Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.329
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(33): e2400420121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39106304

RESUMEN

Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here, we report on a potent brain-permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a class of therapeutics for AD. We employed anatomical, in vitro and in vivo electrophysiological, and behavioral methods to examine the effects of our lead therapeutic candidate small molecule. As a novel in central nervous system pharmacotherapy, our lead molecule acts as a potent, efficacious, and selective negative allosteric modulator of the γ-aminobutyric acid type A receptors most likely assembled from α1ß2δ subunits. These receptors, identified through anatomical and pharmacological means, underlie the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. When orally administered twice daily for 2 wk, DDL-920 restored the cognitive/memory impairments of 3- to 4-mo-old AD model mice as measured by their performance in the Barnes maze. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Modelos Animales de Enfermedad , Ritmo Gamma , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Ratones , Cognición/efectos de los fármacos , Ritmo Gamma/efectos de los fármacos , Memoria/efectos de los fármacos , Receptores de GABA-A/metabolismo , Ratones Transgénicos , Humanos , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Alanina/análogos & derivados , Azepinas
2.
Biol Psychiatry Glob Open Sci ; 4(5): 100338, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39099729

RESUMEN

Background: Psychiatric disorders often emerge during late adolescence/early adulthood, a period with increased susceptibility to socioenvironmental factors that coincides with incomplete parvalbumin interneuron (PVI) development. Stress during this period causes functional loss of PVIs in the ventral hippocampus (vHip), which has been associated with dopamine system overdrive. This vulnerability persists until the appearance of perineuronal nets (PNNs) around PVIs. We assessed the long-lasting effects of adolescent or adult stress on behavior, ventral tegmental area dopamine neuron activity, and the number of PVIs and their associated PNNs in the vHip. Additionally, we tested whether PNN removal in the vHip of adult rats, proposed to reset PVIs to a juvenile-like state, would recreate an adolescent-like phenotype of stress susceptibility. Methods: Male rats underwent a 10-day stress protocol during adolescence or adulthood. Three to 4 weeks poststress, we evaluated behaviors related to anxiety, sociability, and cognition, ventral tegmental area dopamine neuron activity, and the number of PV+ and PNN+ cells in the vHip. Furthermore, adult animals received intra-vHip infusion of ChABC (chondroitinase ABC) to degrade PNNs before undergoing stress. Results: Unlike adult stress, adolescent stress induced anxiety responses, reduced sociability, cognitive deficits, ventral tegmental area dopamine system overdrive, and decreased PV+ and PNN+ cells in the vHip. However, intra-vHip ChABC infusion caused the adult stress to produce changes similar to the ones observed after adolescent stress. Conclusions: Our findings underscore adolescence as a period of heightened vulnerability to the long-lasting impact of stress and highlight the protective role of PNNs against stress-induced damage in PVIs.


In this work, we aimed to go deeper into understanding perineuronal nets (PNNs), a specialized extracellular matrix that evolves and protects inhibitory neurons in the brain, specifically parvalbumin-positive interneurons (PVIs). PVIs are essential in regulating brain activity. PNNs only reach maturity in adulthood, which leaves these interneurons unprotected during early life. To investigate this vulnerability, we conducted experiments in which we exposed adolescent and adult animals to a stress protocol. We observed that adolescent animals exhibited a higher susceptibility to developing changes associated with psychiatric disorders later in life. This susceptibility may stem from the absence of PNN protection around their PVIs. To explore this possibility further, we administered an enzyme into a specific brain region, the ventral hippocampus, of adult animals to selectively remove PNNs and induce an adolescent-like state. When subjected to stress, these animals displayed abnormalities similar to those observed in animals stressed during adolescence. Our findings have significant implications, suggesting that the presence of PNN protection around PVIs may be critical for mitigating stress-related psychiatric disorders.

3.
Neuron ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955183

RESUMEN

Brain oscillations are crucial for perception, memory, and behavior. Parvalbumin-expressing (PV) interneurons are critical for these oscillations, but their population dynamics remain unclear. Using voltage imaging, we simultaneously recorded membrane potentials in up to 26 PV interneurons in vivo during hippocampal ripple oscillations in mice. We found that PV cells generate ripple-frequency rhythms by forming highly dynamic cell assemblies. These assemblies exhibit rapid and significant changes from cycle to cycle, varying greatly in both size and membership. Importantly, this variability is not just random spiking failures of individual neurons. Rather, the activities of other PV cells contain significant information about whether a PV cell spikes or not in a given cycle. This coordination persists without network oscillations, and it exists in subthreshold potentials even when the cells are not spiking. Dynamic assemblies of interneurons may provide a new mechanism to modulate postsynaptic dynamics and impact cognitive functions flexibly and rapidly.

4.
J Comp Neurol ; 532(7): e25651, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961597

RESUMEN

The superficial layers of the mammalian superior colliculus (SC) contain neurons that are generally responsive to visual stimuli but can differ considerably in morphology and response properties. To elucidate the structure and function of these neurons, we combined extracellular recording and juxtacellular labeling, detailed anatomical reconstruction, and ultrastructural analysis of the synaptic contacts of labeled neurons, using transmission electron microscopy. Our labeled neurons project to different brainstem nuclei. Of particular importance are neurons that fit the morphological criteria of the wide field (WF) neurons and whose dendrites are horizontally oriented. They display a rather characteristic axonal projection pattern to the nucleus of optic tract (NOT); thus, we call them superior collicular WF projecting to the NOT (SCWFNOT) neurons. We corroborated the morphological characterization of this neuronal type as a distinct neuronal class with the help of unsupervised hierarchical cluster analysis. Our ultrastructural data demonstrate that SCWFNOT neurons establish excitatory connections with their targets in the NOT. Although, in rodents, the literature about the WF neurons has focused on their extensive projection to the lateral posterior nucleus of the thalamus, as a conduit for information to reach the visual association areas of the cortex, our data suggest that this subclass of WF neurons may participate in the optokinetic nystagmus.


Asunto(s)
Neuronas , Colículos Superiores , Vías Visuales , Animales , Colículos Superiores/citología , Colículos Superiores/fisiología , Colículos Superiores/ultraestructura , Neuronas/ultraestructura , Neuronas/fisiología , Ratas , Vías Visuales/ultraestructura , Vías Visuales/fisiología , Vías Visuales/citología , Masculino , Tracto Óptico/fisiología , Ratas Wistar , Microscopía Electrónica de Transmisión
5.
Neurobiol Dis ; 199: 106596, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986718

RESUMEN

Mesial temporal lobe epilepsy (MTLE) is characterized by recurring focal seizures that arise from limbic areas and are often refractory to pharmacological interventions. We have reported that optogenetic stimulation of PV-positive cells in the medial septum at 0.5 Hz exerts seizure-suppressive effects. Therefore, we compared here these results with those obtained by optogenetic stimulation of medial septum PV-positive neurons at 8 Hz in male PV-ChR2 mice (P60-P100) undergoing an initial, pilocarpine-induced status epilepticus (SE). Optogenetic stimulation (5 min ON, 10 min OFF) was performed from day 8 to day 12 after SE at a frequency of 8 Hz (n = 6 animals) or 0.5 Hz (n = 8 animals). Surprisingly, in both groups, no effects were observed on the occurrence of interictal spikes and interictal high frequency oscillations (HFOs). However, 0.5 Hz stimulation induced a significant decrease of seizure occurrence (p < 0.05). Such anti-ictogenic effect was not observed in the 8 Hz protocol that instead triggered seizures (p < 0.05); these seizures were significantly longer under optogenetic stimulation compared to when optogenetic stimulation was not implemented (p < 0.05). Analysis of ictal HFOs revealed that in the 0.5 Hz group, but not in the 8 Hz group, seizures occurring under optogenetic stimulation were associated with significantly lower rates of fast ripples compared to when optogenetic stimulation was not performed (p < 0.05). Our results indicate that activation of GABAergic PV-positive neurons in the medial septum exerts seizure-suppressing effects that are frequency-dependent and associated with low rates of fast ripples. Optogenetic activation of medial septum PV-positive neurons at 0.5 Hz is efficient in blocking seizures in the pilocarpine model of MTLE, an effect that did not occur with 8 Hz stimulation.


Asunto(s)
Epilepsia del Lóbulo Temporal , Optogenética , Convulsiones , Animales , Optogenética/métodos , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/terapia , Masculino , Convulsiones/fisiopatología , Ratones , Pilocarpina/toxicidad , Ratones Transgénicos , Modelos Animales de Enfermedad , Tabique del Cerebro , Núcleos Septales/fisiopatología , Ratones Endogámicos C57BL
6.
Front Cell Neurosci ; 18: 1415015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045533

RESUMEN

Introduction: Dysfunction of the cortico-basal circuitry - including its primary input nucleus, the striatum - contributes to neuropsychiatric disorders, such as autism and Tourette Syndrome (TS). These conditions show marked sex differences, occurring more often in males than in females. Regulatory interneurons, such as cholinergic interneurons (CINs) and parvalbumin-expressing GABAergic fast spiking interneurons (FSIs), are implicated in human neuropsychiatric disorders such as TS, and ablation of these interneurons produces relevant behavioral pathology in male mice, but not in females. Here we investigate sex differences in the density and distribution of striatal interneurons. Methods: We use stereological quantification of CINs, FSIs, and somatostatin-expressing (SOM) GABAergic interneurons in the dorsal striatum (caudate-putamen) and the ventral striatum (nucleus accumbens) in male and female mice. Results: Males have a higher density of CINs than females, especially in the dorsal striatum; females have equal distribution between dorsal and ventral striatum. FSIs showed similar distributions, with a greater dorsal-ventral density gradient in males than in females. SOM interneurons were denser in the ventral than in the dorsal striatum, with no sex differences. Discussion: These sex differences in the density and distribution of FSIs and CINs may contribute to sex differences in basal ganglia function, particularly in the context of psychopathology.

7.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063096

RESUMEN

Acomys cahirinus is a unique Rodentia species with several distinctive physiological traits, such as precocial development and remarkable regenerative abilities. These characteristics render A. cahirinus increasingly valuable for regenerative and developmental physiology studies. Despite this, the structure and postnatal development of the central nervous system in A. cahirinus have been inadequately explored, with only sporadic data available. This study is the first in a series of papers addressing these gaps. Our first objective was to characterize the structure of the main visual thalamic region, the lateral geniculate complex, using several neuronal markers (including Ca2+-binding proteins, glutamic acid decarboxylase enzyme, and non-phosphorylated domains of heavy-chain neurofilaments) to label populations of principal neurons and interneurons in adult and newborn A. cahirinus. As typically found in other rodents, we identified three subdivisions in the geniculate complex: the dorsal and ventral lateral geniculate nuclei (LGNd and LGNv) and the intergeniculate leaflet (IGL). Additionally, we characterized internal diversity in the LGN nuclei. The "shell" and "core" regions of the LGNd were identified using calretinin in adults and newborns. In adults, the inner and outer parts of the LGNv were identified using calbindin, calretinin, parvalbumin, GAD67, and SMI-32, whereas in newborns, calretinin and SMI-32 were employed for this purpose. Our findings revealed more pronounced developmental changes in LGNd compared to LGNv and IGL, suggesting that LGNd is less mature at birth and more influenced by visual experience.


Asunto(s)
Animales Recién Nacidos , Cuerpos Geniculados , Animales , Cuerpos Geniculados/metabolismo , Neuronas/metabolismo , Masculino
8.
J Comp Neurol ; 532(7): e25659, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39039687

RESUMEN

The telencephalon of reptiles has been suggested to be the key to understanding the evolution of the forebrain. Nevertheless, a meaningful framework to organize the telencephalon in any reptile has, with rare exception, yet to be presented. To address this gap in knowledge, the telencephalon was investigated in two species of crocodiles. A variety of morphological stains were used to examine tissue in transverse, horizontal, and sagittal planes of sections. Besides providing a description of individual nuclei, brain parts were organized based on two features. One was related to two fixed, internal structures: the lateral ventricle and the dorsal medullary lamina. The other was the alignment of neurons into either layers, cortex, or not, nucleus. Viewed from this perspective, all structures, with limited exceptions, could be accurately placed within the telencephalon regardless of the plane of section. Furthermore, this framework can be applied to other reptiles. A further extension of this scheme suggests that all structures in the telencephalon could be grouped into one of two categories: pallial or basal.


Asunto(s)
Caimanes y Cocodrilos , Telencéfalo , Animales , Telencéfalo/anatomía & histología , Caimanes y Cocodrilos/anatomía & histología , Vías Nerviosas/anatomía & histología , Reptiles/anatomía & histología , Neuronas/citología
9.
Acta Physiol (Oxf) ; : e14208, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077881

RESUMEN

AIM: Parvalbumin (PV) is a primary calcium buffer in mouse fast skeletal muscle fibers. Previous work showed that PV ablation has a limited impact on cytosolic Ca2+ ([Ca2+]cyto) transients and contractile response, while it enhances mitochondrial density and mitochondrial matrix-free calcium concentration ([Ca2+]mito). Here, we aimed to quantitatively test the hypothesis that mitochondria act to compensate for PV deficiency. METHODS: We determined the free Ca2+ redistribution during a 2 s 60 Hz tetanic stimulation in the sarcoplasmic reticulum, cytosol, and mitochondria. Via a reaction-diffusion Ca2+ model, we quantitatively evaluated mitochondrial uptake and storage capacity requirements to compensate for PV lack and analyzed possible extracellular export. RESULTS: [Ca2+]mito during tetanic stimulation is greater in knock-out (KO) (1362 ± 392 nM) than in wild-type (WT) (855 ± 392 nM), p < 0.05. Under the assumption of a non-linear intramitochondrial buffering, the model predicts an accumulation of 725 µmoles/Lfiber (buffering ratio 1:11 000) in KO, much higher than in WT (137 µmoles/Lfiber, ratio 1:4500). The required transport rate via mitochondrial calcium uniporter (MCU) reaches 3 mM/s, compatible with available literature. TEM images of calcium entry units and Mn2+ quenching showed a greater capacity of store-operated calcium entry in KO compared to WT. However, levels of [Ca2+]cyto during tetanic stimulation were not modulated to variations of extracellular calcium. CONCLUSIONS: The model-based analysis of experimentally determined calcium distribution during tetanic stimulation showed that mitochondria can act as a buffer to compensate for the lack of PV. This result contributes to a better understanding of mitochondria's role in modulating [Ca2+]cyto in skeletal muscle fibers.

10.
Front Cell Neurosci ; 18: 1421617, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994327

RESUMEN

The basolateral amygdala plays pivotal roles in the regulation of fear and anxiety and these processes are profoundly modulated by different neuromodulatory systems that are recruited during emotional arousal. Recent studies suggest activities of BLA interneurons and inhibitory synaptic transmission in BLA principal cells are regulated by neuromodulators to influence the output and oscillatory network states of the BLA, and ultimately the behavioral expression of fear and anxiety. In this review, we first summarize a cellular mechanism of stress-induced anxiogenesis mediated by the interaction of glucocorticoid and endocannabinoid signaling at inhibitory synapses in the BLA. Then we discuss cell type-specific activity patterns induced by neuromodulators converging on the Gq signaling pathway in BLA perisomatic parvalbumin-expressing (PV) and cholecystokinin-expressing (CCK) basket cells and their effects on BLA network oscillations and fear learning.

11.
Schizophr Res ; 271: 100-109, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39018984

RESUMEN

BACKGROUND: The onset of schizophrenia is concurrent with multiple key processes of brain development, such as the maturation of inhibitory networks. Some of these processes are proposed to depend on the development of perineuronal nets (PNNs), a specialized extracellular matrix structure that surrounds preferentially parvalbumin-containing GABAergic interneurons (PVIs). PNNs are fundamental to the postnatal experience-dependent maturation of inhibitory brain circuits. PNN abnormalities have been proposed as a core pathophysiological finding in SCZ, being linked to widespread consequences on circuit disruptions underlying SCZ symptoms. OBJECTIVE: Here, we systematically evaluate PNN density in postmortem brain studies of subjects with SCZ. METHODS: A systematic search in 3 online databases (PubMed, Embase, and Scopus) and qualitative review analysis of case-control studies reporting on PNN density in the postmortem brain of subjects with SCZ were performed. RESULTS: Results consisted of 7 studies that were included in the final analysis. The specific brain regions investigated in the studies varied, with most attention given to the dorsolateral prefrontal cortex (DLPFC; 3 studies) and amygdala (2 studies). Findings were mostly positive for reduced PNN density in SCZ, with 6 of the 7 studies reporting significant reductions and one reporting a tendency towards reduced PNN density. Overall, tissue processing methodologies were heterogeneous. CONCLUSIONS: Despite few studies, PNN density was consistently reduced in SCZ across different brain regions. These findings support evidence that implicates deficits in PNN density in the pathophysiology of SCZ. However, more studies, preferably using similar methodological approaches as well as replication of findings, are needed.

12.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979173

RESUMEN

Sensitization of spinal nociceptive circuits plays a crucial role in neuropathic pain. This sensitization depends on new gene expression that is primarily regulated via transcriptional and translational control mechanisms. The relative roles of these mechanisms in regulating gene expression in the clinically relevant chronic phase of neuropathic pain are not well understood. Here, we show that changes in gene expression in the spinal cord during the chronic phase of neuropathic pain are substantially regulated at the translational level. Downregulating spinal translation at the chronic phase alleviated pain hypersensitivity. Cell-type-specific profiling revealed that spinal inhibitory neurons exhibited greater changes in translation after peripheral nerve injury compared to excitatory neurons. Notably, increasing translation selectively in all inhibitory neurons or parvalbumin-positive (PV+) interneurons, but not excitatory neurons, promoted mechanical pain hypersensitivity. Furthermore, increasing translation in PV+ neurons decreased their intrinsic excitability and spiking activity, whereas reducing translation in spinal PV+ neurons prevented the nerve injury-induced decrease in excitability. Thus, translational control mechanisms in the spinal cord, particularly in inhibitory neurons, play a role in mediating neuropathic pain hypersensitivity.

13.
eNeuro ; 11(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38960707

RESUMEN

Parvalbumin-expressing (PV) neurons, classified by their expression of the calcium-binding protein parvalbumin, play crucial roles in the function and plasticity of the lateral habenular nucleus (LHb). This study aimed to deepen our understanding of the LHb by collecting information about the heterogeneity of LHb PV neurons in mice. To achieve this, we investigated the proportions of the transmitter machinery in LHb PV neurons, including GABAergic, glutamatergic, serotonergic, cholinergic, and dopaminergic neurotransmitter markers, using transcriptome analysis, mRNA in situ hybridization chain reaction, and immunohistochemistry. LHb PV neurons comprise three subsets: glutamatergic, GABAergic, and double-positive for glutamatergic and GABAergic machinery. By comparing the percentages of the subsets, we found that the LHb was topographically organized anteroposteriorly; the GABAergic and glutamatergic PV neurons were preferentially distributed in the anterior and posterior LHb, respectively, uncovering the anteroposterior topography of the LHb. In addition, we confirmed the mediolateral topography of lateral GABAergic PV neurons. These findings suggest that PV neurons play distinct roles in different parts of the LHb along the anteroposterior and mediolateral axes, facilitating the topographic function of the LHb. It would be interesting to determine whether their topography is differentially involved in various cognitive and motivational processes associated with the LHb, particularly the involvement of posterior glutamatergic PV neurons.


Asunto(s)
Neuronas GABAérgicas , Ácido Glutámico , Habénula , Parvalbúminas , Animales , Habénula/metabolismo , Parvalbúminas/metabolismo , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Ratones Endogámicos C57BL
14.
Alcohol Clin Exp Res (Hoboken) ; 48(8): 1507-1518, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39073296

RESUMEN

BACKGROUND: Alcohol is commonly consumed by adolescents in a binge-like pattern, which can lead to long-lasting cognitive deficits, including reduced behavioral flexibility. We and others have determined that adolescent intermittent ethanol (AIE) exposure leads to increased number of perineuronal net (PNN) numbers in brain regions that are important for behavioral flexibility. However, whether altered neurochemistry stemming from AIE exposure plays a significant role in reduced behavioral flexibility is unknown. METHODS: We measured the number and size of parvalbumin expressing (PV+) interneurons and associated PNNs within the orbitofrontal cortex (OFC), prelimbic cortex (PrL), infralimbic cortex (IL), and anterior insular cortex (AIC) of female and male rats following AIE or control exposure and subsequent training on an attentional set-shift task (ASST). We then ran analyses to determine whether AIE-induced changes in PV and PNN measures statistically mediated the AIE-induced behavioral deficit in reversal learning. RESULTS: We demonstrate that AIE exposure impaired behavioral flexibility on reversal two of the ASST (i.e., recalling the initial learned associations), and led to smaller PV+ cells and increased PNN numbers in the AIC. Interestingly, PNN size and number were not altered in the PrL or IL following AIE exposure, in contrast to prior reports. Mediation analyses suggest that AIE alters behavioral flexibility, at least in part through changes in PV and PNN fluorescent measures in the AIC. CONCLUSIONS: This study reveals a significant link between AIE exposure, neural alterations, and diminished behavioral flexibility in rats, and highlights a potential novel mechanism comprising changes in PV and PNN measures within the AIC. Future studies should explore the impact of PNN degradation within the AIC on behavioral flexibility.

15.
Exp Brain Res ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085433

RESUMEN

Exposure to valproic acid (VPA), a common anti-seizure medication, in utero is a risk factor for autism spectrum disorder (ASD). People with ASD often display changes in the cerebellum, including volume changes, altered circuitry, and changes in Purkinje cell populations. ASD is also characterized by changes in the medial prefrontal cortex (mPFC), where excitatory/inhibitory balance is often altered. This study exposed rats to a high dose of VPA during gestation and assessed cognition and anxiety-like behaviors during young adulthood using a set-shifting task and the elevated plus maze. Inhibitory parvalbumin-expressing (PV +) neuron counts were assessed in the mPFC and cerebellar lobules VI and VII (Purkinje cell layers), which are known to modulate cognition. VPA males had increased PV + counts in crus I and II of lobule VII. VPA males also had decreased parvalbumin-expressing neuron counts in the mPFC. It was also found that VPA-exposed rats, regardless of sex, had increased parvalbumin-expressing Purkinje cell counts in lobule VI. In males, this was associated with impaired intra-dimensional shifting on a set-shifting task. Purkinje cell over proliferation may be contributing to the previously observed increase in volume of Lobule VI. These findings suggest that altered inhibitory signaling in cerebellar-frontal circuits may contribute to the cognitive deficits that occur within ASD.

16.
Front Neurosci ; 18: 1403402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035778

RESUMEN

The prefrontal cortex (PFC) undergoes a protracted maturation process. This is true both for local interneurons and for innervation from midbrain dopaminergic (mDA) neurons. In the striatum, dopaminergic (DA) neurotransmission is required for the maturation of medium spiny neurons during a critical developmental period. To investigate whether DA innervation influences the maturation of interneurons in the PFC, we used a conditional knockout (cKO) mouse model in which innervation from mDA neurons to the mPFC (mesoprefrontal innnervation) is not established during development. In this mouse model, the maturation of parvalbumin (PV) and calbindin (CB) interneuron populations in the PFC is dysregulated during a critical period in adolescence with changes persisting into adulthood. PV interneurons are particularly vulnerable to lack of mesoprefrontal input, showing an inability to maintain adequate PV expression with a concomitant decrease in Gad1 expression levels. Interestingly, lack of mesoprefrontal innervation does not appear to induce compensatory changes such as upregulation of DA receptor expression in PFC neurons or increased innervation density of other neuromodulatory (serotonergic and noradrenergic) innervation. In conclusion, our study shows that adolescence is a sensitive period during which mesoprefrontal input plays a critical role in promoting the maturation of specific interneuron subgroups. The results of this study will help to understand how a dysregulated mesoprefrontal DA system contributes to the pathophysiology of neurodevelopmental disorders.

17.
Psychiatry Res ; 339: 116084, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39033685

RESUMEN

Visuospatial working memory (vsWM), which is impaired in schizophrenia (SZ), is mediated by multiple cortical regions including the primary (V1) and association (V2) visual, posterior parietal (PPC) and dorsolateral prefrontal (DLPFC) cortices. In these regions, parvalbumin (PV) or somatostatin (SST) GABA neurons are altered in SZ as reflected in lower levels of activity-regulated transcripts. As PV and SST neurons receive excitatory inputs from neighboring pyramidal neurons, we hypothesized that levels of activity-regulated transcripts are also lower in pyramidal neurons in these regions. Thus, we quantified levels of four activity-regulated, pyramidal neuron-selective transcripts, namely adenylate cyclase-activating polypeptide-1 (ADCYAP1), brain-derived neurotrophic factor (BDNF), neuronal pentraxin-2 (NPTX2) and neuritin-1 (NRN1) mRNAs, in V1, V2, PPC and DLPFC from unaffected comparison and SZ individuals. In SZ, BDNF and NPTX2 mRNA levels were lower across all four regions, whereas ADCYAP1 and NRN1 mRNA levels were lower in V1 and V2. The regional pattern of deficits in BDNF and NPTX2 mRNAs was similar to that in transcripts in PV and SST neurons in SZ. These findings suggest that lower activity of pyramidal neurons expressing BDNF and/or NPTX2 mRNAs might contribute to alterations in PV and SST neurons across the vsWM network in SZ.

18.
Brain Res ; 1841: 149122, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009061

RESUMEN

Women have a two-fold increased risk of developing Alzheimer's disease (AD) than men, yet the underlying mechanisms of this sex-specific vulnerability remain unknown. Here, we aimed at determining in the 5XFAD mouse model whether deficits in prefrontal-dependent cognitive functions, which are impacted in the preclinical stages of AD, appear earlier in females, and whether these cognitive deficits are associated with alterations in the activity of prefrontal parvalbumin (PV)-neurons that regulate prefrontal circuits activity. We observed that 3.5-month-old 5XFAD females, but not males, display impairments in spatial short-term recognition memory, a function that relies on the integrity of the prefrontal cortex. Hippocampal-dependent cognitive functions were intact in both sexes. We then observed that 5XFAD females have more prefrontal PV neurons expressing the marker of chronic activity FosB; this was inversely correlated with prefrontal-dependent cognitive performances. Our findings show for the first time sex-specific, early deregulation of prefrontal PV neurons activity, which is associated with early appearance of prefrontal-dependent cognitive functions in 5XFAD females providing a potential novel mechanism to the increased risk to AD in females.

19.
Br J Pharmacol ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886118

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is associated with gradual memory loss and anxiety which affects ~75% of AD patients. This study investigated whether AD-associated anxiety correlated with modulation of extrasynaptic δ-subunit-containing GABAA receptors (δ-GABAARs) in experimental mouse models of AD. EXPERIMENTAL APPROACH: We combined behavioural experimental paradigms to measure cognition performance, and anxiety with neuroanatomy and molecular biology, using familial knock-in (KI) mouse models of AD that harbour ß-amyloid (Aß) precursor protein App (AppNL-F) with or without humanized microtubule-associated protein tau (MAPT), age-matched to wild-type control mice at three different age windows. RESULTS: AppNL-F KI and AppNL-F/MAPT AD models showed a similar magnitude of cognitive decline and elevated magnitude of anxiety correlated with neuroinflammatory hallmarks, including triggering receptor expressed on myeloid cells 2 (TREM2), reactive astrocytes and activated microglia consistent with accumulation of Aß, tau and down-regulation of Wnt/ß-catenin signalling compared to aged-matched WT controls. In both the CA1 region of the hippocampus and dentate gyrus, there was an age-dependent decline in the expression of δ-GABAARs selectively expressed in parvalbumin (PV)-expressing interneurons, encapsulated by perineuronal nets (PNNs) in the AD mouse models compared to WT mice. In vivo positive allosteric modulation of the δ-GABAARs, using a δ-selective-compound DS2, decreased the level of anxiety in the AD mouse models, which was correlated with reduced hallmarks of neuroinflammation, and 'normalisation' of the expression of δ-GABAARs. CONCLUSIONS: Our data show that the δ-GABAARs could potentially be targeted for alleviating symptoms of anxiety, which would greatly improve the quality of life of AD individuals.

20.
Front Psychiatry ; 15: 1403476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903649

RESUMEN

Background: Social isolation during critical periods of development is associated with alterations in behavior and neuronal circuitry. This study aimed to investigate the immediate and developmental effects of social isolation on firing properties, neuronal activity-regulated pentraxin (NARP) and parvalbumin (PV) expression in the prefrontal cortex (PFC), social behavior in juvenile socially isolated mice, and the biological relevance of NARP expression in autism spectrum disorder (ASD). Methods: Mice were subjected to social isolation during postnatal days 21-35 (P21-P35) and were compared with group-housed control mice. Firing properties in the PFC pyramidal neurons were altered in P35 socially isolated mice, which might be associated with alterations in NARP and PV expression. Results: In adulthood, mice that underwent juvenile social isolation exhibited difficulty distinguishing between novel and familiar mice during a social memory task, while maintaining similar levels of social interaction as the control mice. Furthermore, a marked decrease in NARP expression in lymphoblastoid cell lines derived from adolescent humans with ASD as compared to typically developing (TD) humans was found. Conclusion: Our study highlights the role of electrophysiological properties, as well as NARP and PV expression in the PFC in mediating the developmental consequences of social isolation on behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...