Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Drug Deliv ; 30(1): 2219870, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37336779

RESUMEN

Inhalable messenger RNA (mRNA) has demonstrated great potential in therapy and vaccine development to confront various lung diseases. However, few gene vectors could overcome the airway mucus and intracellular barriers for successful pulmonary mRNA delivery. Apart from the low pulmonary gene delivery efficiency, nonnegligible toxicity is another common problem that impedes the clinical application of many non-viral vectors. PEGylated cationic peptide-based mRNA delivery vector is a prospective approach to enhance the pulmonary delivery efficacy and safety of aerosolized mRNA by oral inhalation administration. In this study, different lengths of hydrophilic PEG chains were covalently linked to an amphiphilic, water-soluble pH-responsive peptide, and the peptide/mRNA nano self-assemblies were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro mRNA binding and release, cellular uptake, transfection, and cytotoxicity were studied, and finally, a proper PEGylated peptide with enhanced pulmonary mRNA delivery efficiency and improved safety in mice was identified. These results showed that a proper N-terminus PEGylation strategy using 12-monomer linear monodisperse PEG could significantly improve the mRNA transfection efficiency and biocompatibility of the non-PEGylated cationic peptide carrier, while a longer PEG chain modification adversely decreased the cellular uptake and transfection on A549 and HepG2 cells, emphasizing the importance of a proper PEG chain length selection. Moreover, the optimized PEGylated peptide showed a significantly enhanced mRNA pulmonary delivery efficiency and ameliorated safety profiles over the non-PEGylated peptide and LipofectamineTM 2000 in mice. Our results reveal that the PEGylated peptide could be a promising mRNA delivery vector candidate for inhaled mRNA vaccines and therapeutic applications for the prevention and treatment of different respiratory diseases in the future.


Asunto(s)
Péptidos , Polietilenglicoles , Animales , Ratones , ARN Mensajero , Polietilenglicoles/química , Péptidos/química , Transfección , Concentración de Iones de Hidrógeno
2.
Small ; 17(26): e2007188, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34050722

RESUMEN

Peptides and proteins have evolved to self-assemble into supramolecular entities through a set of non-covalent interactions. Such structures and materials provide the functional basis of life. Crucially, biomolecular assembly processes can be highly sensitive to and modulated by environmental conditions, including temperature, light, ionic strength and pH, providing the inspiration for the development of new classes of responsive functional materials based on peptide building blocks. Here, it is shown that the stimuli-responsive assembly of amyloidogenic peptide can be used as the basis of environmentally responsive microcapsules which exhibit release characteristics triggered by a change in pH. The microcapsules are biocompatible and biodegradable and may act as vehicles for controlled release of a wide range of biomolecules. Cryo-SEM images reveal the formation of a fibrillar network of the capsule interior with discrete compartments in which cargo molecules can be stored. In addition, the reversible formation of these microcapsules by modulating the solution pH is investigated and their potential application for the controlled release of encapsulated cargo molecules, including antibodies, is shown. These results suggest that the approach described here represents a promising venue for generating pH-responsive functional peptide-based materials for a wide range of potential applications for molecular encapsulation, storage, and release.


Asunto(s)
Péptidos , Cápsulas , Concentración de Iones de Hidrógeno , Temperatura
3.
Adv Sci (Weinh) ; 8(5): e2002919, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33717845

RESUMEN

Using Epstein-Barr virus (EBV)-induced cancer cells and HeLa cells as a comparative study model, a novel and safe dual-EBV-oncoproteins-targeting pH-responsive peptide engineering, coating, and guiding approach to achieve precision targeting and treatment strategy against EBV-associated cancers is introduced. Individual functional peptide sequences that specifically bind to two overexpressed EBV-specific oncoproteins, EBNA1 (a latent cellular protein) and LMP1 (a transmembrane protein), are engineered in three different ways and incorporated with a pH-sensitive tumor microenvironment (TME)-cleavable linker onto the upconversion nanoparticles (UCNP) NaGdF4:Yb3+, Er3+@NaGdF4 (UCNP-P n , n = 5, 6, and 7). A synergistic combination of the transmembrane LMP1 targeting ability and the pH responsiveness of UCNP-P n is found to give specific cancer differentiation with higher cellular uptake and accumulation in EBV-infected cells, thus a lower dose is needed and the side effects and health risks from treatment would be greatly reduced. It also gives responsive UC signal enhancement upon targeted dual-protein binding and shows efficacious EBV cancer inhibition in vitro and in vivo. This is the first example of simultaneous imaging and inhibition of two EBV latent proteins, and serves as a blueprint for next-generation peptide-guided precision delivery nanosystem for the safe monitoring and treatment against one specific cancer.

4.
Caries Res ; 55(1): 21-31, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33341803

RESUMEN

Dental caries is closely related to the acidification of the biofilms on the tooth surface, in which cariogenic bacteria bring about a dramatic pH decrease and disrupt remineralisation equilibrium upon the fermentation of dietary sugars. Thus, approaches targeting the acidified niches with enhanced anticaries activities at acidic pH are highly desirable. In our previous study, a cationic amphipathic α-helical antimicrobial peptide GH12 (Gly-Leu-Leu-Trp-His-Leu-Leu-His-His-Leu-Leu-His-NH2) was designed with good stability, low cytotoxicity, and excellent antibacterial effects. Considering its potent antibacterial activity against the acidogenic bacteria and its histidine-rich sequence, it was speculated that GH12 might show enhanced antimicrobial effects at an acidic pH. In this study, the pH-responsive property of GH12 was determined to evaluate its potential as a smart acid-activated anticaries agent. GH12 possessed much lower minimal inhibitory concentrations and minimal bactericidal concentrations against various kinds of bacteria at pH 5.5 than at pH 7.2. Employing Streptococcus mutans, the principal caries pathogen, as the model system, it was found that GH12 showed much stronger bactericidal effects on both planktonic S. mutans and S. mutans embedded in the biofilm at pH 5.5. In addition, short-term treatment with GH12 showed much more effective inhibitory effects on water-insoluble exopolysaccharides synthesis and lactic acid production of the preformed S. mutans biofilm at pH 5.5. As for the mechanism exploration, it was found that the net positive charge of GH12 increased and the tryptophan fluorescence intensity heightened with the peak shifting towards the short wavelength at pH 5.5, which demonstrated that GH12 could be more easily attracted to the anionic microbial cell membranes and that GH12 showed stronger interactions with the lipid membranes. In conclusion, acidic pH enhanced the antibacterial and antibiofilm activities of GH12, and GH12 is a potential smart anticaries agent targeting the cariogenic acidic microenvironment.


Asunto(s)
Caries Dental , Antibacterianos/farmacología , Biopelículas , Caries Dental/tratamiento farmacológico , Humanos , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Proteínas Citotóxicas Formadoras de Poros , Streptococcus mutans
5.
Molecules ; 25(9)2020 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-32357459

RESUMEN

A short self-assembly peptide A6K (H2N-AAAAAAK-OH) with unmodified N- and C-terminus was designed, and the charge distribution model of this short peptide at different pH was established by computer simulation. The pH of the solution was adjusted according to the model and the corresponding self-assembled structure was observed using a transmission electron microscope (TEM). As the pH changes, the peptide will assemble into blocks or nanoribbons, which indicates that the A6K peptide is a pH-responsive peptide. Circular dichroism (CD) and molecular dynamics (MD) simulation showed that the block structure was formed by random coils, while the increase in ß-turn content contributes to the formation of intact nanoribbons. A reasonable explanation of the self-assembling structure was made according to the electrostatic distribution model and the effect of electrostatic interaction on self-assembly was investigated. This study laid the foundation for further design of nanomaterials based on pH-responsive peptides.


Asunto(s)
Oligopéptidos/química , Dicroismo Circular , Simulación por Computador , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Transmisión , Simulación de Dinámica Molecular , Nanotubos de Carbono/química , Péptidos/química , Electricidad Estática
6.
Chem Phys Lipids ; 216: 54-64, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30253128

RESUMEN

Peptide sequences containing acidic and basic residues could potentially have their net charges modulated by bulk pH with a possible influence on their lytic activity in lipid vesicles. The present study reports on a biophysical investigation of these modulatory effects on the synthetic mastoparan-like peptide L1A (IDGLKAIWKKVADLLKNT-NH2). At pH 10.0 L1A was 6 times more efficient in lysing large anionic (1-palmitoyl-oleoyl-sn-glycero-3-phosphocholine (POPC):1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG)/(8:2)) unilamellar vesicles (LUVs) than at pH 4.0. Despite the reduction of 60% in the L1A net charge in basic pH its affinity for this vesicle was almost insensitive to pH. On the other hand, L1A insertion into monolayers was dramatically influenced by subphase condition, showing that, in the neutral and basic subphases, the peptide induced surface pressure changes that surpassed the membrane lateral pressure, being able to destabilize a bilayer structure. In addition, in the basic subphase, visualization of the compression isotherms of co-spread 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC):POPG (8:2) + 4.8 mol% L1A showed that the peptide induced significant changes in solid lipid domains, indicating its capability in perturbing lipid-packing. An insight into L1A lytic activity was also obtained in giant unilamellar vesicles (GUVs) using phase contrast microscopy. The suppression of L1A lytic activity at acidic pH is in keeping with its lower insertion capability and ability to disturb the lipid monolayer. The lytic activity observed under neutral and basic conditions showed a quick and stochastic leakage following a lag-time. The permeability and the leakage-time averaged over at least 14 single GUVs were dependent on the bulk condition. At basic pH, permeability is higher and quicker than in a neutral medium in good accordance with the lipid-packing perturbation.


Asunto(s)
Péptidos/síntesis química , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Venenos de Avispas/síntesis química , Aniones/síntesis química , Aniones/química , Concentración de Iones de Hidrógeno , Péptidos y Proteínas de Señalización Intercelular , Tamaño de la Partícula , Péptidos/química , Propiedades de Superficie , Venenos de Avispas/química
7.
Int J Nanomedicine ; 13: 1495-1504, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29559778

RESUMEN

BACKGROUND: In the present study, the tumor-specific, pH-responsive peptide H7K(R2)2-modified, theranostic liposome-containing paclitaxel (PTX) and superparamagnetic iron oxide nanoparticles (SPIO NPs), PTX/SPIO-SSL-H7K(R2)2, was prepared by using H7K(R2)2 as the targeting ligand, SPIO NPs as the magnetic resonance imaging (MRI) agent, PTX as antitumor drug. METHODS: The PTX/SPIO-SSL-H7K(R2)2 was prepared by a thin film hydration method. The characteristics of PTX/SPIO-SSL-H7K(R2)2 were evaluated. The targeting effect, MRI, and antitumor activity of PTX/SPIO-SSL-H7K(R2)2 were investigated detail in vitro and in vivo in human breast carcinoma MDA-MB-231 cell models. RESULTS: Our results of in vitro flow cytometry, in vivo imaging, and in vivo MR imaging confirmed the pH-responsive characteristic of H7K(R2)2 in MDA-MB-231 cell line in vitro and in vivo. The results of in vivo MRI and in vivo antitumor activity confirmed the theranostic effect of PTX/SPIO-SSL-H7K(R2)2 in MDA-MB-231 tumor-bearing model. CONCLUSION: Considering all our in vitro and in vivo results, we conclude that we developed targeting modified theranostic liposome which could achieve both role of antitumor and MRI.


Asunto(s)
Compuestos Férricos/química , Nanopartículas de Magnetita/química , Neoplasias/tratamiento farmacológico , Paclitaxel/uso terapéutico , Péptidos/química , Nanomedicina Teranóstica/métodos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Liberación de Fármacos , Femenino , Citometría de Flujo , Humanos , Concentración de Iones de Hidrógeno , Liposomas , Imagen por Resonancia Magnética , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/patología , Paclitaxel/farmacología , Distribución Tisular/efectos de los fármacos
8.
ACS Appl Mater Interfaces ; 8(29): 18658-63, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27391018

RESUMEN

One switchable nanodelivery system was constructed. Liposomes were functionalized by a novel dual-recognition peptide STP, which is pH-responsive as well as the affinity ligand of tumor marker VEGFR2 (the angiogenesis marker vascular endothelial growth factor receptor 2). Efficient drug delivery and in vivo therapy could be "turned on" and accelerated only in the conditions of VEGFR2 overexpression and a mild acidic environment. We envisioned that the successful demonstration of this switchable nanocarrier system would open a new avenue on rapid cytoplasmic delivery for specific cancer diagnostics and therapeutics.


Asunto(s)
Liposomas/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Péptidos , Factor A de Crecimiento Endotelial Vascular
9.
J Control Release ; 222: 56-66, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26682502

RESUMEN

The pH environment in gliomas is acidic. Therefore, in the present research, we selected our previously reported tumor-specific pH-responsive peptide H7K(R2)2 as a targeting ligand, which could respond to the acidic pH environment in gliomas, possessing CPP characteristics. The pH-sensitive liposomes were selected as carriers which could also respond to the acidic pH environment in gliomas triggering encapsulated drug release from these pH-sensitive liposomes. The H7K(R2)2-modified pH-sensitive liposomes containing doxorubicin (DOX-PSL-H7K(R2)2) were designed and prepared in order to evaluate their potential targeting of glioma tumor cells and their anti-tumor activity in mice with glioma tumor cells. DOX-PSL-H7K(R2)2 was prepared by the thin-film hydration method followed by remote loading using an ammonium sulfate gradient method. The in vitro release of DOX from pH-sensitive liposomes was tested and the in vitro targeting characteristics of H7K(R2)2-modified liposomes regarding C6 (rat C6 glioma cells) and U87-MG (human glioblastoma cells) were evaluated. The in vivo anti-tumor activity of DOX-PSL-H7K(R2)2 was also investigated in C6 tumor-bearing mice and in U87-MG orthotopic tumor-bearing nude mice. A specific targeting effect triggered by an acidic pH was observed in our in vitro experiments in C6 and U87-MG glioma cells. The pH-triggered DOX release from the pH-sensitive liposomes under acidic conditions was also confirmed in our in vitro experiment. Anti-tumor activity of DOX-PSL-H7K(R2)2 was found in C6 tumor-bearing mice and U87-MG orthotopic tumor-bearing nude mice in in vivo experiments. The antiangiogenic activity of DOX-PSL-H7K(R2)2 was confirmed in C6 tumor-bearing mice in the in vivo experiment. These H7K(R2)2-modified pH-sensitive liposomes containing anti-tumor drugs developed in this study are a promising delivery system involving the response stimuli at the acidic pH in the glioma tumor microenvironment and are suitable for anti-tumor therapy.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Glioma/tratamiento farmacológico , Péptidos/administración & dosificación , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Liberación de Fármacos , Humanos , Concentración de Iones de Hidrógeno , Liposomas , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Péptidos/química , Péptidos/farmacología , Péptidos/uso terapéutico , Ratas , Microambiente Tumoral
10.
Mol Pharm ; 12(3): 910-21, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25599953

RESUMEN

Pulmonary delivery of siRNA has considerable therapeutic potential for treating viral respiratory infectious diseases including influenza. By introducing siRNA that targets the conserved region of viral genes encoding nucleocapsid protein (NP), viral mRNAs can be degraded and viral replication can be inhibited in mammalian cells. To enable siRNA to be used as an antiviral agent, the nucleic acid delivery barrier must be overcome. Effective local delivery of siRNA to lung tissues is required to reduce the therapeutic dose and minimize systemic adverse effects. To develop a formulation suited for clinical application, complexes of pH-responsive peptides, containing either histidine or 2,3-diaminopropionic acid (Dap), and siRNA were prepared into dry powders by spray drying with mannitol, which was used as a bulking agent. The spray-dried (SD) powders were characterized and found to be suitable for inhalation with good stability, preserving the integrity of the siRNA as well as the biological and antiviral activities. The formulations mediated highly effective in vitro delivery of antiviral siRNA into mammalian lung epithelial cells, leading to significant inhibition of viral replication when the transfected cells were subsequently challenged with H1N1 influenza virus. SD siRNA powders containing pH-responsive peptides are a promising inhalable formulation to deliver antiviral siRNA against influenza and are readily adapted for the treatment of other respiratory diseases.


Asunto(s)
Antivirales/administración & dosificación , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , ARN Interferente Pequeño/administración & dosificación , Administración por Inhalación , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/química , Secuencia de Bases , Biofarmacia , Línea Celular , Química Farmacéutica , Sistemas de Liberación de Medicamentos , Inhaladores de Polvo Seco , Silenciador del Gen , Humanos , Concentración de Iones de Hidrógeno , Gripe Humana/terapia , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Tamaño de la Partícula , Péptidos/administración & dosificación , Péptidos/química , Polvos , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...