RESUMEN
In mammals, seasonal opportunities and challenges are anticipated through programmed changes in physiology and behavior. Appropriate anticipatory timing depends on synchronization to the external solar year, achieved through the use of day length (photoperiod) as a synchronizing signal. In mammals, nocturnal production of melatonin by the pineal gland is the key hormonal mediator of photoperiodic change, exerting its effects via the hypothalamopituitary axis. In this review/perspective, we consider the key developments during the history of research into the seasonal synchronizer effect of melatonin, highlighting the role that the pars tuberalis-tanycyte module plays in this process. We go on to consider downstream pathways, which include discrete hypothalamic neuronal populations. Neurons that express the neuropeptides kisspeptin and (Arg)(Phe)-related peptide-3 (RFRP-3) govern seasonal reproductive function while neurons that express somatostatin may be involved in seasonal metabolic adaptations. Finally, we identify several outstanding questions, which need to be addressed to provide a much thorough understanding of the deep impact of melatonin upon seasonal synchronization.
Asunto(s)
Mamíferos , Melatonina , Estaciones del Año , Melatonina/metabolismo , Animales , Mamíferos/metabolismo , Fotoperiodo , Humanos , Glándula Pineal/metabolismoRESUMEN
This contribution reviews the role of inbred and transgenic mouse strains for deciphering the mammalian melatoninergic and circadian system. It focusses on the pineal organ as melatonin factory and two major targets of the melatoninergic system, the suprachiasmatic nuclei (SCN) and the hypophysial pars tuberalis (PT). Mammalian pinealocytes sharing molecular characteristics with true pineal and retinal photoreceptors synthesize and secrete melatonin into the blood and cerebrospinal fluid night by night. Notably, neuron-like connections exist between the deep pinealocytes and the habenular/pretectal region suggesting direct pineal-brain communication. Control of melatonin biosynthesis in rodents involves transcriptional regulation including phosphorylation of CREB and upregulation of mPer1. In the SCN, melatonin acts upon MT1 and MT2 receptors. Melatonin is not necessary to maintain the rhythm of the SCN molecular clockwork, but it has distinct effects on the synchronization of the circadian rhythm by light, facilitates re-entrainment of the circadian system to phase advances in the level of the SCN molecular clockwork by acting upon MT2 receptors and plays a stabilizing role in the circadian system as evidenced from locomotor activity recordings. While the effects in the SCN are subtle, melatonin is essential for PT functions. Via the MT1 receptor it drives the PT-intrinsic molecular clockwork and the retrograde and anterograde output pathways controlling seasonal rhythmicity. Although inbred and transgenic mice do not show seasonal reproduction, the pathways from the PT are fully intact if the animals are melatonin proficient. Thus, only melatonin-proficient strains are suited to investigate the circadian and melatoninergic systems.
Asunto(s)
Ritmo Circadiano , Melatonina , Animales , Melatonina/metabolismo , Ritmo Circadiano/fisiología , Ratones , Modelos Animales , Núcleo Supraquiasmático/metabolismo , Ratones Transgénicos , Glándula Pineal/metabolismoRESUMEN
Hibernation is an extreme state of seasonal energy conservation, reducing metabolic rate to as little as 1% of the active state. During the hibernation season, many species of hibernating mammals cycle repeatedly between the active (aroused) and hibernating (torpid) states (T-A cycling), using brown adipose tissue (BAT) to drive cyclical rewarming. The regulatory mechanisms controlling this process remain undefined but are presumed to involve thermoregulatory centres in the hypothalamus. Here, we used the golden hamster (Mesocricetus auratus), and high-resolution monitoring of BAT, core body temperature and ventilation rate, to sample at precisely defined phases of the T-A cycle. Using c-fos as a marker of cellular activity, we show that although the dorsomedial hypothalamus is active during torpor entry, neither it nor the pre-optic area shows any significant changes during the earliest stages of spontaneous arousal. Contrastingly, in three non-neuronal sites previously linked to control of metabolic physiology over seasonal and daily time scales - the choroid plexus, pars tuberalis and third ventricle tanycytes - peak c-fos expression is seen at arousal initiation. We suggest that through their sensitivity to factors in the blood or cerebrospinal fluid, these sites may mediate metabolic feedback-based initiation of the spontaneous arousal process.
Asunto(s)
Nivel de Alerta , Plexo Coroideo , Células Ependimogliales , Hibernación , Proteínas Proto-Oncogénicas c-fos , Letargo , Animales , Cricetinae , Masculino , Tejido Adiposo Pardo/metabolismo , Nivel de Alerta/genética , Plexo Coroideo/metabolismo , Células Ependimogliales/metabolismo , Hibernación/genética , Mesocricetus , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Letargo/genéticaRESUMEN
Photoperiod is the main environmental driver of seasonal responses in organisms living at temperate and polar latitudes. Other external cues such as food and temperature, and internal cues including hormones, intervene to fine-tune phasing of physiological functions to the solar year. In mammals, the medio-basal hypothalamus (MBH) is the key integrator of these cues, which orchestrates a wide array of seasonal functions, including breeding. Here, using RNAseq and RT-qPCR, we demonstrate that molecular components of the photoperiodic response previously identified in ewes are broadly conserved in does (female goats, Capra hircus), with a common core of â¼50 genes. This core group can be defined as the "MBH seasonal trancriptome", which includes key players of the pars tuberalis-tanycytes neuroendocrine retrograde pathway that governs intra-MBH photoperiodic switches of triiodothyronine (T3) production (Tshb, Eya3, Dio2 and SlcO1c1), the two histone methyltransferases Suv39H2 and Ezh2 and the secreted protein Vmo1. Prior data in ewes revealed that T3 and estradiol (E2), both key hormones for the proper timing of seasonal breeding, differentially impact the MBH seasonal transcriptome, and identified cellular and molecular targets through which these hormones might act. In contrast, information regarding the potential impact of progesterone (P4) upon the MBH transcriptome was nonexistent. Here, we demonstrate that P4 has no discernible transcriptional impact in either does or ewes. Taken together, our data show that does and ewes possess a common core set of photoperiod-responsive genes in the MBH and conclusively demonstrate that P4 is not a key regulator of the MBH transcriptome.
Asunto(s)
Cabras , Hipotálamo , Fotoperiodo , Progesterona , Ovinos , Transcriptoma , Animales , Femenino , Estro , Cabras/genética , Hipotálamo/metabolismo , Progesterona/metabolismo , Estaciones del Año , Análisis de Secuencia de ARN , Ovinos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Conjuntos de Datos como AsuntoRESUMEN
Thyroid hormone in the hypothalamus acts as a key determinant of seasonal transitions. Thyroid hormone-levels in the brain are mainly regulated by the hypothalamic tanycytes and pituitary pars tuberalis (PT)-specific cells. TSHß produced by the PT-specific cells stimulates Dio2 expression and decreases Dio3 expression of the tanycytes. Both tanycytes and PT-specific cells in photosensitive animals exhibit remarkable changes of morphological appearance and expressions of genes and proteins under different photoperiods. Long photoperiods induce increased gene- and protein-expressions and active features. Short photoperiods cause the decreased gene- and protein-expressions and inactive features. In the PT, expressions of TSHß, common α-subunit of glycoprotein hormones (α-GSU), and MT1 receptor of melatonin receptors and eyes absent 3 change under different photoperiods. Diurnal rhythms of α-GSU mRNA expression are observed in the PT of Djungarian hamsters. Hes1, Nkx2.1, and LIM homeodomain gene 2 (Lhx2) are involved in the differentiation of PT. In the hypothalamic tanycytes, expressions of Dio2, Dio3, vimentin, serine/threonine kinase 33, GPR50, Nestin, Retinoid signaling genes (retinaldehyde dehydrogenase 1, cellular retinol binding protein 1, and Stra6), monocarboxylate transporter 8, and neural cell adhesion molecule change under different photoperiods. Rax, Lhx2, Nfia/b/x, and fibroblast growth factor 10 are involved in the differentiation of tanycytes.
Asunto(s)
Células Ependimogliales , Fotoperiodo , Cricetinae , Animales , Proteínas con Homeodominio LIM/metabolismo , Células Ependimogliales/metabolismo , Hipotálamo/metabolismo , Hormonas Tiroideas/metabolismoRESUMEN
Seasonal mammals register photoperiodic changes through the photoneuroendocrine system enabling them to time seasonal changes in growth, metabolism, and reproduction. To a varying extent, proximate environmental factors like ambient temperature (Ta) modulate timing of seasonal changes in physiology, conferring adaptive flexibility. While the molecular photoneuroendocrine pathway governing the seasonal responses is well defined, the mechanistic integration of nonphotoperiodic modulatory cues is poorly understood. Here, we explored the interaction between Ta and photoperiod in tundra voles, Microtus oeconomus, a boreal species in which the main impact of photoperiod is on postnatal somatic growth. We demonstrate that postweaning growth potential depends on both gestational and postweaning patterns of photoperiodic exposure, with the highest growth potential seen in voles experiencing short (8 h) gestational and long (16 h) postweaning photoperiods-corresponding to a spring growth program. Modulation by Ta was asymmetric: low Ta (10 °C) enhanced the growth potential of voles gestated on short photoperiods independent of postweaning photoperiod exposure, whereas in voles gestated on long photoperiods, showing a lower autumn-programmed growth potential, the effect of Ta was highly dependent on postweaning photoperiod. Analysis of the primary molecular elements involved in the expression of a neuroendocrine response to photoperiod, thyrotropin beta subunit (tshß) in the pars tuberalis, somatostatin (srif) in the arcuate nucleus, and type 2/3 deiodinase (dio2/dio3) in the mediobasal hypothalamus identified dio2 as the most Ta-sensitive gene across the study, showing increased expression at higher Ta, while higher Ta reduced somatostatin expression. Contrastingly dio3 and tshß were largely insensitive to Ta. Overall, these observations reveal a complex interplay between Ta and photoperiodic control of postnatal growth in M. oeconomus, and suggest that integration of Ta into the control of growth occurs downstream of the primary photoperiodic response cascade revealing potential adaptivity of small herbivores facing rising temperatures at high latitudes.
Asunto(s)
Ritmo Circadiano , Fotoperiodo , Animales , Estaciones del Año , Temperatura , Arvicolinae , Somatostatina , TundraRESUMEN
Thyroid-stimulating hormone (TSH) and thyroid hormone levels are standard parameters in blood analysis. However, the immunoassays employed may lead to false-positive or false-negative results when the sample contains certain materials that interfere with the assay. Macro-TSH, a complex of TSH with immunoglobulin or albumin, may cause apparently increased TSH concentrations. TSH is produced in the pars tuberalis (PT) of the pituitary gland and by thyrotrophs of the pars distalis (PD). It was found that variable glycosylation can render the molecule more strongly bound to antibodies or albumin in the blood, leading to the hypothesis that macro-TSH consists mainly of PT-TSH. Although less known than PD-TSH, PT-TSH plays an important role in the central regulation of thyroid metabolism. The present review summarizes the physiological function of human PT-TSH and its role in macro-TSH formation. The prevalence of macro-hyperthyrotropinemia, the structure of PT-TSH and macro-TSH, problems in the measurement of TSH, and the action of PT-TSH in animals with seasonal breeding are discussed. Despite the absence of a specific function of macro-TSH in the organism, the identification of macro-TSH is important for avoiding unnecessary treatment based on a falsified readout of increased TSH concentrations as numerous individual case reports describe.
Asunto(s)
Adenohipófisis , Tirotropina , Animales , Humanos , Tirotropina/metabolismo , Hipófisis/metabolismo , Hormonas Tiroideas/metabolismo , Glándula Tiroides/metabolismo , Albúminas/metabolismo , Adenohipófisis/metabolismoRESUMEN
The pituitary gland regulates growth, metabolism, reproduction, the stress response, uterine contractions, lactation, and water retention. It secretes hormones in response to hypothalamic input, end organ feedback, and diurnal cues. The mechanisms by which pituitary stem cells are recruited to proliferate, maintain quiescence, or differentiate into specific cell types, especially thyrotropes, are not well understood. We used single-cell RNA sequencing in juvenile P7 mouse pituitary cells to identify novel factors in pituitary cell populations, with a focus on thyrotropes and rare subtypes. We first observed cells coexpressing markers of both thyrotropes and gonadotropes, such as Pou1f1 and Nr5a1. This was validated in vivo by both immunohistochemistry and lineage tracing of thyrotropes derived from Nr5a1-Cre; mTmG mice and demonstrates that Nr5a1-progenitors give rise to a proportion of thyrotropes during development. Our data set also identifies novel factors expressed in pars distalis and pars tuberalis thyrotropes, including the Shox2b isoform in all thyrotropes and Sox14 specifically in Pou1f1-negative pars tuberalis thyrotropes. We have therefore used single-cell transcriptomics to determine a novel developmental trajectory for thyrotropes and potential novel regulators of thyrotrope populations.
Asunto(s)
Enfermedades de la Hipófisis , Adenohipófisis , Embarazo , Femenino , Ratones , Animales , Tirotropina/metabolismo , Hipófisis/metabolismo , Factores de Transcripción/metabolismo , Enfermedades de la Hipófisis/metabolismo , Inmunohistoquímica , Adenohipófisis/metabolismo , Factores de Transcripción SOXB2/metabolismoRESUMEN
For understanding the molecular events underlying the follicular (F) and luteal (L) phases of estrous cycle, and anestrous (A) phase, the pars tuberalis (PT), and hypothalamus (HT) transcriptomes of 21 ewes were studied. In HT, 72 and 3 differential expression genes (DEGs) were found when comparing F vs. A and L vs. A, respectively. In PT, 6 and 4 DEGs were found in F vs. A and L vs. A comparisons, respectively. Enrichment analysis for DEGs between the F and A phases in the HT revealed significant clusters, mainly associated with actin-binding, and cytoskeleton, that are related to neural plasticity modulated by gonadal steroid hormones, as well as with oxytocin signaling. We found that DEGs in PT had higher differences in expression levels than those found in HT. In this sense, the ITLN was highly upregulated in the F and L vs. A phases, being MRPL57 and IRX4 highly downregulated in L vs. A comparison. The DDC gene in PT, related to LH regulation, was upregulated in the F phase. The gene set enrichment analysis (GSEA) revealed multiple pathways related to neurotransmission and neuronal plasticity. Our study reveals new candidate genes involved in the reproductive stages' transitions in seasonal sheep.
RESUMEN
Identifying and phenotyping the target cells of a neuroendocrine messenger is one of the key steps to understand neuroendocrine networks and the physiological action of such messengers. In the absence of reliable antibodies directed against the receptor of a neuroendocrine messenger, detecting the expression of the messenger RNA of this receptor is an important tool to identify the target cells of a neuroendocrine messenger such as melatonin. While radioactive in situ hybridization has a higher sensitivity, nonradioactive in situ hybridization has a much better cellular resolution than radioactive in situ hybridization and is therefore better suited for phenotyping the target cells of melatonin. Here we describe a nonradioactive in situ hybridization protocol with its adaptations to various types of histological preparations. This protocol allowed the phenotyping of melatonin target cells in the pars tuberalis of the adenohypophysis, leading to the discovery of photoperiodic melatonin signaling from the pars tuberalis to the hypothalamus.
Asunto(s)
Melatonina , Receptor de Melatonina MT1 , Hibridación in Situ , Melatonina/metabolismo , Fotoperiodo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Melatonina MT1/genéticaRESUMEN
Adaptation to annual changes in the environment is controlled by hypophysial hormones. In temperate zones, photoperiod is the primary external cue that regulates annual biological cycles and is translated by the pattern of melatonin secretion acting primarily in the hypophysial pars tuberalis. Angiogenic mechanisms within this tissue contribute to decode the melatonin signal through alternative splicing of the vascular endothelial growth factor A (VEGF-A) gene in both the pars tuberalis and the capillary loops of the infundibulum. The resulting melatonin-evoked differential productions of VEGF-A isoforms will induce seasonal remodeling of the vascular connection between the hypothalamus and hypophysis, and act as paracrine messengers in the pars distalis to generate the required seasonal endocrine response. Specifically, the long melatonin signal in winter upregulates antiangiogenic VEGF-A isoforms, which will reduce the number of vascular loops and the density of VEGF receptors in endocrine and folliculo-stellate (FS) cells, inhibit prolactin secretion, and stimulate FSH. In contrast, the short melatonin signal in summer upregulates proangiogenic VEGF-A isoforms that will increase the number of vascular loops and the density of VEGF receptors in endocrine and FS cells, stimulate prolactin secretion, and suppress FSH. A similar system has been identified in long day seasonal breeders, revealing that this is a conserved mechanism of adaptation across species. Thus, an angiogenesis-based, intrahypophysial system for annual time measurement controls local microvascular plasticity and conveys the photoperiodic signal readout from the melatonin sensitive pars tuberalis to the endocrine cells of the pars distalis to regulate seasonal adaptation to the environment.
Asunto(s)
Melatonina , Factor A de Crecimiento Endotelial Vascular , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Prolactina/genética , Estaciones del Año , Hipófisis/metabolismo , Hormona Folículo Estimulante , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Adaptación FisiológicaRESUMEN
Synchronization of mammalian breeding activity to the annual change of photoperiod and environmental conditions is of the utmost importance for individual survival and species perpetuation. Subsequent to the early 1960s, when the central role of melatonin in this adaptive process was demonstrated, our comprehension of the mechanisms through which light regulates gonadal activity has increased considerably. The current model for the photoperiodic neuroendocrine system points to pivotal roles for the melatonin-sensitive pars tuberalis (PT) and its seasonally-regulated production of thyroid-stimulating hormone (TSH), as well as for TSH-sensitive hypothalamic tanycytes, radial glia-like cells located in the basal part of the third ventricle. Tanycytes respond to TSH through increased expression of thyroid hormone (TH) deiodinase 2 (Dio2), which leads to heightened production of intrahypothalamic triiodothyronine (T3) during longer days of spring and summer. There is strong evidence that this local, long-day driven, increase in T3 links melatonin input at the PT to gonadotropin-releasing hormone (GnRH) output, to align breeding with the seasons. The mechanism(s) through which T3 impinges upon GnRH remain(s) unclear. However, two distinct neuronal populations of the medio-basal hypothalamus, which express the (Arg)(Phe)-amide peptides kisspeptin and RFamide-related peptide-3, appear to be well-positioned to relay this seasonal T3 message towards GnRH neurons. Here, we summarize our current understanding of the cellular, molecular and neuroendocrine players, which keep track of photoperiod and ultimately govern GnRH output and seasonal breeding.
Asunto(s)
Melatonina , Fotoperiodo , Animales , Hormona Liberadora de Gonadotropina , Kisspeptinas , Mamíferos , Melatonina/metabolismo , Reproducción/fisiología , Estaciones del Año , TirotropinaRESUMEN
[This corrects the article DOI: 10.3389/fvets.2021.644474.].
RESUMEN
The pituitary pars tuberalis (PT) is the regulating center of seasonal reproduction, which can sense the melatonin signal and eventually cause downstream changes of GnRH secretion through TSHß. Recently, lncRNAs have been identified in animal reproductive-related tissues, and they play important roles in reproductive regulation. Therefore, in this study, we expect to identify photoperiod-induced lncRNAs and genes in pituitary PT of sheep by comparison of expression profiles between short photoperiod (SP) and long photoperiod (LP). Through RNA-Seq, a total of 55,472 lncRNAs were identified in pituitary PT of Sunite ewes. The number of differentially expressed (DE) genes and lncRNAs between SP and LP increased gradually with the extension of LP (from LP7 to LP42). The notable LP-induced candidate genes included EYA3, TSHB, SIX1, DCT, VMO1, AREG, SUV39H2, and EZH2, and SP-induced genes involved ENSOARG00000012585, CHGA, FOS, SOCS3, and TH. In enriched pathways for DE genes and lncRNA target genes between SP and LP, the reproduction- and circadian-related pathways were highlighted. In addition, the interactome analysis of lncRNAs and their targets implied that MSTRG.209166 and its trans-target TSHB, MSTRG.288068 and its cis-target SIX1, and ENSOARG00000026131 and its cis-target TH might participate in regulation of seasonal reproduction. Together, these results will help to determine important photoperiod-induced lncRNAs and genes and give us some new insights into the epigenetic regulation of seasonal reproduction in sheep.
RESUMEN
The high Arctic archipelago of Svalbard (74°-81° north) experiences extended periods of uninterrupted daylight in summer and uninterrupted night in winter, apparently relaxing the major driver for the evolution of circadian rhythmicity. Svalbard ptarmigan (Lagopus muta hyperborea) is the only year-round resident terrestrial bird species endemic to the high Arctic and is remarkably adapted to the extreme annual variation in environmental conditions.1 Here, we demonstrate that, although circadian control of behavior disappears rapidly upon transfer to constant light conditions, consistent with the loss of daily activity patterns observed during the polar summer and polar night, Svalbard ptarmigans nonetheless employ a circadian-based mechanism for photoperiodic timekeeping. First, we show the persistence of rhythmic clock gene expression under constant light within the mediobasal hypothalamus and pars tuberalis, the key tissues in the seasonal neuroendocrine cascade. We then employ a "sliding skeleton photoperiod" protocol, revealing that the driving force behind seasonal biology of the Svalbard ptarmigan is rhythmic sensitivity to light, a feature that depends on a functioning circadian rhythm. Hence, the unusual selective pressures of life in the high Arctic have favored decoupling of the circadian clock from organization of daily activity patterns, while preserving its importance for seasonal synchronization.
Asunto(s)
Relojes Circadianos , Fotoperiodo , Animales , Aves , Ritmo Circadiano , Estaciones del Año , SvalbardRESUMEN
Seasonal rhythms are a pervasive feature of most living organisms, which underlie yearly timeliness in breeding, migration, hibernation or weight gain and loss. To achieve this, organisms have developed inner timing devices (circannual clocks) that endow them with the ability to predict then anticipate changes to come, usually using daylength as the proximate cue. In Vertebrates, daylength interpretation involves photoperiodic control of TSH production by the pars tuberalis (PT) of the pituitary, which governs a seasonal switch in thyroid hormone (TH) availability in the neighboring hypothalamus. Tanycytes, specialized glial cells lining the third ventricle (3V), are responsible for this TH output through the opposite, PT-TSH-driven, seasonal control of deiodinases 2/3 (Dio 2/3). Tanycytes comprise a photoperiod-sensitive stem cell niche and TH is known to play major roles in cell proliferation and differentiation, which suggests that seasonal control of tanycyte proliferation may be involved in the photoperiodic synchronization of seasonal rhythms. Here we review our current knowledge of the molecular and neuroendocrine pathway linking photoperiodic information to seasonal changes in physiological functions and discuss the potential implication of tanycytes, TH and cell proliferation in seasonal timing.
Asunto(s)
Melatonina , Fotoperiodo , Animales , Hipotálamo/fisiología , Melatonina/metabolismo , Estaciones del Año , Células Madre , Hormonas Tiroideas/fisiologíaRESUMEN
Thyrotropin (TSH) is classically known to be regulated by negative feedback from thyroid hormones and stimulated by thyrotropin-releasing hormone (TRH) from the hypothalamus. At the end of the 1990s, studies showed that thyrotroph cells from the pars tuberalis (PT) did not have TRH receptors and their TSH regulation was independent from TRH stimulation. Instead, PT-thyrotroph cells were shown to have melatonin-1 (MT-1) receptors and melatonin secretion from the pineal gland stimulates TSH-ß subunit formation in PT. Electron microscopy examinations also revealed some important differences between PT and pars distalis (PD) thyrotrophs. PT-TSH also have low bioactivity in the peripheral circulation. Studies showed that they have different glycosylations and PT-TSH forms macro-TSH complexes in the periphery and has a longer half-life. Photoperiodism affects LH levels in animals via decreased melatonin causing increased TSH-ß subunit expression and induction of deiodinase-2 (DIO-2) in the brain. Mammals need a light stimulus carried into the suprachiasmatic nucleus (which is a circadian clock) and then transferred to the pineal gland to synthesize melatonin, but birds have deep brain receptors and they are stimulated directly by light stimuli to have increased PT-TSH, without the need for melatonin. Photoperiodic regulations via TSH and DIO 2/3 also have a role in appetite, seasonal immune regulation, food intake and nest-making behaviour in animals. Since humans have no clear seasonal breeding period, such studies as recent ''domestication locus'' studies in poultry are interesting. PT-TSH that works like a neurotransmitter in the brain may become an important target for future studies about humans.
RESUMEN
To optimally time reproduction, seasonal mammals use a photoperiodic neuroendocrine system (PNES) that measures photoperiod and subsequently drives reproduction. To adapt to late spring arrival at northern latitudes, a lower photoperiodic sensitivity and therefore a higher critical photoperiod for reproductive onset is necessary in northern species to arrest reproductive development until spring onset. Temperature-photoperiod relationships, and hence food availability-photoperiod relationships, are highly latitude dependent. Therefore, we predict PNES sensitivity characteristics to be latitude dependent. Here, we investigated photoperiodic responses at different times during development in northern (tundra or root vole, Microtus oeconomus) and southern vole species (common vole, Microtus arvalis) exposed to constant short (SP) or long photoperiod (LP). Although the tundra vole grows faster under LP, no photoperiodic effect on somatic growth is observed in the common vole. In contrast, gonadal growth is more sensitive to photoperiod in the common vole, suggesting that photoperiodic responses in somatic and gonadal growth can be plastic, and might be regulated through different mechanisms. In both species, thyroid-stimulating hormone ß-subunit (Tshß) and iodothyronine deiodinase 2 (Dio2) expression is highly increased under LP, whereas Tshr and Dio3 decrease under LP. High Tshr levels in voles raised under SP may lead to increased sensitivity to increasing photoperiods later in life. The higher photoperiodic-induced Tshr response in tundra voles suggests that the northern vole species might be more sensitive to thyroid-stimulating hormone when raised under SP. In conclusion, species differences in developmental programming of the PNES, which is dependent on photoperiod early in development, may form different breeding strategies as part of latitudinal adaptation.
Asunto(s)
Arvicolinae , Fotoperiodo , Animales , Ritmo Circadiano , Gónadas , Estaciones del AñoRESUMEN
Organisms use changes in photoperiod to anticipate and exploit favourable conditions in a seasonal environment. While species living at temperate latitudes receive day length information as a year-round input, species living in the Arctic may spend as much as two-thirds of the year without experiencing dawn or dusk. This suggests that specialised mechanisms may be required to maintain seasonal synchrony in polar regions. Svalbard ptarmigan (Lagopus muta hyperborea) are resident at 74-81°N latitude. They spend winter in constant darkness (DD) and summer in constant light (LL); extreme photoperiodic conditions under which they do not display overt circadian rhythms. Here, we explored how Arctic adaptation in circadian biology affects photoperiodic time measurement in captive Svalbard ptarmigan. For this purpose, DD-adapted birds, showing no circadian behaviour, either remained in prolonged DD, were transferred into a simulated natural photoperiod (SNP) or were transferred directly into LL. Birds transferred from DD to LL exhibited a strong photoperiodic response in terms of activation of the hypothalamic thyrotropin-mediated photoperiodic response pathway. This was assayed through expression of the Eya3, Tshß and deiodinase genes, as well as gonadal development. While transfer to SNP established synchronous diurnal activity patterns, activity in birds transferred from DD to LL showed no evidence of circadian rhythmicity. These data show that the Svalbard ptarmigan does not require circadian entrainment to develop a photoperiodic response involving conserved molecular elements found in temperate species. Further studies are required to define how exactly Arctic adaptation modifies seasonal timer mechanisms.
Asunto(s)
Ritmo Circadiano , Fotoperiodo , Animales , Regiones Árticas , Aves , Estaciones del Año , SvalbardRESUMEN
Thyroid hormone (TH) and estradiol (E2) direct seasonal switches in ovine reproductive physiology. In sheep, as in other mammals and birds, control of thyrotropin (TSH) production by the pars tuberalis (PT) links photoperiod responsiveness to seasonal breeding. PT-derived TSH governs opposite seasonal patterns of the TH deiodinases Dio2/Dio3 expression in tanycytes of the neighboring medio-basal hypothalamus (MBH), which explain the key role of TH. We recently used RNA-Seq to identify seasonal markers in the MBH and define the impact of TH. This impact was found to be quite limited, in terms of number of target genes, and very restricted with regards to neuroanatomical location, as TH specifically impacts genes expressed in tanycytes and hypothalamus, not in the PT. Here we address the impact of E2 on these seasonal markers, which are specifically expressed in either PT, tanycytes or hypothalamus. We also investigate if progesterone (P4) may be involved in timing the seasonal transition to anestrus. Our analysis provides circuit-level insights into the impact of sex steroids on the ewe seasonal breeding cycle. First, seasonal gene expression in the PT is independent of the sex steroid status. The fact that seasonal gene expression in the PT is also TH-independent strengthens the view that the PT is a circannual timer. Second, select tanycytic markers display some level of responsiveness to E2 and P4, which indicates another potential level of feedback control by sex steroids. Third, Kiss1 neurons of the arcuate nucleus are responsive to both TH and E2, which places them at the crossroads of photoperiodic transduction pathway and sex steroid feedback. This provides strong support to the concept that these Kiss1 neurons are pivotal to the long-recognized "seasonal switch in the ability of E2 to exert negative feedback", which drives seasonal breeding.