cancers. AIM: To investigate the molecular mechanism and biological function of ALDH2 in colorectal cancer (CRC) progression. METHODS: Human CRC cells with high expression of ALDH2 were screened. After shRNA ALDH2 (sh-ALDH2) transfection, phenotypes [proliferation, apoptosis, acetaldehyde (ACE) accumulation, DNA damage] of CRC cells were verified using cell counting kit-8, flow cytometry, ACE assay, and comet assays. Western blotting was used for evaluation of the apoptosis proteins (Bax and Bcl-2) and JNK/p38 MAPK pathway-associated proteins. We subjected CVT-10216 (a selective ALDH2 inhibitor) to nude mice for establishment of SK-CO-1 mouse xenograft model and observed the occurrence of CRC. RESULTS: The inhibition of ALDH2 could promote the malignant structures of CRC cells, including apoptosis, ACE level, and DNA damage, and cell proliferation was decreased in the sh-ALDH2 group, whereas ALDH2 agonist Alda-1 reversed features. ALDH2 repression can cause ACE accumulation, whereas ACE enhanced CRC cell features related to increased DNA damage. Additionally, ALDH2 repression led to JNK/P38 MAPK activation, and apoptosis, ACE accumulation, and DNA damage were inhibited after p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125 addition. ACE accumulation and raised DNA damage were recognized in CVT-10216 treated-mouse tumor tissues in vivo. CONCLUSION: The repression of ALDH2 led to ACE accumulation, inducing cell apoptosis and DNA damage by the JNK/p38 MAPK signaling pathway activation in CRC.

20.
Biomed Pharmacother ; 178: 117214, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39079264

RESUMEN

Apoptosis signal-regulated kinase 1 (ASK1) is a member of the mitogen-activated protein kinase kinase (MAP3K) family, whose activation and regulation are intricately associated with apoptosis. ASK1 is activated in response to oxidative stress, among other stimuli, subsequently triggering downstream JNK, p38 MAPK, and mitochondria-dependent apoptotic signaling, which participate in the initiation of tumor cell apoptosis induced by various stimuli. Research has shown that ASK1 plays a crucial role in the apoptosis of lung cancer, breast cancer, and liver cancer cells. Currently, the investigation of effective ASK1 activators is a hot topic in research on tumor cell apoptosis. Synthetic compounds such as human ß-defensin, triazolothiazide derivatives and heat shock protein 27 inhibitors; natural compounds such as quercetin, Laminarina japonica polysaccharide-1 peptide and theabrownin; and nanomedicines such as cerium oxide nanoparticles, magnetite FeO nanoparticles and silver nanoparticles can activate ASK1 and induce apoptosis in various tumor cells. This review extensively investigates the roles and activation mechanisms of ASK1, explores its impact on a variety of apoptotic signaling pathways, and discusses the potential therapeutic applications of various ASK1 activators in cancer treatment. In addition, this paper provides an in-depth discussion of the future development of this field and proposes a promising method for further research and clinical progress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...