Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.613
Filtrar
1.
Heliyon ; 10(14): e34461, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114029

RESUMEN

Ribosomal proteins (RPs) play an important role in the overall stability, function, and integrity of ribosomes. Ribosomal protein L4 (RPL4), which is encoded by RPL4, is assumed to play different roles in different cancers due to the strong correlation between them. However, research based on the underlying mechanisms of this correlations is limited. Therefore, this study investigated the biological role of RPL4 in various cancers. The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were used to compare the differential expression of RPL4 in tumor and normal tissues. The Sangerbox database and Kaplan-Meier method were employed to assess RPL4's impact on the prognosis of pan-cancer. Analyses using the cBioPortal tool, Shiny Methylation Analysis Resource Tool (SMART), and MethSurv provided insights into the methylation and epigenetic alterations of RPL4. Gene enrichment analysis revealed that RPL4 is involved in ribosome biogenesis through multiple pathways, and its enrichment in signaling pathways directly or indirectly influence tumor development. Tumor Immune Single-cell Hub (TISCH) was used to analyze RPL4 expression levels and cellular functions in the tumor microenvironment. Tumor Immune Estimation Resource Database 2.0 (TIMER2.0) and Tumor-Immune System Interactions Database (TISIDB) tools revealed that RPL4 affected the immune infiltration potential of tumors. Furthermore, the application of the ROC mapper and CellMiner databases indicated an association between RPL4 and sensitivity to multiple antitumor drugs. Additionally, RPL4 was found to remodel the tumor immune microenvironment, leading to the development of chemoresistance. In conclusion, the findings suggest that RPL4 can be used as a potential tumor biomarker and may serve as a target for immunotherapy in various cancers. Genetic testing of RPL4 provides a foundation for the diagnosis, prognosis, and treatment of clinical tumors.

2.
Heliyon ; 10(14): e34523, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114046

RESUMEN

The significance of USP11 as a critical regulator in cancer has garnered substantial attention, primarily due to its catalytic activity as a deubiquitinating enzyme. Nonetheless, a thorough evaluation of USP11 across various cancer types in pan-cancer studies remains absent. Our analysis integrates data from a variety of sources, including five immunotherapy cohorts, thirty-three cohorts from The Cancer Genome Atlas (TCGA), and sixteen cohorts from the Gene Expression Omnibus (GEO), two of which involve single-cell transcriptomic data. Our findings indicate that aberrant USP11 expression is predictive of survival outcomes across various cancer types. The highest frequency of genomic alterations was observed in uterine corpus endometrial carcinoma (UCEC), with single-cell transcriptome analysis revealing significantly higher USP11 expression in plasmacytoid dendritic cells and mast cells. Notably, USP11 expression was associated with the infiltration levels of CD8+ T cells and natural killer (NK) activated cells. Additionally, in the skin cutaneous melanoma (SKCM) phs000452 cohort, patients with higher USP11 mRNA levels during immunotherapy experienced a significantly shorter median progression-free survival. USP11 emerges as a promising molecular biomarker with significant potential for predicting patient prognosis and immunoreactivity across various cancer types.

3.
Aging (Albany NY) ; 162024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39120585

RESUMEN

Drugs that target immune checkpoint have become the most popular weapon in cancer immunotherapy, yet only have practical benefits for a small percentage of patients. Tumor cells constantly interact with their microenvironment, which is made up of a variety of immune cells as well as endothelial cells and fibroblasts. Immune checkpoint expression and blocked signaling of immune cells in the tumor microenvironment (TME) are key to tumor progression. In this study, we perform deliberation convolution on the TCGA database for human lung, breast, and colorectal cancer to infer crosstalk between immune checkpoint receptors (ICRs) and ligands (ICLs) in TME of pan-carcinogenic solid tumor types, validated by flow cytometry. Analysis of immune checkpoints showed that there was little variation between different tumor types. It showed that CD160, LAG3, TIGIT were found to be highly expressed in CD8+ T cells instead of CD4+ T cells, PD-L1, PD-L2, CD86, LGALS9, TNFRSF14, LILRB4 and other ligands were highly expressed on macrophages, FVR, NECTIN2, FGL1 were highly expressed on Epithelial cells, CD200 was highly expressed in Endothelial cells, and CD80 was highly expressed in CD8 High expression on T cells. Overall, our study provides a new resource for the expression of immune checkpoints in TME on various types of cells. Significance: This study provides immune checkpoint expression of immune cells of multiple cancer types to infer immune mechanisms in the tumor microenvironment and provide ideas for the development of new immune checkpoint-blocking drugs.

4.
Front Pharmacol ; 15: 1387243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104385

RESUMEN

Background: Glucagon-like peptide-1 (GLP-1) has crucial impact on glycemic control and weight loss physiologically. GLP-1 receptor agonists have been approved for treatment of diabetes and obesity. Emerging evidence suggests that GLP-1 receptor agonists exert anticancer effect in tumorigenesis and development. However, the role and mechanism of GLP-1 signaling-related genes in pan-cancer still need further study. Methods: We comprehensively investigated the aberrant expression and genetic alterations of GLP-1 signaling-related genes in 33 cancer types. Next, GLP-1 signaling score of each patient in The Cancer Genome Atlas were established by the single-sample gene set enrichment analysis. In addition, we explored the association of GLP-1 signaling score with prognostic significance and immune characteristics. Furthermore, qRT-PCR and immunohistochemistry staining were applied to verify the expression profiling of GLP-1 signaling-related genes in colorectal cancer (CRC) tissues. Wound-healing assays and migration assays were carried out to validate the role of GLP-1 receptor agonist in CRC cell lines. Results: The expression profiling of GLP-1 signaling-related genes is commonly altered in pan-cancer. The score was decreased in cancer tissues compared with normal tissues and the lower expression score was associated with worse survival in most of cancer types. Notably, GLP-1 signaling score was strongly correlated with immune cell infiltration, including T cells, neutrophils, dendritic cells and macrophages. In addition, GLP-1 signaling score exhibited close association with tumor mutation burden, microsatellite instability and immunotherapy response in patients with cancer. Moreover, we found that the expression of GLP-1 signaling-related genes ITPR1 and ADCY5 were significantly reduced in CRC tissues, and GLP-1 receptor agonist semaglutide impaired the migration capacity of CRC cells, indicating its protective role. Conclusion: This study provided a preliminary understanding of the GLP-1 signaling-related genes in pan-cancer, showing the prognosis significance and potential immunotherapeutic values in most cancer types, and verified the potential anticancer effect of GLP-1 receptor agonist in CRC.

5.
Front Pharmacol ; 15: 1418456, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104395

RESUMEN

The Ten-Eleven Translocation (TET) family genes are implicated in a wide array of biological functions across various human cancers. Nonetheless, there is a scarcity of studies that comprehensively analyze the correlation between TET family members and the molecular phenotypes and clinical characteristics of different cancers. Leveraging updated public databases and employing several bioinformatics analysis methods, we assessed the expression levels, somatic variations, methylation levels, and prognostic values of TET family genes. Additionally, we explored the association between the expression of TET family genes and pathway activity, tumor microenvironment (TME), stemness score, immune subtype, clinical staging, and drug sensitivity in pan-cancer. Molecular biology and cytology experiments were conducted to validate the potential role of TET3 in tumor progression. Each TET family gene displayed distinct expression patterns across at least ten detected tumors. The frequency of Single Nucleotide Variant (SNV) in TET genes was found to be 91.24%, primarily comprising missense mutation types, with the main types of copy number variant (CNV) being heterozygous amplifications and deletions. TET1 gene exhibited high methylation levels, whereas TET2 and TET3 genes displayed hypomethylation in most cancers, which correlated closely with patient prognosis. Pathway activity analysis revealed the involvement of TET family genes in multiple signaling pathways, including cell cycle, apoptosis, DNA damage response, hormone AR, PI3K/AKT, and RTK. Furthermore, the expression levels of TET family genes were shown to impact the clinical staging of tumor patients, modulate the sensitivity of chemotherapy drugs, and thereby influence patient prognosis by participating in the regulation of the tumor microenvironment, cellular stemness potential, and immune subtype. Notably, TET3 was identified to promote cancer progression across various tumors, and its silencing was found to inhibit tumor malignancy and enhance chemotherapy sensitivity. These findings shed light on the role of TET family genes in cancer progression and offer insights for further research on TET3 as a potential therapeutic target for pan-cancer.

6.
Front Immunol ; 15: 1361657, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108273

RESUMEN

Aim: This study aimed to systematically dissect the role of Scinderin (SCIN) in tumorigenesis. Methods: Bioinformatics techniques were employed based on cancer data from TCGA, ENCORI, HPA, GEPIA2, UALCAN, Kaplan-Meier plotter, TIMER, TISIDB, cBioPortal, HCCDB, GeneMANIA and LinkedOmics database. Experiments in vitro and in vivo were conducted to dissect the role of SCIN in liver hepatocellular carcinoma (LIHC). Results: Significantly differential expression of SCIN was found in nine types of cancers, including LIHC. Through pan-cancer analysis, the correlations between SCIN expression with prognosis and immune cell infiltration were proven, especially in LIHC, ovarian serous cystadenocarcinoma and lung adenocarcinoma. The highest frequency of alteration in SCIN (6.81%) was seen in patients with uterine corpus endometrial carcinoma, in which "mutation" was the predominant type, with a frequency of about 5.29%; meanwhile, S673F and S381Y were the two most frequent mutation sites. Furthermore, the abnormal expression of SCIN exhibited a strong relationship with immune cell subtypes, immune checkpoint genes, tumor mutation burden, microsatellite instability, neoantigen, molecular subtypes, mismatch repair signatures and DNA methyl-transferase in different cancer types. Through comparative analysis, we discovered that SCIN was dramatically up-regulated in LIHC, and associated with poor survival. Experiments in vitro and in vivo suggested the knockdown of SCIN could suppress tumor cell proliferation and improve the survival rate partly in animal models. Conclusion: This study reveals SCIN may be a promising biomarker for prognosis and treatment in certain cancers, especially in LIHC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/genética , Biomarcadores de Tumor/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/genética , Pronóstico , Animales , Ratones , Línea Celular Tumoral , Mutación , Biología Computacional/métodos , Femenino , Microambiente Tumoral/inmunología , Proliferación Celular
7.
Oncol Lett ; 28(3): 444, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39091583

RESUMEN

Histone lysine N-methyltransferase 2C (KMT2C) is involved in transcriptional regulation and DNA damage repair. Mutations in KMT2C have been implicated in the progression, metastasis, and drug resistance of multiple cancer types. However, the roles of KMT2C in the regulation of tumor prognosis, immune cell infiltration and the immune microenvironment in these multiple cancer types remain unclear. Therefore, in the present study, data from The Cancer Genome Atlas and Genotype-Tissue Expression databases were used for KMT2C expression analyses. Kaplan-Meier and univariate Cox regression analyses were also performed to investigate the prognostic role of KMT2C. In addition, Gene Set Enrichment Analysis (GSEA) was conducted to study the KMT2C-related signaling pathways. Tumor immune estimation resource 2 and single-sample GSEA were conducted to investigate the correlation between KMT2C expression and immune cell infiltrations, and Spearman's analysis was conducted to study the correlations among KMT2C, tumor mutational burden, microsatellite instability, immune regulators, chemokines and immune receptors. Immunohistochemistry of patient kidney tumor samples was performed to verify the correlation between KMT2C and programmed death-ligand 1 (PD-L1) expression. Finally, RNA interference, wound healing and colony formation assays were conducted to evaluate the effects of KMT2C expression on cell proliferation and metastasis. The results of the present study demonstrated that KMT2C was highly expressed in multiple cancer types, was a protective factor in kidney renal clear cell carcinoma and ovarian serous cystadenocarcinoma, and a risk factor for lung squamous cell carcinoma and uveal melanoma. In addition, KMT2C levels were negatively correlated with immune-activated pathways and the infiltration of immune cells, and positively correlated with inhibitory immune factors and tumor angiogenesis. Patients with low KMT2C expression had higher objective response rates to immunotherapy, and drug sensitivity analysis indicated that topoisomerase, histone deacetylase, DOT1-like histone H3K79 methyltransferase and G9A nuclear histone lysine methyltransferase inhibitors could potentially be used to treat tumors with high KMT2C expression levels. Finally, the KMT2C and PD-L1 expression levels were shown to be positively correlated, and KMT2C knockdown markedly promoted the proliferation and invasion capacities of A549 cells. In conclusion, the present study revealed that low KMT2C expression may be a promising biomarker for predicting the response of patients with cancer to immunotherapy. Conversely, high KMT2C expression was shown to promote tumor angiogenesis, which may contribute to the formation of the immunosuppressive tumor microenvironment.

8.
Heliyon ; 10(14): e34011, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100456

RESUMEN

Cancer is widely regarded as a leading cause of death in humans, with colon adenocarcinoma (COAD) ranking among the most prevalent types. Cuproptosis is a novel form of cell death mediated by protein lipoylation. Cuproptosis-related genes (CRGs) participate in tumourigenesis and development. Their role in pan-cancer and COAD require further investigation. This study comprehensively evaluated the relationship among CRGs, pan-cancer, and COAD. Our research revealed the differential expression of CRGs and the cuproptosis potential index (CPI) between normal and tumour tissues, and further explored the correlation of CRGs or CPI with prognosis, immune infiltration, tumor mutant burden(TMB), microsatellite instability (MSI), and drug sensitivity in pan-cancer. Gene set enrichment analysis (GSEA) revealed that oxidative phosphorylation and fatty acid metabolism pathways were significantly enriched in the high CPI group of most tumours. FDX1 and CDKN2A were chosen for further exploration, and we found an independent association between FDX1 and CDKN2A and prognosis, immune infiltration, TMB, and MSI in pan-cancer. Furthermore, a prognostic risk model based on the association between CRGs and COAD was built, and the correlations between the risk score and prognosis, immune-related characteristics, and drug sensitivity were analysed. COAD was then divided into three subtypes using cluster analysis, and the differences among the subtypes in prognosis, CPI, immune-related characteristics, and drug sensitivity were determined. Due to the level of LIPT1 was notably positive related with the risk score, the cytological identification was carried out to identify the association of LIPT1 with proliferation and migration of colon cancer cells. In summary, CRGs can be used as potential prognostic biomarkers to predict immune infiltration levels in patients with pan-cancer. In addition, the risk model could more accurately predict the prognosis and immune infiltration levels of COAD and better guide the direction of clinical medication. Thus, FDX1, CDKN2A, and LIPT1 may serve as prospective new targets for cancer therapy.

9.
Front Pharmacol ; 15: 1445170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101146

RESUMEN

Background: RAB42 (Ras-related protein 42) is a new small GTPase that controls the vesicular trafficking from endosomes to trans-Golgi network in mammalian cells. However, the role of RAB42 in multiple cancers, especially in liver hepatocellular carcinoma (LIHC), has not been well investigated. Methods: A variety of cancer-related databases and online tools, including TCGA, GTEx, TARGET, QUANTISEQ, EPIC, RNAactDrug, CTR-DB, TIMER algorithms and Sangerbox, were applied to explore the correlation of RAB42 expression with prognosis, immune microenvironment, immune regulatory network, RNA modification, pathway activation and drug sensitivity in pan-cancer. The prognostic, immunomodulatory and tumor-promoting effects of RAB42 were verified in various malignancies and determined by a series of in vitro cellular experiments. Results: RAB42 is significantly overexpressed in most cancers with advanced pathological stages. Its overexpression is correlated with poor survival in pan-cancer. RAB42 overexpression has a high diagnostic accuracy of various cancers (AUC > 0.80). RAB42 overexpression not only correlates with distinct stromal immune infiltration and level of immune checkpoint molecules, but also associates with weak immune cell infiltration, immunomodulatory genes expression, and immunotherapeutic response to immune checkpoint inhibitors (ICIs). Additionally, RAB42 overexpression correlates with enhanced expression of m6A RNA methylation-related genes (MRGs) and its interactors. Moreover, overexpression of RAB42 serves as a drug-resistant marker to certain chemotherapies and acts as a potential biomarker for LIHC. Notably, RAB42 overexpression or activation promotes the cellular proliferation, migration and invasion of LIHC. Conclusion: Overexpressed RAB42 serves as a potential prognostic biomarker and therapeutic target in pan-cancer, especially in LIHC.

10.
Funct Integr Genomics ; 24(4): 136, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138692

RESUMEN

Protein disulfide isomerase A3 (PDIA3) is an endoplasmic reticulum (ER) protein. It has different functions including glycoprotein folding in the ER. The unfavorable prognosis of cancer patients was related to the abnormal PDIA3 expression level. However, it is unclear how PDIA3 correlates with the malignant characteristics of different tumors and its impact on tumor immunity. Pan-cancer data were downloaded from several databases for large-scale bioinformatics analysis. The immunological functions of PDIA3 were systematically explored at the single-cell sequencing level, including cell communication, cell metabolism, cell evolution and epigenetic modification. We performed immunofluorescence staining to visualize PDIA3 expression and infiltration of macrophages in pan-cancer samples. Further, we performed a loss-of-function assay of PDIA3 in vitro. The CCK8 assay, clone formation assay, and transwell assay were performed. M2 macrophages were co-cultured with different cell lines before the transwell assay was performed. The immunofluorescence staining of pan-cancer samples presented a higher expression of PDIA3 than those of the paired normal tissues. According to single-cell sequencing analysis, expression of PDIA3 was closely associated with cell communication, cell metabolism, cell evolution and epigenetic modification. The knockdown of PDIA3 in tumor cells inhibited cell proliferation and invasion, and restrained cocultured M2 macrophage migration. Furthermore, PDIA3 displayed predictive value in immunotherapy response in human cancer cohorts, indicating a potential therapeutic target. Our study showed that PDIA3 was associated with tumor malignant characteristics and could mediate the migration of M2 macrophages in various tumor types. PDIA3 could be a promising target to achieve tumor control and improve the immune response on a pan-cancer scale.


Asunto(s)
Macrófagos , Neoplasias , Proteína Disulfuro Isomerasas , Análisis de la Célula Individual , Humanos , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Macrófagos/metabolismo , Macrófagos/inmunología , Proliferación Celular , Línea Celular Tumoral , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica
11.
BMC Bioinformatics ; 25(1): 260, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118043

RESUMEN

Quantitative measurement of RNA expression levels through RNA-Seq is an ideal replacement for conventional cancer diagnosis via microscope examination. Currently, cancer-related RNA-Seq studies focus on two aspects: classifying the status and tissue of origin of a sample and discovering marker genes. Existing studies typically identify marker genes by statistically comparing healthy and cancer samples. However, this approach overlooks marker genes with low expression level differences and may be influenced by experimental results. This paper introduces "GENESO," a novel framework for pan-cancer classification and marker gene discovery using the occlusion method in conjunction with deep learning. we first trained a baseline deep LSTM neural network capable of distinguishing the origins and statuses of samples utilizing RNA-Seq data. Then, we propose a novel marker gene discovery method called "Symmetrical Occlusion (SO)". It collaborates with the baseline LSTM network, mimicking the "gain of function" and "loss of function" of genes to evaluate their importance in pan-cancer classification quantitatively. By identifying the genes of utmost importance, we then isolate them to train new neural networks, resulting in higher-performance LSTM models that utilize only a reduced set of highly relevant genes. The baseline neural network achieves an impressive validation accuracy of 96.59% in pan-cancer classification. With the help of SO, the accuracy of the second network reaches 98.30%, while using 67% fewer genes. Notably, our method excels in identifying marker genes that are not differentially expressed. Moreover, we assessed the feasibility of our method using single-cell RNA-Seq data, employing known marker genes as a validation test.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/clasificación , Redes Neurales de la Computación , Biomarcadores de Tumor/genética , RNA-Seq/métodos
12.
Front Immunol ; 15: 1437068, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144140

RESUMEN

Background: Breast cancer ranks as one of the most prevalent malignancies among women globally, with increasing incidence rates. Physical activity, particularly exercise, has emerged as a potentially significant modifier of cancer prognosis, influencing tumor biology and patient outcomes. Methods: Using a murine breast cancer model, we established a control and an exercise group, where the latter was subjected to 21 days of voluntary running. RNA Sequencing, bioinformatics analysis, pan-cancer analysis, and cell experiments were performed to validate the underlying mechanisms. Results: We observed that exercise significantly reduced tumor size and weight, without notable changes in body weight, suggesting that physical activity can modulate tumor dynamics. mRNA sequencing post-exercise revealed substantial downregulation of CD300E in the exercise group, accompanied by alterations in critical pathways such as MicroRNAs in cancers and the Calcium signaling pathway. Expanding our analysis to a broader cancer spectrum, CD300E demonstrated significant expression variability across multiple cancer types, with pronounced upregulation in myeloma, ovarian, lung, and colorectal cancers. This upregulation was correlated with poorer prognostic outcomes, emphasizing CD300E's potential role as a prognostic marker and therapeutic target. Moreover, CD300E expression was associated with cancer cell proliferation and apoptosis. Conclusion: The study highlights the dual role of exercise in modulating gene expression relevant to tumor growth and the potential of CD300E as a target in cancer therapeutics. Further research is encouraged to explore the mechanisms by which exercise and CD300E influence cancer progression and to develop targeted strategies that could enhance patient outcomes in clinical settings.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Animales , Ratones , Femenino , Pronóstico , Humanos , Condicionamiento Físico Animal , Línea Celular Tumoral , Regulación hacia Abajo , Biomarcadores de Tumor/genética , Neoplasias/genética , Apoptosis/genética , Proliferación Celular , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia
13.
Sci Rep ; 14(1): 18923, 2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143142

RESUMEN

Chromodomain helicase DNA-binding protein (CHD) gene family, an ATP (adenosine triphosphate) -dependent chromatin remodeler family, is involved in multiple developmental process and tumor development. However, there have been none pan-cancer analyses of this family. The expression levels, survival profiles, mutation profiles and immune infiltration of the CHD family genes from TCGA and TARGET database were analyzed using online tools or R packages. Interestingly, all types of CHD gene expressions were associated with the prognosis of Neuroblastoma, Acute lymphoblastic leukemia-Phase 3 and Acute Myeloid Leukemia (All P < 0.05). Knock down of CHD7 and CHD9 in K562 (human erythromyeloblastoid leukemia) and HEC-1-B (human endometrial adenocarcinoma) cells significantly inhibit cell proliferation and migration (P < 0.05). Proliferation, colony formation and migration assays were performed in CHD7 and CHD9 knockdown K562 and HBC-1-B cell lines. Mechanisms were also analyzed by PPI and GO ontology for our experiments. Histone modification, especially the methylation of H3K4, might be involved in CHD7 and CHD9 related oncogenesis. Through bioinformatic analysis, we showed CHD genes significantly affected the prognosis of different tumor types, including childhood tumor. Our findings provide new insights into the function and mechanism of CHD gene family, especially in CHD7 and CHD9.


Asunto(s)
Biología Computacional , ADN Helicasas , Proteínas de Unión al ADN , Neoplasias , Humanos , Biología Computacional/métodos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Neoplasias/genética , Neoplasias/patología , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Pronóstico , Línea Celular Tumoral , Mutación
14.
J Cell Mol Med ; 28(15): e18579, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39086142

RESUMEN

The serine protease inhibitor clade E member 1 (SERPINE1) is a key modulator of the plasminogen/plasminase system and has been demonstrated to promote tumor progression and metastasis in various tumours. However, although much literature has explored the cancer-promoting mechanism of SERPINE1, the pan-cancer analyses of its predictive value and immune response remain unexplored. The differential expression, and survival analysis of SERPINE1 expression in multiple cancers were analysed using The Cancer Genome Atlas and Genotype-Tissue Expression database. Kaplan-Meier (K-M) plotter and survival data analysis were used to analyze the prognostic value of SERPINE1 expression, including overall survival (OS), disease-specific survival, disease-free interval and progression-free interval and investigated the relationship of SERPINE1 expression with microsatellite instability. We further analysed the correlation between the expression of SERPINE1 and immune infiltration. The Kyoto Encyclopaedia of Genes and Genomes pathway was used for enrichment analysis, and the Gene Set Enrichment Analysis (GSEA) database was used to perform pathway analysis. Finally, in vitro experiments demonstrated that knockdown or overexpression of SERPINE1 could alter the proliferation and migration of gastric cancer (GC) cells. The results indicated that SERPINE1 expression levels different significantly between cancer and normal tissues, meanwhile, it was highly expressed in various cancers. By analysing online data, it has been observed that the gene SERPINE1 exhibits heightened expression levels across a variety of human cancers, significantly impacting patient survival rates. Notably, the presence of SERPINE1 was strongly associated with decrease OS and disease-free survival in individuals diagnosed with GC. Furthermore, an observed link indicates that higher levels of SERPINE expression are associated with increased infiltration of immune cells in GC. Finally, in vitro experiments showed that knockdown or overexpression of SERPINE1 inhibited the growth, and migration, of GC cells. SERPINE1expression potentially represents a novel prognostic biomarker due to its significant association with immune cell infiltration in GC. This study shows that SERPINE1 is an oncogene that participates in regulating the immune infiltration and affecting the prognosis of patients in multiple cancers, especially in GC. These findings underscore the importance of further investigating the role of SERPINE1 in cancer progression and offer a promising direction for the development of new therapeutic strategies.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Inhibidor 1 de Activador Plasminogénico , Neoplasias Gástricas , Humanos , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Pronóstico , Proliferación Celular/genética , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Movimiento Celular/genética , Estimación de Kaplan-Meier , Inestabilidad de Microsatélites
15.
Curr Genomics ; 25(4): 298-315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156727

RESUMEN

Background: Although the application of mesenchymal stem cells (MSCs) in engineered medicine, such as tissue regeneration, is well known, new evidence is emerging that shows that MSCs can also promote cancer progression, metastasis, and drug resistance. However, no large-scale cohort analysis of MSCs has been conducted to reveal their impact on the prognosis of cancer patients. Objectives: We propose the MSC score as a novel surrogate for poor prognosis in pan-cancer. Methods: We used single sample gene set enrichment analysis to quantify MSC-related genes into a signature score and identify the signature score as a potential independent prognostic marker for cancer using multivariate Cox regression analysis. TIDE algorithm and neural network were utilized to assess the predictive accuracy of MSC-related genes for immunotherapy. Results: MSC-related gene expression significantly differed between normal and tumor samples across the 33 cancer types. Cox regression analysis suggested the MSC score as an independent prognostic marker for kidney renal papillary cell carcinoma, mesothelioma, glioma, and stomach adenocarcinoma. The abundance of fibroblasts was also more representative of the MSC score than the stromal score. Our findings supported the combined use of the TIDE algorithm and neural network to predict the accuracy of MSC-related genes for immunotherapy. Conclusion: We comprehensively characterized the transcriptome, genome, and epigenetics of MSCs in pan-cancer and revealed the crosstalk of MSCs in the tumor microenvironment, especially with cancer-related fibroblasts. It is suggested that this may be one of the key sources of resistance to cancer immunotherapy.

16.
BMC Cancer ; 24(1): 987, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123194

RESUMEN

BACKGROUND: Zinc Finger Protein 337 (ZNF337) is a novel Zinc Finger (ZNF) protein family member. However, the roles of ZNF337 in human cancers have not yet been investigated. METHODS: In this study, with the aid of TCGA databases, GTEx databases, and online websites, we determined the expression levels of ZNF337 in pan-cancer and its potential value as a diagnostic and prognostic marker for pan-cancer and analyzed the relationship between ZNF337 expression and immune cell infiltration and immune checkpoint genes. We then focused our research on the potential of ZNF337 as a biomarker for diagnostic and prognostic in KIRC (kidney renal clear cell carcinoma) and validated in the E-MTAB-1980 database. Moreover, the expression of ZNF337 was detected through qRT-PCR and Western blotting (WB). CCK-8 experiment, colony formation experiment, and EDU experiment were performed to evaluate cell proliferation ability. Wound healing assay and transwell assay were used to analyze its migration ability. The qRT-PCR and WB were used to detect the expression of ZNF337 in tumor tissues and paracancerous tissues of KIRC patients. RESULTS: The pan-cancer analysis revealed that abnormal ZNF337 expression was found in multiple human cancer types. ZNF337 had a high diagnostic value in pan-cancer and a significant association with the prognosis of certain cancers, indicating that ZNF337 may be a valuable prognostic biomarker for multiple cancers. Further analysis demonstrated that the expression level of ZNF337 displayed significant correlations with cancer-associated fibroblasts, immune cell infiltration, and immune checkpoint genes in many tumors. Additionally, ZNF337 was observed to have a high expression in KIRC. Its expression was significantly associated with poor prognosis [overall survival (OS), disease-specific survival (DSS)], age, TNM stage, histologic grade, and pathologic stage. The high ZNF337 expression was associated with poor prognosis in the E-MTAB-1980 validation cohort. The in vitro experiments suggested that the expression of ZNF337 in KIRC tumor tissues was higher than in adjacent tissues, and ZNF337 knockdown inhibited the proliferation and migration of KIRC cells, whereas overexpression of ZNF337 had the opposite effects. CONCLUSIONS: ZNF337 might be an important prognostic and immunotherapeutic biomarker for pan-cancer, especially in KIRC.


Asunto(s)
Biomarcadores de Tumor , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Proliferación Celular/genética , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/diagnóstico , Neoplasias/mortalidad , Neoplasias/patología , Línea Celular Tumoral , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/mortalidad , Carcinoma de Células Renales/diagnóstico , Femenino , Regulación Neoplásica de la Expresión Génica , Masculino , Neoplasias Renales/genética , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Neoplasias Renales/mortalidad , Neoplasias Renales/diagnóstico , Movimiento Celular/genética
17.
Int J Biol Macromol ; 278(Pt 1): 134674, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134193

RESUMEN

The fascinating role of SPRR3 in various malignant tumors has prompted extensive research to unravel its expression patterns and prognostic significance. To comprehensively investigate SPRR3, we leveraged multiple datasets containing invaluable biomedical information, specifically focusing on the comparative analysis of SPRR3 gene expression levels across different cancer types. Meticulous examination of lung adenocarcinoma allowed us to delve deeper into the correlation between SPRR3 expression and its molecular biological functions. Our comprehensive analysis encompassed 33 malignant tumors, and the results unveiled significant differential expression of SPRR3 across a range of malignancies. Moreover, this aberrant expression of SPRR3 was observed to be closely associated with poorer prognosis in these malignant tumors. Notably, our investigation also unearthed a compelling link between SPRR3 and immune infiltrating cells in lung adenocarcinoma. The utilization of receiver operating characteristic (ROC) curves and survival curves in our study illustrated the immense potential of SPRR3 as a highly accurate predictor of cancer. These findings further emphasize the possibility of SPRR3 serving as a promising diagnostic and prognostic biomarker for a diverse array of cancers.

18.
Front Immunol ; 15: 1440226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161765

RESUMEN

Background: Breast cancer, one of the most prevalent malignancies among women worldwide, has rising incidence rates. Physical activity, particularly exercise, has emerged as a significant modifier of cancer prognosis, influencing both tumor biology and patient outcomes. Methods: In this study, we utilized a murine breast cancer model, dividing mice into a control group and an exercise group; the latter underwent 21 days of voluntary running. We conducted RNA sequencing, bioinformatics analysis, pan-cancer analysis, and cellular experiments to investigate the underlying mechanisms influenced by exercise. Results: Exercise led to a significant reduction in tumor size and weight. Post-exercise mRNA sequencing indicated a notable upregulation of THSD7B in the exercised mice, with significant alterations observed in pathways such as MicroRNAs in cancers and the Calcium signaling pathway. In a broader cancer context, THSD7B showed considerable expression variability, being significantly downregulated in several cancers, correlating with positive prognostic outcomes in PRAD, LAML, KIRC, and GBM and highlighting its potential role as a prognostic marker and therapeutic target. THSD7B expression was also negatively associated with processes of breast cancer cell proliferation, migration, and invasion. Conclusion: This study underscores the dual role of exercise in modulating gene expression relevant to tumor growth and highlights the potential of THSD7B as a therapeutic target in cancer. Future research should further explore the specific mechanisms by which exercise and THSD7B influence cancer progression and develop immunotherapy-enhanced strategies to change patient outcomes in clinical settings.


Asunto(s)
Condicionamiento Físico Animal , Animales , Ratones , Femenino , Pronóstico , Humanos , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Proliferación Celular , Línea Celular Tumoral , Biomarcadores de Tumor/genética
19.
Transl Cancer Res ; 13(7): 3299-3317, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39145052

RESUMEN

Background: Hepatic leukemia factor (HLF) is associated with cancer onset, growth, and progression; however, little is known regarding its biological role in pan-cancer. In order to further evaluate the diagnostic and prognostic value of HLF in pan-cancer and colorectal cancer (CRC), we performed comprehensive bioinformatics analyses of the molecular mechanism of HLF in pan-cancer, with subsequent verification in CRC. Methods: We downloaded data (gene expression, clinical data, follow-up duration, and immune-related data) related to 33 solid tumor types from UCSC Xena (University of California Santa Cruz cancer database, https://xena.ucsc.edu/). HLF expression was analyzed in pan-cancer, and its diagnostic efficacy, prognostic value, and correlation with pathological stage and cancer immunity were determined. We also analyzed gene alterations in HLF and biological processes involved in its regulation in pan-cancer. Using CRC data in The Cancer Genome Atlas (TCGA), we assessed correlations between HLF and CRC diagnosis, prognosis, and drug sensitivity and performed functional enrichment analyses. Moreover, we constructed an HLF-related ceRNA regulatory network. Finally, we externally validated HLF expression and diagnostic and prognostic value in CRC using Gene Expression Omnibus (GEO) database, as well as by performing in vitro experiments. Results: HLF expression was downregulated in most tumors, and HLF showed good predictive potential for pan-cancer diagnosis and prognosis. It was closely related to the clinicopathological stages of pan-cancer. Further, HLF was associated with tumor microenvironment and immune cell infiltration in many tumors. Analyses involving cBioPortal revealed changes in HLF amplifications and mutations in most tumors. HLF was also closely associated with microsatellite instability and tumor mutational burden in pan-cancer and involved in regulating various tumor-related pathways and biological processes. In CRC, HLF expression was similarly downregulated, with implications for CRC diagnosis and prognosis. Functional enrichment analysis indicated the association of HLF with many cancer-related pathways. Further, HLF was associated with drug (e.g., oxaliplatin) sensitivity in CRC. The ceRNA regulatory network showed multigene regulation of HLF in CRC. External validation involving GEO databases and quantitative real-time polymerase chain reaction (qRT-PCR) data substantiated these findings. Conclusions: HLF expression generally exhibited downregulation in pan-cancer, contributing to tumor occurrence and development by regulating various biological processes and affecting tumor immune characteristics. HLF was also closely related to CRC occurrence and development. We believe HLF can serve as a reliable diagnostic, prognostic, and immune biomarker for pan-cancer.

20.
Sci Rep ; 14(1): 19025, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152248

RESUMEN

Glycyl-tRNA synthetase (GARS1) is differentially expressed across cancers. In this study, the value of GARS1 in the diagnosis and prognosis of various cancers was comprehensively evaluated by multiple omics integrative pan-cancer analysis and experimental verification. Through Kaplan-Meier, ROC and multiple databases, we explored GARS1 expression and prognostic and diagnostic patterns across cancers. The GARS1 relative reaction network was identified in PPI, GO, KEGG, methylation models and the genetic mutation atlas. Further research on the GARS1 value in bladder urothelial carcinoma (BLCA) was conducted by regression and nomogram models. We further analyzed the correlation between GARS1 and immune markers and cells in BLCA. Finally, in vitro experiments were used to validate GARS1 the oncogenic function of GARS1 in BLCA. We found that GARS1 was highly expressed across cancers, especially in BLCA. GARS1 expression was correlated with poor survival and had high diagnostic value in most tumor types. GARS1 is significantly associated with tRNA-related pathways whose mutation sites are mainly located on tRNA synthetase. In addition, Upregulation of GARS1 was connected with immune cell infiltration and five key MMR genes. M2 macrophages, TAMs, Th1 and T-cell exhaustion, and marker sets associated with GARS1 expression indicated specific immune infiltration in BLCA. Finally, in vitro experiments validated that GARS1 expression promotes BLCA cell proliferation and metastasis and inhibits apoptosis. Overall, GARS1 can be a novel prognostic and immunological biomarker through multiple omics integrative pan-cancer analysis. The expression of GARS1 in BLCA was positively correlated with specific immune infiltration, indicating that GARS1 might be related to the tumor immune microenvironment.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/mortalidad , Biomarcadores de Tumor/genética , Pronóstico , Línea Celular Tumoral , Proliferación Celular/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...