Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 678(Pt A): 427-435, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39213995

RESUMEN

Metal-free carbon-based nanozymes often exhibit superior chemical stability and detection reliability compared to their metal-doped counterparts. However, their catalytic activity remains an area ripe for further enhancement. Herein, we successfully prepared a chlorine (Cl)-modified, metal-free, and porous N-doped carbon nanozyme (Clx-pNC) via NaCl molten etching. The incorporation of Cl induced an increase in the intrinsic defects of sp3-hybridized carbon within Clx-pNC and optimized the electronic structure of the N-connected carbon atoms. Remarkably, the peroxidase (POD)-like activity of Clx-pNC was enhanced twelvefold compared to porous N-doped carbon (pNC). Theoretical simulations highlighted that the introduction of Cl not only promoted H2O2 adsorption but also lowered the energy barrier for its decomposition, facilitating the generation of active intermediates and thus boosting POD-like activity. Based on the POD mimic activity of Clx-pNC, we developed a colorimetric platform for OPs detection utilizing a cascade amplification strategy. This work provides insights into the rational design of carbon-based nanozymes and the development of nanozyme-based colorimetric biosensors.

2.
Small ; : e2403354, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101616

RESUMEN

Defect engineering is an effective strategy to enhance the enzyme-like activity of nanozymes. However, previous efforts have primarily focused on introducing defects via de novo synthesis and post-synthetic treatment, overlooking the dynamic evolution of defects during the catalytic process involving highly reactive oxygen species. Herein, a defect-engineered metal-organic framework (MOF) nanozyme with mixed linkers is reported. Over twofold peroxidase (POD)-like activity enhancement compared with unmodified nanozyme highlights the critical role of in situ defect formation in enhancing the catalytic performance of nanozyme. Experimental results reveal that highly active hydroxyl radical (•OH) generated in the catalytic process etches the 2,5-dihydroxyterephthalic acid ligands, contributing to electronic structure modulation of metal sites and enlarged pore sizes in the framework. The self-enhanced POD-like activity induced by in situ defect engineering promotes the generation of •OH, holding promise in colorimetric sensing for detecting dichlorvos. Utilizing smartphone photography for RGB value extraction, the resultant sensing platform achieves the detection for dichlorvos ranging from 5 to 300 ng mL-1 with a low detection limit of 2.06 ng mL-1. This pioneering work in creating in situ defects in MOFs to improve catalytic activity offers a novel perspective on traditional defect engineering.

3.
Mikrochim Acta ; 191(7): 416, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913162

RESUMEN

To realize the reutilization of waste Myrica rubra in the analytical field, we synthesized Myrica rubra-based N-doped carbon dots (MN-CDs) and further anchored them onto the surface of Fe3S4 to fabricate Fe3S4@MN-CD nanocomposites. The as-fabricated nanocomposites possessed higher peroxidase-mimetic activity than its two precursors, resulting from the synergistic effect between them, and could catalyze colorless 3,3',5,5'-tetramethylbenzidine (TMB) into deep blue oxTMB with a strong 652-nm absorption. Under optimized conditions (initial solution pH, 3.5; incubation temperature, 35 ℃; Fe3S4@MN-CD concentration, 50 µg mL-1, and 652-nm absorption), Fe3S4@MN-CDs were employed for colorimetric assay of p-aminophenol (p-AP) with wide linear range (LR, 2.9-100 µM), low detection limit (LOD, 0.87 µM), and satisfactory recoveries (86.3-105%) in environmental waters. Encouragingly, this colorimetric assay provided the relative accuracy of 97.0-99.4% as compared with  conventional HPLC-UV detection. A portable smartphone-based colorimetric application was developed by combining the Fe3S4@MN-CD-based visually chromogenic reaction with a "Thing Identify" APP software. Besides, we engineered an image-capturing device feasible for field use, in which the internal-compact sealing prevented external light source from entering photography chamber, thereby reducing light interference, and also the bottom light source enhanced the intensity of blue imaging. This colorimetric platform exhibited satisfactory LR (1-500 µM), low LOD (0.3 µM), and fortification recoveries (86.6-99.6%). In the chromogenic reaction catalyzed by Fe3S4@MN-CDs, ·O2- played a key role in concomitant with the participation of •OH and h+. Both the colorimetric assay and smartphone-based intelligent sensing show great promising in on-site monitoring of p-AP under field conditions.


Asunto(s)
Aminofenoles , Carbono , Colorimetría , Límite de Detección , Puntos Cuánticos , Teléfono Inteligente , Contaminantes Químicos del Agua , Colorimetría/métodos , Aminofenoles/química , Aminofenoles/análisis , Carbono/química , Contaminantes Químicos del Agua/análisis , Puntos Cuánticos/química , Materiales Biomiméticos/química , Bencidinas/química , Peroxidasa/química
4.
ACS Nano ; 18(19): 12367-12376, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38695521

RESUMEN

Bimetallic nanoparticles (NPs) with peroxidase-like (POD-like) activity play a crucial role in biosensing, disease treatment, environmental management, and other fields. However, their development is impeded by a vast range of tunable properties in components and structures, making the establishment of structure-effect relationships and the discovery of active materials challenging. Addressing this, we established robust scaling relationships by meticulously analyzing the catalytic reaction networks of pure metal NPs, which laid the volcano-shaped correlation between the activity and O* adsorption energy. Utilizing these relationships, we introduced an innovative and versatile descriptor of the NPs, which was then integrated into a machine learning-accelerated high-throughput computational workflow, significantly boosting the predictive accuracy for the POD-like activity of bimetallic NPs. Our methodological approach enabled the successful prediction of activities for 1260 bimetallic NPs, leading to the identification of several highly effective catalysts. Furthermore, we distilled several strategies for designing efficient bimetallic NPs based on our screening results.


Asunto(s)
Aprendizaje Automático , Nanopartículas del Metal , Nanopartículas del Metal/química , Catálisis , Peroxidasa/química , Peroxidasa/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos
5.
Small ; 20(34): e2401032, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38618652

RESUMEN

CeO2, particularly in the shape of rod, has recently gained considerable attention for its ability to mimic peroxidase (POD) and haloperoxidase (HPO). However, this multi-enzyme activities unavoidably compete for H2O2 affecting its performance in relevant applications. The lack of consensus on facet distribution in rod-shaped CeO2 further complicates the establishment of structure-activity correlations, presenting challenges for progress in the field. In this study, the HPO-like activity of rod-shaped CeO2 is successfully enhanced while maintaining its POD-like activity through a facile post-calcination method. By studying the spatial distribution of these two activities and their exclusive H2O2 activation pathways on CeO2 surfaces, this study finds that the increased HPO-like activity originated from the newly exposed (111) surface at the tip of the shortened rods after calcination, while the unchanged POD-like activity is attributed to the retained (110) surface in their lateral area. These findings not only address facet distribution discrepancies commonly reported in the literature for rod-shaped CeO2 but also offer a simple approach to enhance its antibacterial performance. This work is expected to provide atomic insights into catalytic correlations and guide the design of nanozymes with improved activity and reaction specificity.


Asunto(s)
Cerio , Peróxido de Hidrógeno , Cerio/química , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/química , Peroxidasa/metabolismo , Peroxidasa/química
6.
ACS Appl Mater Interfaces ; 16(17): 21975-21986, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626357

RESUMEN

The development of high-performance biosensors is a key focus in the nanozyme field, but the current limitations in biocompatibility and recyclability hinder their broader applications. Herein, we address these challenges by constructing core-shell nanohybrids with biocompatible poly(ethylene glycol) (PEG) modification using a galvanic replacement reaction between orthovanadate ions and liquid metal (LM) (VOx@EGaIn-PEG). By leveraging the excellent charge transfer properties and the low band gap of the LM surface oxide, the VOx@EGaIn-PEG heterojunction can effectively convert hydrogen peroxide into hydroxyl radicals, demonstrating excellent peroxidase-like activity and stability (Km = 490 µM, vmax = 1.206 µM/s). The unique self-healing characteristics of LM further enable the recovery and regeneration of VOx@EGaIn-PEG nanozymes, thereby significantly reducing the cost of biological detection. Building upon this, we developed a nanozyme colorimetric sensor suitable for biological systems and integrated it with a smartphone to create an efficient quantitative detection platform. This platform allows for the convenient and sensitive detection of glucose in serum samples, exhibiting a good linear relationship in the range of 10-500 µM and a detection limit of 2.35 µM. The remarkable catalytic potential of LM, combined with its biocompatibility and regenerative properties, offers valuable insights for applications in catalysis and biomedical fields.


Asunto(s)
Técnicas Biosensibles , Polietilenglicoles , Polietilenglicoles/química , Técnicas Biosensibles/métodos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Peroxidasa/química , Peroxidasa/metabolismo , Catálisis , Humanos , Vanadatos/química , Glucemia/análisis , Materiales Biomiméticos/química , Límite de Detección , Compuestos de Vanadio/química
7.
J Hazard Mater ; 468: 133795, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382342

RESUMEN

Due to the potential environment and health risks of tert-butylhydroquinone (TBHQ), rapid, portable, selective and sensitive quantification of TBHQ in food and the environment are strictly essential. With this in mind, a selective, sensitive and rapid colorimetric TBHQ biosensor was developed using rationally designed copper-crosslinked carbon dot hydrogel nanozyme (BC-CDs@Cu). The BC-CDs@Cu had a high peroxidase-like activity toward the chromogenic reaction of hydrogen peroxide with dopamine via the generation of hydroxyl radicals and electron transfer process. The Michaelis-Menten constants of BC-CDs@Cu for dopamine and hydrogen peroxide were determined to be 0.86 and 0.91 mM. The added TBHQ markedly inhibited the BC-CDs@Cu-catalyzed dopamine oxidation by hydrogen peroxide, ascribing to the highly effective and rapid scavenging of hydroxyl radicals and the suppression of electron transfer. The inhibitory extent was applied for well quantifying TBHQ in the range of 0.5 - 20.0 µM with a detection limit of 70 nM. The proposed biosensor had a negligible response to various interfering substances. Moreover, a smartphone-assisted visual ratiometric biosensor was fabricated, and used to accomplish portable quantification of TBHQ in edible oils and water samples. This work reveals the enormous potential of hydrogel nanozyme, which will open a new situation for the detection of hazardous substances.


Asunto(s)
Técnicas Biosensibles , Cobre , Hidroquinonas , Cobre/farmacología , Carbono , Peróxido de Hidrógeno , Hidrogeles , Colorimetría , Dopamina , Teléfono Inteligente , Antioxidantes
8.
ACS Appl Mater Interfaces ; 16(9): 11809-11820, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38386848

RESUMEN

Building multifunctional platforms for integrating the detection and control of hazards has great significance in food safety and environment protection. Herein, bimetallic Fe-Co-based metal-organic frameworks (Fe-Co-MOFs) peroxidase mimics are prepared and applied to develop a bifunctional platform for the synergetic sensitive detection and controllable degradation of aflatoxin B1 (AFB1). On the one hand, Fe-Co-MOFs with excellent peroxidase-like activity are combined with target-induced catalyzed hairpin assembly (CHA) to construct a colorimetric aptasensor for the detection of AFB1. Specifically, the binding of aptamer with AFB1 releases the prelocked Trigger to initiate the CHA cycle between hairpin H2-modified Fe-Co-MOFs and hairpin H1-tethered magnetic nanoparticles to form complexes. After magnetic separation, the colorimetric signal of the supernatant in the presence of TMB and H2O2 is inversely proportional to the target contents. Under optimal conditions, this biosensor enables the analysis of AFB1 with a limit of detection of 6.44 pg/mL, and high selectivity and satisfactory recovery in real samples are obtained. On the other hand, Fe-Co-MOFs with remarkable Fenton-like catalytic degradation performance for organic contaminants are further used for the detoxification of AFB1 after colorimetric detection. The AFB1 is almost completely removed within 120 min. Overall, the introduction of CHA improves the sensing sensitivity; efficient postcolorimetric-detection degradation of AFB1 reduces the secondary contamination and risk to the experimental environment and operators. This strategy is expected to provide ideas for designing other multifunctional platforms to integrate the detection and degradation of various hazards.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Estructuras Metalorgánicas , Peroxidasa , Aflatoxina B1/análisis , Estructuras Metalorgánicas/química , Colorimetría , Peróxido de Hidrógeno , Colorantes , Aptámeros de Nucleótidos/química , Límite de Detección
9.
Biosens Bioelectron ; 237: 115511, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429147

RESUMEN

Scientific interest in the investigation and application of multifunctional nanomaterials in medical diagnostics has been increasing. The employment of magnetocatalytic immunoconjugates as both analyte-capturing agents and enzyme-like catalytic labels may enable rapid preconcentration and determination of relevant antigens. In this work, we synthesized and comprehensively characterized two types of noble metal-decorated magnetic nanocubes (MDMCs) which were subsequently applied in the one-step, sandwich nanozyme-linked immunosorbent assay (NLISA). Magnetic cores allow for rapid separation from complex samples of biological origin. The catalytically active shell composed of Au-decorated Pt or Ru can effectively mimic the activity of horseradish peroxididase, retaining at the same time the ability to form stable bioconstructs through self-assembly of thiolated ligands. As a result, hybrid multifunctional nanoparticles were synthesized and used to detect C-reactive protein (CRP) in serum samples. We have also paid considerable attention to the mechanistic studies of the formation of sandwich immunocomplexes with nanoparticle labels by means of immunoenzymatic methods and surface plasmon resonance. Analytical parameters of the Pt-MDMCs-labeled NLISA (detection limit LOD = 0.336 ng mL-1, recovery = 98.0%, linear response window covering two logarithmic units) turned out to be superior to the classical, one-step ELISA based on a horseradish peroxidase. In addition, our method offers further possibility of sensitivity adjustment by changing the parameters of magnetic preconcentration, together with good long-term stability of MDMCs conjugates and their good resistance to common interferences. We believe that the proposed simple synthetic protocol will guide a new approach to applying metal-decorated magnetic nanozymes as versatile and multifunctional labels for application in subsequent pre-analytical analyte concentration and immunoassays towards clinical applications.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Proteína C-Reactiva , Colorimetría , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Oro , Fenómenos Magnéticos
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 122970, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37331256

RESUMEN

A low-cost and reliable analytical method based on the combination of a newly designed Fe3O4@Au as peroxidase mimetics, supported on smartphone analysis software package was proposed for the determination of glucose content in food samples. The nanocomposite was prepared by self-assembling technique, and the characterization was carried out using transmission electron microscopy (TEM), Fourier transforms infrared, and X-ray diffractometer. Record the color change of the solution with a smartphone camera and optimize the operation parameters and reaction conditions. A smartphone with a free self-developed app was accustomed live the RGB (red-greenblue) values of color intensity within the Fe3O4@Au system and were processed with Image J software before computationally convert them glucose concentrations. At the optimization experiment, reaction temperature of 60 °C, reaction time of 50 min and the amount of addition of Fe3O4@Au 0.0125 g was the optimal combination of detecting glucose smartphone color detection system. Hereon, the accuracy of the proposed method was evaluated by comparison between smartphone colorimetry and UV-vis spectrophotometer, a linear calibration in the range of 0.25 âˆ¼ 15 mmol/L glucose was obtained with minimum detection limit of 1.83 and 2.25 µmol/L, respectively. The proposed method was applied effectively to the detection of glucose in actual samples. The results were in accordance with the conventional UV-vis spectrophotometer method.


Asunto(s)
Glucosa , Nanopartículas del Metal , Glucosa/análisis , Colorimetría/métodos , Oro , Teléfono Inteligente , Peroxidasas
11.
Small Methods ; 7(7): e2300011, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37147780

RESUMEN

Colorimetric biosensing has become a popular sensing method for the portable detection of a variety of biomarkers. Artificial biocatalysts can replace traditional natural enzymes in the fields of enzymatic colorimetric biodetection; however, the exploration of new biocatalysts with efficient, stable, and specific biosensing reactions has remained challenging so far. Here, to enhance the active sites and overcome the sluggish kinetics of metal sulfides, the creation of an amorphous RuS2 (a-RuS2 ) biocatalytic system is reported, which can dramatically boost the peroxidase-mimetic activity of RuS2 for the enzymatic detection of diverse biomolecules. Due to the existence of abundant accessible active sites and mildly surface oxidation, the a-RuS2 biocatalyst displays a twofold Vmax value and much higher reaction kinetics/turnover number (1.63 × 10-2 s-1 ) compared to that of the crystallized RuS2 . Noticeably, the a-RuS2 -based biosensor shows an extremely low detection limit of H2 O2 (3.25 × 10-6 m), l-cysteine (3.39 × 10-6 m), and glucose (9.84 × 10-6 m), respectively, thus showing superior detection sensitivity to many currently reported peroxidase-mimetic nanomaterials. This work offers a new path to create highly sensitive and specific colorimetric biosensors in detecting biomolecules and also provides valuable insights for engineering robust enzyme-like biocatalysts via amorphization-modulated design.


Asunto(s)
Colorimetría , Peroxidasas , Colorimetría/métodos , Cinética , Dominio Catalítico , Peroxidasas/química , Sulfuros
12.
Talanta ; 258: 124407, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871515

RESUMEN

With the increasing applications of traditional Chinese medicines worldwide, authenticity identification and quality control are significant for them to go global. Licorice is a kind of medicinal material with various functions and wide applications. In this work, colorimetric sensor arrays based on iron oxide nanozymes were constructed to discriminate active indicators in licorice. Fe2O3, Fe3O4, and His-Fe3O4 nanoparticles were synthesized by a hydrothermal method, possessing excellent peroxidase-like activity that can catalyze the oxidation of 3,3',5,5' -tetramethylbenzidine (TMB) in the presence of H2O2 to produce a blue product. When licorice active substances were introduced in the reaction system, they showed competitive effect on peroxidase-mimicking activity of nanozymes, resulting in inhibitory effect on the oxidation of TMB. Based on this principle, four licorice active substances including glycyrrhizic acid, liquiritin, licochalcone A, and isolicoflavonol with the concentration ranging from 1 µM to 200 µM were successfully discriminated by the proposed sensor arrays. This work supplies a low cost, rapid and accurate method for multiplex discrimination of active substances to guarantee the authenticity and quality of licorice, which is also expected to be applied to distinguish other substances.


Asunto(s)
Glycyrrhiza , Peróxido de Hidrógeno , Peroxidasas , Hierro , Colorimetría/métodos , Peroxidasa
13.
Biosensors (Basel) ; 14(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275302

RESUMEN

Immunoassays based on antibodies as recognizing elements and enzymes as signal-generating modules are extensively used now in clinical lab diagnostics, food, and environmental analyses. However, the application of natural enzymes and antibodies has some drawbacks, such as relatively high manufacturing costs, thermal instability, and lot-to-lot variations that lower the reproducibility of results. Oligonucleotide aptamers are able to specifically bind their targets with high affinity and selectivity, so they represent a prospective alternative to protein antibodies for analyte recognition. Their main advantages include thermal stability and long shelf life, cost-efficient chemical synthesis, and negligible batch-to-batch variations. At the same time, a wide variety of non-protein peroxidase mimics are now available that show strong potential to replace protein enzymes. Here, we review and analyze non-protein biosensors that represent a nexus of these two concepts: aptamer-based sensors (aptasensors) with optical detection (colorimetric, luminescent, or fluorescent) based on different peroxidase mimics, such as DNAzymes, nanoparticles, or metal-organic frameworks.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Peroxidasa , Estudios Prospectivos , Reproducibilidad de los Resultados , Peroxidasas , Oligonucleótidos , Técnicas Biosensibles/métodos , Anticuerpos
14.
Anal Chim Acta ; 1235: 340493, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368835

RESUMEN

This report describes, for the first time, the coupling of UV-visible spectroscopy with multivariate curve resolution-alternative least-squares (MCR-ALS) algorithm to study peroxidase-like catalytic reaction of polyethylene glycol-functionalized poly (N-phenyl glycine) (PNPG-PEG) as an efficient and intrinsic peroxidase mimic activity (PMA) class of conducting organic polymer for selective detection of dopamine (DA) in the PNPG-PEG + TMB + H2O2 reaction system. PNPG-PEG was produced by means of a chemical route using ammonium persulphate (APS) as an oxidant agent of N-phenyl glycine monomer. The chemical composition, morphology, and thermal behavior of PNPG-PEG were examined by various instrumental techniques. PNPG-PEG exhibited significant peroxidase-mimic activity to catalyze the oxidation 3,3',5,5'- tetramethylbenzidine (TMB) substrate to oxidized TMB (oxTMB). The qualitative and quantitative determination of the oxidized TMB can easily be detected by the naked-eye and the recorded UV-vis absorbance spectra at 652 nm, respectively. Owing to the superior peroxidase-mimic activity of PNPG-PEG, the colorimetric detection of dopamine was successfully achieved at pH 4.0. Under optimal conditions, acceptable linear dependency was recorded in the concentration range of 5.1-125.0 µM, with a limit of detection (LOD) and limit of quantification (LOQ) equal to 4.6 µM and 13.8 µM (S/N = 3), respectively. Furthermore, this colorimetric assay was successfully used for quantitative analysis of dopamine in fetal bovine serum (FBS) and horse serum (HS) samples with recoveries in the range of 97-105% and 100-122%, respectively. After resolving the bilinear data matrix using MCR-ALS, three chemical components were found for different concentrations and pure spectral profiles. Based on the resolved profiles, the presence of free, slightly penetrated, and majorly penetrated TMB molecules entering the polymeric structure can be easily detected using MCR-ALS as an available statical method without any complex separation instruments. This peroxidase mimetic nanozyme as a visual, simple, low-cost, sensitive, and reproducible colorimetric platform can provide great potential applications in the monitoring and diagnosis of dopamine-related diseases.


Asunto(s)
Colorimetría , Dopamina , Caballos , Animales , Colorimetría/métodos , Dopamina/análisis , Peróxido de Hidrógeno/análisis , Polietilenglicoles , Peroxidasa/química , Glicina , Peroxidasas/química
15.
Mikrochim Acta ; 189(9): 346, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36001171

RESUMEN

A new coordination polymer (Ce-Fe-GMP) with excellent catalytic activity was prepared by a facile route, which was further applied to the detection of F- with high sensitivity and selectivity. The simple doping of Fe3+ into the coordination network can easily modulate the mixing ratio of Ce3+ and Ce4+ in the presence of H2O2, which can extremely improve the catalytic ability of Ce-Fe-GMP. Based on the synergistic effect, the Ce-Fe-GMP with dual-active sites shows better peroxidase activity than that of Ce-GMP. In addition, we found that F- can inhibit the peroxidase activity of Ce-Fe-GMP because of the coordination structure fragmentation and the regulation of Ce3+/Ce4+ ratio. Therefore, different concentrations of F- can be detected by the colorimetric reaction based on this mechanism. The absorption at 652 nm displays a good linear relationship versus the concentration of F- over the range 2.0 to 100.0 µM. Furthermore, F- in real mineral-mixed samples can be measured with satisfactory results. The colorimetric strategy based on the peroxidase activity of Ce-Fe-GMP is simple and low-cost, which shows the potential applications in the field of on-site environment measurement.


Asunto(s)
Cerio , Colorimetría , Cerio/química , Colorimetría/métodos , Colorantes/química , Fluoruros , Peróxido de Hidrógeno/química , Hierro , Nucleótidos , Peroxidasa/química , Peroxidasas , Polímeros
16.
Anal Bioanal Chem ; 414(20): 6271-6280, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35831533

RESUMEN

Creatinine, as a significant biomarker for kidney, thyroid, and muscle dysfunction-related diseases, detection is of great important meaning. In this paper, an enzyme-nanozyme cascade sensing platform was developed for visual creatinine detection. Perovskite oxide BiFeO3 synthesized by a sol-gel method was applied as a nanozyme, showing excellent peroxidase-like activity. During detection, creatinine was oxidized in turn by three natural enzymes (creatinase, creatininase, and sarcosine oxidase) to produce H2O2, and H2O2 was then catalyzed by the BiFeO3 nanozyme, resulting in the change of achromatous 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB). Based on this principle, visual quantification of creatinine was realized. Due to the high stability and catalytic efficiency of nanozyme, the cascade sensing platform can be used to detect creatinine in a broad range of 0.5-150 µM with a detection limit of 0.09 µM. Meanwhile, thanks to the specificity of the natural enzymes, the platform exhibited admirable selectivity for creatinine determination despite the existence of a variety of interfering substances, which were successfully adopted to measure the level of creatinine in human serums. The cascade sensing platform is expected to serve the determination of a large number of biomarkers by simply alternating the natural enzymes.


Asunto(s)
Colorimetría , Peróxido de Hidrógeno , Catálisis , Colorimetría/métodos , Creatinina , Humanos , Oxidación-Reducción
17.
ACS Appl Bio Mater ; 5(7): 3418-3427, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35703404

RESUMEN

As one of the typical carbon nanomaterials, graphdiyne (GDY) with unique chemical, physical, and electronic properties has a great potential in various fields. Although it is an important member of carbon nanozymes, the research on its intrinsic enzyme mimetic properties and applications is still limited. Herein, graphdiyne oxide quantum dots (GDYO QDs) have been synthesized through oxidative cleavage, which exhibit enhanced peroxidase-like activity with lower Km and higher Vmax than those of most carbon-based nanozymes. The catalytic mechanism is explored, showing that the enhanced catalytic performance is attributed to the good conjugated structure, large number of oxygen-containing groups, and small-sized nanosheets with few layers. As a kind of peroxidase mimetic, the GDY-based nanozyme has excellent potential in sensing H2O2 and biological antioxidants through the colorimetric assay, with a linear range from 5 to 500 µM and detection limit of 1.5 µM for H2O2 and a linear range from 0 to 90 µM and detection limit of 0.48 µM for l-cysteine. Our work will be beneficial to develop high-performance artificial enzymes and to understand their mechanism for better applications.


Asunto(s)
Puntos Cuánticos , Antioxidantes , Carbono/química , Cisteína , Grafito , Peróxido de Hidrógeno , Óxidos , Peroxidasa , Peroxidasas , Puntos Cuánticos/química
18.
Food Chem ; 389: 132985, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35504070

RESUMEN

Single-atom nanozymes (SAzymes) show distinct advantages in catalytic activity and selectivity owing to their stability and special characteristic of maximum atomic utilization. Inspired by the structure of natural horseradish peroxidase (HRP), we developed a simple method for specific determination of both propyl gallate (PG) and formaldehyde (HCHO) by utilizing the intrinsic peroxidase mimics activity of hemin (hem) loaded Zn-nitrogen-carbon single-atom nanozymes (Zn-N-C@hem SAzymes). Zn-N-C@hem was prepared via a salt-template strategy and self-assembly, where hemin exhibits enhancing peroxidase-like activity can catalyze oxidation of colorless PG to yellow product. Upon introduction of HCHO into Zn-N-C@hem/PG system, complete suppression of PG oxidation was showed, resulting in distinguished decrease in absorbance. The colorimetric sensors of PG and HCHO based on Zn-N-C@hem/PG were developed at their respective linear range of concentration 1.25-200 mg/kg and 5-250 mg/kg. The practicability of the rapid analysis of PG and HCHO in food samples has been verified with reliable results.


Asunto(s)
Hemina , Galato de Propilo , Colorimetría/métodos , Formaldehído , Hemina/química , Peroxidasas , Zinc
19.
Adv Mater ; 34(30): e2201049, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35488781

RESUMEN

Free radical therapy based on 5-aminolevulinic acid (ALA, a precursor of the photosensitizer protoporphyrin IX (PpIX)) has been approved by the US Food and Drug Administration for clinical tumor treatment. However, PpIX can be quickly converted into photoinactive heme, leading to unexpectedly paused production of free radicals and severely hindering its therapeutic benefits. Here, inspired by the natural biotransformation of ALA (ALA-PpIX-heme), an uninterrupted reactive oxygen species generator (URG) that converts useless heme to peroxidase mimics via intracellular self-assembly is developed. The URG is prepared by enwrapping ALA-loaded polyamide-amine dendrimers in red blood cell membrane vesicles with a further surface modification of G-quadruplex-structured AS1411. The URGs realize "1 O2 -•OH" uninterrupted generation through "recycling waste" in two steps: i) PpIX generates 1 O2 under laser irradiation; and ii) the photoinactive metabolite heme self-assembled with AS1411 to catalyze H2 O2 conversion into •OH. Interestingly, the specific generation of 1 O2 in mitochondria and •OH in nuclei further augments the free-radical-induced damage. It is demonstrated that URG can continuously produce free radicals for 6 h postirradiation, and shows 3.3-times more than that of the nonassembly group, achieving nearly 80% regression of tumors in vivo.


Asunto(s)
Ácido Aminolevulínico , Fotoquimioterapia , Ácido Aminolevulínico/farmacología , Línea Celular Tumoral , Hemo/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Protoporfirinas , Especies Reactivas de Oxígeno/metabolismo
20.
Chemistry ; 28(14): e202104174, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35083795

RESUMEN

Carbon dots (CDs) have recently emerged as antibacterial agents and have attracted considerable attention owing to their fascinating merits of small size, facile fabrication, and surface functionalization. Most of them are involved in external light activation or hybridization with other functional nanomaterials. Herein, we present peroxidase-like Cu-doped CDs (Cu-CDs) for in vitro antibacterial applications. The unique peroxidase-mimicking property of the Cu-CDs was demonstrated by tetramethylbenzidine chromogenic assay, electron paramagnetic resonance spectra, and hydroxy radical probe. Escherichia coli and Staphylococcus aureus were chosen as representative gram-negative/positive models against which Cu-CDs exhibited superior antimicrobial activity even at a dosage down to 5 µg/mL. A possible mechanism of action was that the Cu-CDs triggered a catalytic redox reaction of endogenous H2 O2 and glutathione depletion in the bacteria cells, with subsequent oxidative stress and membrane disruption. This work provides a new strategy for the design of microenvironment-responsive antimicrobial nano-agents.


Asunto(s)
Carbono , Puntos Cuánticos , Antibacterianos/farmacología , Cobre/farmacología , Estrés Oxidativo , Peroxidasa , Peroxidasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...