Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
Traffic Inj Prev ; : 1-9, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356731

RESUMEN

OBJECTIVE: This study aimed to investigate the influence of visual attraction conditions on drivers' cognitive workload and physiological responses, assessed through heart rate variability (HRV) indicators. The study examined four experimental scenarios, including a baseline condition and three visual attractions (landscape-style architecture, tip slogan, and billboard) at tunnel entrances. METHODS: HRV indicators, including RMSSD, SDNN, LF, and LF/HF ratio, were analyzed to assess cognitive workload and physiological states. The study collected data from a sample of drivers under each experimental scenario and compared the HRV measures across conditions. RESULTS: The presence of visual attractions at tunnel entrances significantly impacted drivers' HRV. The introduction of visual attractions resulted in decreased RMSSD and SDNN values, indicating increased cognitive workload and reduced adaptability of the autonomic nervous system. Moreover, visual attractions led to increased LF values and LF/HF ratio, suggesting heightened sympathetic activation and potential cognitive engagement. CONCLUSIONS: Visual attractions have a significant impact on drivers' cognitive workload and physiological responses. Designing tunnel entrances with a balance between visual attractiveness and cognitive demands is essential to optimize drivers' cognitive performance and overall driving experience. These findings provide valuable insights for transportation authorities and designers to create safer and more user-friendly tunnel environments.

2.
BMC Plant Biol ; 24(1): 917, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354350

RESUMEN

Water scarcity and soil carbon dioxide elevation in arid regions are considered the most serious factors affecting crop growth and productivity. This study aimed to investigate the impacts of elevated CO2 levels (eCO2 at rates of 700 and 1000 ppm) on agro-physiological attributes to induce drought tolerance in cucumbers by activating the expression of genes related to aquaporin and stress response, which improved the yield of cucumber under two levels of irrigation water conditions [75% and 100% crop evapotranspiration (ETc)]. Therefore, two field experiments were conducted in a greenhouse with controlled internal climate conditions, at the Mohamed Naguib sector of the national company for protected agriculture, during the winter seasons of 2021-2022 and 2022-2023. The treatments included eCO2 in soil under normal and partial root zoon drying (PRD, 100% ETc Full irrigations, and 75% ETc). All the applied treatments were organized as a randomized complete block design (RCBD) and each treatment was replicated six times. Untreated plants were designed as control treatment (CO2 concentration was 400 ppm). The results of this study showed that elevating CO2 at 700 and 1000 ppm in soil significantly increased plant growth parameters, photosynthesis measurements, and phytohormones [indole acetic acid (IAA) and gibberellic acid (GA3)], under partial root-zone drying (75% ETc) and full irrigation conditions (100% ETc). Under PRD condition, eCO2 at 700 ppm significantly improved plant height (13.68%), number of shoots (19.88%), Leaf greenness index (SPAD value, 16.60%), root length (24.88%), fresh weight (64.77%) and dry weight (61.25%) of cucumber plant, when compared to untreated plants. The pervious treatment also increased photosynthesis rate, stomatal conductance, and intercellular CO2 concentration by 50.65%, 15.30% and 12.18%; respectively, compared to the control treatment. Similar findings were observed in nutrient concentration, carbohydrate content, Proline, total antioxidants in the leaf, and nutrients. In contrast, eCO2 at 700 ppm in the soil reduced the values of transpiration rate (6.33%) and Abscisic acid (ABA, 34.03%) content in cucumber leaves compared to untreated plants under both water levels. Furthermore, the results revealed that the gene transcript levels of the aquaporin-related genes (CsPIP1-2 and CsTIP4) significantly increased compared with a well-watered condition. The transcript levels of CsPIP improved the contribution rate of cell water transportation (intermediated by aquaporin's genes) and root or leaf hydraulic conductivity. The quantitative real-time PCR expression results revealed the upregulation of CsAGO1 stress-response genes in plants exposed to 700 ppm CO2. In conclusion, elevating CO2 at 700 ppm in the soil might be a promising technique to enhance the growth and productivity of cucumber plants in addition to alleviating the adverse effects of drought stresses.


Asunto(s)
Acuaporinas , Dióxido de Carbono , Cucumis sativus , Sequías , Regulación de la Expresión Génica de las Plantas , Suelo , Estrés Fisiológico , Cucumis sativus/genética , Cucumis sativus/fisiología , Cucumis sativus/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Suelo/química , Estrés Fisiológico/genética , Raíces de Plantas/fisiología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Fotosíntesis , Resistencia a la Sequía
3.
Chemosphere ; 365: 143294, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265734

RESUMEN

The influx of volcanic ash into seawater alters particle composition with implications for the cellular, physiological and anatomical response of suspension-feeding organisms. Adult females of Crepipatella peruviana were exposed to three diets consisting of a fixed concentration of 50,000 cells ml-1 of the microalga Isochrysis galbana plus different concentrations of ash particles (30, 90 and 150 mg L-1). The objective was to determine the cellular, physiological and anatomical responses. Mortality increased with ash concentrations, while feeding and respiration rates, tissue weight, and condition index decreased. The gills showed severe degradation of cilia and the presence of large mucous aggregates of cilia and ash. An increase in ash resulted in decreased lipid peroxidation and protein carbonyls, but increased total antioxidant capacity and phenols. Thus, volcanic ash particles may exert a high impact at both cellular and physiological levels for C. peruviana, where inhibition of gill function reduces the ability to acquire food.

4.
Sports (Basel) ; 12(9)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39330729

RESUMEN

The pacing of a marathon is arguably the most challenging aspect for runners, particularly in avoiding a sudden decline in speed, or what is colloquially termed a "wall", occurring at approximately the 30 km mark. To gain further insight into the potential for optimizing self-paced marathon performance through the coding of comprehensive physiological data, this study investigates the complex physiological responses and pacing strategies during a marathon, with a focus on the application of Shannon entropy and principal component analysis (PCA) to quantify the variability and unpredictability of key cardiorespiratory measures. Nine recreational marathon runners were monitored throughout the marathon race, with continuous measurements of oxygen uptake (V˙O2), carbon dioxide output (V˙CO2), tidal volume (Vt), heart rate, respiratory frequency (Rf), and running speed. The PCA revealed that the entropy variance of V˙O2, V˙CO2, and Vt were captured along the F1 axis, while cadence and heart rate variances were primarily captured along the F2 axis. Notably, when distance and physiological responses were projected simultaneously on the PCA correlation circle, the first 26 km of the race were positioned on the same side of the F1 axis as the metabolic responses, whereas the final kilometers were distributed on the opposite side, indicating a shift in physiological state as fatigue set in. The separation of heart rate and cadence entropy variances from the metabolic parameters suggests that these responses are independent of distance, contrasting with the linear increase in heart rate and decrease in cadence typically observed. Additionally, Agglomerative Hierarchical Clustering further categorized runners' physiological responses, revealing distinct clusters of entropy profiles. The analysis identified two to four classes of responses, representing different phases of the marathon for individual runners, with some clusters clearly distinguishing the beginning, middle, and end of the race. This variability emphasizes the personalized nature of physiological responses and pacing strategies, reinforcing the need for individualized approaches. These findings offer practical applications for optimizing pacing strategies, suggesting that real-time monitoring of entropy could enhance marathon performance by providing insights into a runner's physiological state and helping to prevent the onset of hitting the wall.

5.
Plants (Basel) ; 13(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39339577

RESUMEN

Agriophyllum squarrosum (L.) Moq. is a highly prevalent xerophytic species found throughout northern China. It is suitable for cultivation in semi-arid sandy environments and may establish roots in arid desert locations. This species plays a pioneering and exploratory role in the colonization of desert plants. In this study, we selected A. squarrosum from the Urat desert steppe (UD) and Horqin sandy land (HS) to explore their adaptation mechanisms to drought and rehydration environments by using the pot weighing control method to simulate an arid environment. The findings showed that the control (watering to 60-65% of field capacity) exceeded its required amount and the leaves turned yellow. The chlorophyll content was lower than those under moderate and severe drought, and rehydration caused a decrease. However, the contents of malondialdehyde, soluble sugar, and proline in the drought treatment were higher than those in the control. Under moderate and severe drought, the chlorophyll content and the quantum efficiency of photosystem II (Fv/Fm) of A. squarrosum from UD were higher than those from HS. During drought and rehydration processes, the proline content was relatively lower, while the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) and the content of soluble sugar and soluble protein were higher. However, antioxidant enzymes and osmoregulators from UD were higher than those from HS. The results suggest that the stronger ability of A. squarrosum to endure drought environments in UD is due to the high level of antioxidant enzymes and osmoregulators, which are conducive to relieving cell membrane damage when subjected to drought and rehydration.

6.
Interact J Med Res ; 13: e52167, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255485

RESUMEN

BACKGROUND: Diet-related diseases, such as type 2 diabetes, require strict dietary management to slow down disease progression and call for innovative management strategies. Conventional diet monitoring places a significant memory burden on patients, who may not accurately remember details of their meals and thus frequently falls short in preventing disease progression. Recent advances in sensor and computational technologies have sparked interest in developing eating detection platforms. OBJECTIVE: This review investigates central hemodynamic and thermoregulatory responses as potential biomarkers for eating detection. METHODS: We searched peer-reviewed literature indexed in PubMed, Web of Science, and Scopus on June 20, 2022, with no date limits. We also conducted manual searches in the same databases until April 21, 2024. We included English-language papers demonstrating the impact of eating on central hemodynamics and thermoregulation in healthy individuals. To evaluate the overall study quality and assess the risk of bias, we designed a customized tool inspired by the Cochrane assessment framework. This tool has 4 categories: high, medium, low, and very low. A total of 2 independent reviewers conducted title and abstract screening, full-text review, and study quality and risk of bias analysis. In instances of disagreement between the 2 reviewers, a third reviewer served as an adjudicator. RESULTS: Our search retrieved 11,450 studies, and 25 met our inclusion criteria. Among the 25 included studies, 32% (8/25) were classified as high quality, 52% (13/25) as medium quality, and 16% (4/25) as low quality. Furthermore, we found no evidence of publication bias in any of the included studies. A consistent postprandial increase in heart rate, cardiac output, and stroke volume was observed in at least 95% (heart rate: 19/19, cardiac output: 18/19, stroke volume: 11/11) of the studies that investigated these variables' responses to eating. Specifically, cardiac output increased by 9%-100%, stroke volume by 18%-41%, and heart rate by 6%-21% across these studies. These changes were statistically significant (P<.05). In contrast, the 8 studies that investigated postprandial thermoregulatory effects displayed grossly inconsistent results, showing wide variations in response with no clear patterns of change, indicating a high degree of variability among these studies. CONCLUSIONS: Our findings demonstrate that central hemodynamic responses, particularly heart rate, hold promise for wearable-based eating detection, as cardiac output and stroke volume cannot be measured by any currently available noninvasive medical or consumer-grade wearables. TRIAL REGISTRATION: PROSPERO CRD42022360600; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=360600.

7.
Biol Psychol ; : 108878, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341544

RESUMEN

Odors are known to affect an individual's emotions and physiological states. Recent research has revealed that olfaction is linked to the mental representation of internal sensations, known as interoception. However, little research has examined how interoception relates to emotional responses to odors. This research aimed to fill this gap in the literature. We conducted two studies with a total of 548 Japanese women (n = 500 and n = 48 in Studies 1 and 2, respectively). Study 1 used an online survey to assess the relationship between self-reported interoceptive traits and the intensity of positive emotions in response to daily odors. Study 2 examined how self-reported interoceptive traits modulated the arousal ratings of odors presented in the laboratory and the concordance between these perceived arousal ratings and odor-evoked physiological responses. Study 1 confirmed that self-reported interoceptive traits were significant predictors of positive emotional intensity of odors. In Study 2, individuals with high interoceptive measure scores showed concordance between their perceived emotional arousal and the physiological responses associated with that emotion, whereas individuals with low scores did not. These findings suggest that how people perceive their internal sensations contributes to shaping their olfactory affective experiences, thereby broadening the scope of interoception research and aromachology. The practical implications of these findings for the development of commercial fragrances are discussed.

8.
Plants (Basel) ; 13(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273917

RESUMEN

Macroalgal biomass blooms, including those causing the green and golden tides, have been rising along Chinese coasts, resulting in considerable social impacts and economic losses. To understand the links between the ongoing climate changes (ocean warming and acidification) and algal tide formation, the effects of temperature (20 and 24 °C), pCO2 concentration (Partial Pressure of Carbon Dioxide, 410 ppm and 1000 ppm) and their interaction on the growth of Ulva prolifera and Ulva lactuca (green tide forming species), as well as Sargassum horneri (golden tide forming species) were investigated. The results indicate that the concurrent rises in temperature and pCO2 level significantly boosted the growth and nutrient uptake rates of U. lactuca. For U. prolifera, the heightened growth and photosynthetic efficiency under higher CO2 conditions are likely due to the increased availability of inorganic carbon. In contrast, S. horneri exhibited negligible responsiveness to the individual and combined effects of the increased temperature and CO2 concentration. These outcomes indicate that the progressive climate changes, characterized by ocean warming and acidification, are likely to escalate the incidence of green tides caused by Ulva species, whereas they are not anticipated to precipitate golden tides.

9.
Vet Parasitol ; 331: 110277, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094330

RESUMEN

The health and productivity of broilers may be improved by optimizing the availability and levels of trace minerals (TM) in their feed, especially in the presence of parasites. This study investigated the effects of replacing inorganic TM (ITM) with an advanced chelate technology-based 7 TM (ACTM) on performance, hematology, lesion score, oocyst shedding, gut morphology, and tight junction structure in broilers challenged with mixed Eimeria species. There were 480 1-day-old broiler chickens divided into 5 groups: uninfected negative control and recommended levels of ITM (NC); infected positive control and recommended levels of ITM (PC); or PC supplemented with salinomycin (SAL); PC diet with 50 % ACTM instead of ITM (ACTM50); or PC diet with 100 % ACTM instead of ITM (ACTM100). All groups, except NC, were orally challenged with mixed Eimeria spp. oocysts on day 14. Each group had 6 replicate cages, with 16 birds per replicate. The results showed that the NC, SAL, and ACTM100 groups had higher (P < 0.05) body weight, average daily gain (ADG), and European production efficiency index (EPEI), as well as a lower (P < 0.05) feed conversion, mortality rate, and heterophile to lymphocyte ratio compared to the PC group, with the NC group having the highest ADG and EPEI throughout the experiment. The SAL and ACTM100 groups had lower (P < 0.05) intestinal lesion scores and oocyst numbers compared to the PC group, although all coccidiosis-challenged groups had higher oocyst shedding compared to the NC group. On day 24, the challenged birds in the SAL and ACTM100 groups had higher (P < 0.05) villus height and surface area in the duodenum and ileum, as well as a higher (P < 0.05) villus height to crypt depth ratio in the jejunum. The expression levels of jejunal CLDN1 and ZO-1 were also higher (P < 0.05) in the ACTM100 and SAL groups compared to the PC and ACTM50 groups at 24 days of age. In conclusion, while using ACTM in broiler diets at 50 % of the commercial recommended levels maintained performance and physiological responses, complete replacement with ACTM improved growth performance and intestinal health characteristics, similar to salinomycin under Eimeria challenge conditions.


Asunto(s)
Alimentación Animal , Pollos , Coccidiosis , Dieta , Suplementos Dietéticos , Eimeria , Enfermedades de las Aves de Corral , Animales , Pollos/parasitología , Coccidiosis/veterinaria , Coccidiosis/parasitología , Coccidiosis/prevención & control , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/prevención & control , Eimeria/efectos de los fármacos , Eimeria/fisiología , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Dieta/veterinaria , Intestinos/parasitología , Oligoelementos/farmacología , Policétidos Poliéteres , Piranos
10.
Plants (Basel) ; 13(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39124236

RESUMEN

Quinoa (Chenopodium quinoa Willd.) has gained worldwide recognition for its nutritional values, adaptability to diverse environments, and genetic diversity. This review explores the current understanding of quinoa tolerance to environmental stress, focusing on drought, salinity, heat, heavy metals, and UV-B radiation. Although drought and salinity have been extensively studied, other stress factors remain underexplored. The ever-increasing incidence of abiotic stress, exacerbated by unpredictable weather patterns and climate change, underscores the importance of understanding quinoa's responses to these challenges. Global gene banks safeguard quinoa's genetic diversity, supporting breeding efforts to develop stress-tolerant varieties. Recent advances in genomics and molecular tools offer promising opportunities to improve stress tolerance and increase the yield potential of quinoa. Transcriptomic studies have shed light on the responses of quinoa to drought and salinity, yet further studies are needed to elucidate its resilience to other abiotic stresses. Quinoa's ability to thrive on poor soils and limited water resources makes it a sustainable option for land restoration and food security enterprises. In conclusion, quinoa is a versatile and robust crop with the potential to address food security challenges under environmental constraints.

11.
Plants (Basel) ; 13(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39124270

RESUMEN

In the context of increasing agricultural challenges posed by soil salinity and drought stress, the main importance of the present study was to evaluate some novel treatments for improving canola productivity and resilience by applying wood distillate (WD) in combination with bagasse ash (SBA). A two-year field experiment using a split plot design was conducted and evaluated several physiological and biochemical parameters under different irrigation regimes conducted at 80% and 50% field capacity. While there were considerable moderation effects of SBA and WD on soil salinity, expressed as exchangeable sodium percentage (ESP), under both well-irrigated and drought conditions, more importantly, the ESP was reduced to 31% under drought stress with combined WD and SBA applications over any single factor. WD and SBA treatments of canola leaves showed reduced Na content with increased K levels, and the plants maintained physiological attributes-chlorophyll content, stomatal conductance, and relative water content-to the level of controls of well-irrigation. Besides, they significantly alleviated oxidative stress by decreasing the hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL) levels and increasing the activities of antioxidant enzymes like superoxide dismutase (SOD) and ascorbate peroxidase (APX). Nonenzymatic antioxidants such as total soluble sugars (TSS), total soluble proteins (TSP), total phenolic content (TPC), and total flavonoid content (TFC) were significantly increased under stress conditions with a special accent on combined treatment, whereas the levels of proline and GB that increased in alignment with drought reduced under the combined application. Various growth parameters of plants like plant height, number of branches, and siliques per plant were significantly improved with WD and SBA under drought stress. Principal component analysis (PCA) and Pearson correlation further confirmed the relationships among these parameters and thus underpinned that WD and SBA can evoke a synergistic effect to enhance growth promotion and stress tolerance in canola. This, therefore, infers that the combined application of WD and SBA can be key, offering very high potential as viable options to better canola productivity under adverse environmental conditions.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39053764

RESUMEN

This study provides a comprehensive analysis of the eco-physiological responses of the blue crab (Callinectes sapidus) to variations in salinity, shedding light on its adaptability and invasive success in aquatic environments. Gender-specific differences in osmoregulation and Electron Transport System (ETS) activity highlight the importance of considering sex-specific aspects when understanding the physiological responses of invasive species. Females exhibited increased ETS activity at lower salinities, potentially indicative of metabolic stress, while males displayed constant ETS activity across a range of salinities. Osmoregulatory capacity which depended on gender and salinity, was efficient within meso-polyhaline waters but decreased at higher salinities, particularly in males. These findings provide valuable understandings into how C. sapidus specimens in an invaded area responds to salinity changes, important for considerate its distribution through saline pathways during tidal cycle fluctuations. This study shows the importance of interdisciplinary research for effective management of invasive species and conservation of affected aquatic ecosystems.


Asunto(s)
Adaptación Fisiológica , Braquiuros , Especies Introducidas , Osmorregulación , Salinidad , Animales , Braquiuros/fisiología , Masculino , Femenino , Osmorregulación/fisiología , Transporte de Electrón , Ecosistema
14.
Water Res ; 262: 122009, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39024669

RESUMEN

Recycled wastewater effluent irrigation and implementing limited irrigation rates are two promising strategies for water conservation in agriculture. However, one major challenge is the accumulation and translocation of Pharmaceutical and Personal Care Products (PPCPs) from recycled water to crops. This study investigated the effects of UV persulfate (UV/PS) treatment of recycled water and limited irrigation rate on PPCPs accumulation and physiological responses of St. Augustine turfgrass via a 14-week field trial. Carbamazepine (CBZ), sulfamethoxazole (SMX), triclosan (TCS), fluoxetine (FLX) and diclofenac (DCF) were spiked at 0.1-1.5 µg/L into recycled water and two limited irrigation rates corresponding to 60 % and 80 % of reference Evapotranspiration (ETo) were applied. Results showed that UV/PS removed 60 % of CBZ and > 99 % of other PPCPs from recycled water. Irrigation with UV/PS treated recycled water resulted in approximately a 60 % reduction in CBZ accumulation and complete removal of SMX, DCF, FLX and TCS in both turfgrass leaves and roots. A more limited irrigation rate at 60 % ETo resulted in a higher accumulation of CBZ accumulation compared to 80 % ETo. Similarly, the canopy temperature increased under 60 % ETo irrigation rate compared to 80 % ETo, suggesting that turfgrass under 60 % ETo was more prone to water stress. Applying a 60 % ETo irrigation rate was not sufficient to maintain the turfgrass quality in the acceptable range. A negative correlation between the visual quality and cumulative mass of PPCPs in turfgrass leaves at different irrigation rates was observed, yet irrigation rate was the major driver of turfgrass overall quality and health. Insights from this study will help to integrate recycled water with treatment and limited irrigation, thereby enhancing agricultural water reuse practices.


Asunto(s)
Riego Agrícola , Fotólisis , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Riego Agrícola/métodos , Preparaciones Farmacéuticas , Reciclaje , Poaceae , Cosméticos , Sulfatos , Eliminación de Residuos Líquidos/métodos
15.
Schizophr Res ; 271: 112-119, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39024959

RESUMEN

Stress is proposed to be a crucial factor in the onset and presentation of psychosis. The early stage of psychosis provides a window into how stress interacts with the emergence of psychosis. Yet, how people with early psychosis respond to stress remains unclear. The current study examined how stress responses (brain, physiological, self-report) differ in early psychosis. Forty participants (20 early psychosis [EP], 20 healthy controls [HC]) completed a stress task in the scanner that involved viewing stressful and neutral-relaxing images. Physiological responses (cortisol, heart rate) and self-report of stress were also assessed. Region of Interest analyses were conducted with brain regions previously shown to be activated during the stress task (amygdala, hippocampus, striatum, hypothalamus, prefrontal cortex [dorsolateral, ventrolateral, medial orbital]). Linear mixed models were used to test for effects of group (EP, HC) and emotion (stress, neutral-relaxing). HC had higher hippocampus activation to stress versus neutral-relaxing conditions while EP did not show a difference (group x emotion interaction, p = 0.04). There were also significant main effects of group with EP having higher amygdala activation (p = 0.01), ventrolateral prefrontal cortex activation (vlPFC, p = 0.03), self-report of stress (p = 0.01), and heart rate (p < 0.001). Our study found preliminary evidence that people with early psychosis showed heightened response to stressful and non-threatening situations, across multiple levels of stress responses. Our findings suggest a novel perspective on stress alterations in early psychosis and highlight the importance of considering both stressful and non-stressful situations.


Asunto(s)
Encéfalo , Frecuencia Cardíaca , Hidrocortisona , Imagen por Resonancia Magnética , Trastornos Psicóticos , Estrés Psicológico , Humanos , Trastornos Psicóticos/fisiopatología , Masculino , Femenino , Frecuencia Cardíaca/fisiología , Adulto Joven , Adulto , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Estrés Psicológico/fisiopatología , Hidrocortisona/metabolismo , Autoinforme , Saliva/metabolismo , Adolescente , Estrés Fisiológico/fisiología
16.
Sci Rep ; 14(1): 16205, 2024 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003355

RESUMEN

Previous studies have explored the effect of differing heat and relative humidity (RH) environments on the performance of multiple anaerobic high-intensity interval training (HIIT). Still, its impact on physiological responses and performance following aerobic HIIT has not been well studied. This study examined the effects of differing RH environments on physiological responses and performance in college football players following HIIT. Twelve college football completed HIIT under four different environmental conditions: (1) 25 °C/20% RH (Control group); (2) 35 °C/20% RH (H20 group); (3) 35 °C/40% RH (H40 group); (4) 35 °C/80% RH (H80 group). The heart rate (HR), mean arterial pressure (MAP), lactate, tympanic temperature (TT), skin temperature (TS), thermal sensation (TS), and rating of perceived exertion (RPE) were recorded continuously throughout the exercise. The heart rate variability (HRV): including root mean squared differences of the standard deviation (RMSSD)、standard deviation differences of the standard deviation (SDNN)、high frequency (HF), low frequency (LF), squat jump height (SJH), cycling time to exhaustion (TTE), and sweat rate (SR) were monitored pre-exercise and post-exercise. The HR, MAP, lactate, TT, Ts, TS, and RPE in the 4 groups showed a trend of rapid increase, then decreased gradually. There was no significant difference in HR, MAP, TT, or RPE between the 4 groups at the same time point (p > 0.05), in addition to this, when compared to the C group, the lactate, Ts, TS in the other 3 groups significant differences were observed at the corresponding time points (p < 0.05). The RMSSD, SDNN, HF, and LF levels in the 4 groups before exercise were not significantly different. The RMSSD and HF in the H40 and H80 groups were significantly decreased and other HRV indicators showed no significant difference after exercise. In sports performance measurement, the SJH and TTE were significantly decreased, but there was no significant difference in the 4 groups. The SR was no significant difference in the 4 groups after exercise. In conclusion, heat and humidity environments elicited generally greater physiological effects compared with the normal environment but did not affect sports performance in college football players.


Asunto(s)
Rendimiento Atlético , Frecuencia Cardíaca , Entrenamiento de Intervalos de Alta Intensidad , Humedad , Humanos , Masculino , Entrenamiento de Intervalos de Alta Intensidad/métodos , Frecuencia Cardíaca/fisiología , Adulto Joven , Rendimiento Atlético/fisiología , Ejercicio Físico/fisiología , Universidades , Fútbol Americano/fisiología , Atletas , Ácido Láctico/sangre , Temperatura Corporal/fisiología
17.
New Phytol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863314

RESUMEN

Nicotiana benthamiana is predominantly distributed in arid habitats across northern Australia. However, none of six geographically isolated accessions shows obvious xerophytic morphological features. To investigate how these tender-looking plants withstand drought, we examined their responses to water deprivation, assessed phenotypic, physiological, and cellular responses, and analysed cuticular wax composition and wax biosynthesis gene expression profiles. Results showed that the Central Australia (CA) accession, globally known as a research tool, has evolved a drought escape strategy with early vigour, short life cycle, and weak, water loss-limiting responses. By contrast, a northern Queensland (NQ) accession responded to drought by slowing growth, inhibiting flowering, increasing leaf cuticle thickness, and altering cuticular wax composition. Under water stress, NQ increased the heat stability and water impermeability of its cuticle by extending the carbon backbone of cuticular long-chain alkanes from c. 25 to 33. This correlated with rapid upregulation of at least five wax biosynthesis genes. In CA, the alkane chain lengths (c. 25) and gene expression profiles remained largely unaltered. This study highlights complex genetic and environmental control over cuticle composition and provides evidence for divergence into at least two fundamentally different drought response strategies within the N. benthamiana species in < 1 million years.

18.
BMC Plant Biol ; 24(1): 572, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890574

RESUMEN

BACKGROUND: Nitrogen (N) availability is crucial in regulating plants' abiotic stress resistance, particularly at the seedling stage. Nevertheless, plant responses to N under salinity conditions may vary depending on the soil's NH4+ to NO3- ratio. METHODS: In this study, we investigated the effects of different NH4+:NO3- ratios (100/0, 0/100, 25/75, 50/50, and 75/25) on the growth and physio-biochemical responses of soybean seedlings grown under controlled and saline stress conditions (0-, 50-, and 100-mM L- 1 NaCl and Na2SO4, at a 1:1 molar ratio). RESULTS: We observed that shoot length, root length, and leaf-stem-root dry weight decreased significantly with increased saline stress levels compared to control. Moreover, there was a significant accumulation of Na+, Cl-, hydrogen peroxide (H2O2), and malondialdehyde (MDA) but impaired ascorbate-glutathione pools (AsA-GSH). They also displayed lower photosynthetic pigments (chlorophyll-a and chlorophyll-b), K+ ion, K+/Na+ ratio, and weakened O2•--H2O2-scavenging enzymes such as superoxide dismutase, catalase, peroxidase, monodehydroascorbate reductase, glutathione reductase under both saline stress levels, while reduced ascorbate peroxidase, and dehydroascorbate reductase under 100-mM stress, demonstrating their sensitivity to a saline environment. Moreover, the concentrations of proline, glycine betaine, total phenolic, flavonoids, and abscisic acid increased under both stresses compared to the control. They also exhibited lower indole acetic acid, gibberellic acid, cytokinins, and zeatine riboside, which may account for their reduced biomass. However, NH4+:NO3- ratios caused a differential response to alleviate saline stress toxicity. Soybean seedlings supplemented with optimal ratios of NH4+:NO3- (T3 = 25:75 and T = 4 50:50) displayed lower Na+ and Cl- and ABA but improved K+ and K+/Na+, pigments, growth hormones, and biomass compared to higher NH4+:NO3- ratios. They also exhibited higher O2•--H2O2-scavenging enzymes and optimized H2O2, MDA, and AsA-GSH pools status in favor of the higher biomass of seedlings. CONCLUSIONS: In summary, the NH4+ and NO3- ratios followed the order of 50:50 > 25:75 > 0:100 > 75:25 > 100:0 for regulating the morpho-physio-biochemical responses in seedlings under SS conditions. Accordingly, we suggest that applying optimal ratios of NH4+ and NO3- (25/75 and 50:50) can improve the resistance of soybean seedlings grown in saline conditions.


Asunto(s)
Antioxidantes , Glycine max , Nitratos , Reguladores del Crecimiento de las Plantas , Tolerancia a la Sal , Plantones , Glycine max/fisiología , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Plantones/fisiología , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Antioxidantes/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Estrés Salino , Iones/metabolismo
19.
Vet Res Commun ; 48(4): 2789-2796, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750293

RESUMEN

The present study was undertaken to assess the ameliorative effect of dietary supplementation of astaxanthin in Sirohi goats under simulated heat stress conditions. Eighteen healthy female Sirohi goats were divided equally into three groups (n = 6): Heat-Stressed Control (HSC), Treatment 1 (T1), and Treatment 2 (T2). During the experiment, goats in the T1 group were supplemented with astaxanthin at the rate of 25 mg/animal/day, while those in the T2 group received supplementation of 50 mg/animal/day. The experiment was conducted for 42 days: 14 days of acclimatization period, next 21 days animals were exposed to 42ºC for 6 h from 09:00 h to 15:00 h and 7 days of recovery period. On a daily basis, we recorded the physiological responses of goats and collected environmental data at the experimental site. Blood samples were collected 0 and 14th days of acclimatization, on 1st, 6th, 11th, 16th and 21st day of heat exposure and on the 7th day of the recovery period. The rectal temperature and respiration rates of the treatment groups were lower than those of the HSC group during the exposure period. Heat stress in the supplemented groups was associated with reduced levels of hepatic enzymes such as AST and ALT. Serum urea, creatinine and albumin levels were significantly (P < 0.05) different between control and treatment groups. It was thus concluded that dietary inclusion of antioxidant astaxanthin can ameliorate induced thermal load as evident from changes in physio-biochemical parameters in the Sirohi goats, that was more prominent at 50 mg/ animal/day than 25 mg/ animal/day.


Asunto(s)
Suplementos Dietéticos , Cabras , Xantófilas , Animales , Xantófilas/farmacología , Xantófilas/administración & dosificación , Cabras/fisiología , Femenino , Suplementos Dietéticos/análisis , Respuesta al Choque Térmico/efectos de los fármacos , Dieta/veterinaria , Trastornos de Estrés por Calor/veterinaria , Trastornos de Estrés por Calor/tratamiento farmacológico , Alimentación Animal/análisis , Calor , Enfermedades de las Cabras/tratamiento farmacológico
20.
Biosensors (Basel) ; 14(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38785700

RESUMEN

This manuscript reports the application of sensors for water use efficiency with a focus on the application of an in vivo OECT biosensor. In two distinct experimental trials, the in vivo sensor bioristor was applied in yellow kiwi plants to monitor, in real-time and continuously, the changes in the composition and concentration of the plant sap in an open field during plant growth and development. The bioristor response and physiological data, together with other fruit sensor monitoring data, were acquired and combined in both trials, giving a complete picture of the biosphere conditions. A high correlation was observed between the bioristor index (ΔIgs), the canopy cover expressed as the fraction of intercepted PAR (fi_PAR), and the soil water content (SWC). In addition, the bioristor was confirmed to be a good proxy for the occurrence of drought in kiwi plants; in fact, a period of drought stress was identified within the month of July. A novelty of the bioristor measurements was their ability to detect in advance the occurrence of defoliation, thereby reducing yield and quality losses. A plant-based irrigation protocol can be achieved and tailored based on real plant needs, increasing water use sustainability and preserving high-quality standards.


Asunto(s)
Actinidia , Técnicas Biosensibles , Agua , Suelo , Frutas , Sequías
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...