Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.541
Filtrar
1.
J Environ Sci (China) ; 149: 139-148, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181629

RESUMEN

The dissolved organic matter (DOM) with high mobility and reactivity plays a crucial role in soil. In this study, the characteristics and phytotoxicity of DOM released from the hydrochars prepared from different feedstocks (cow manure, corn stalk and Myriophyllum aquaticum) under three hydrothermal carbonization (HTC) temperatures (180, 200 and 220°C) were evaluated. The results showed that the hydrochars had high dissolved organic carbon content (20.15 to 37.65 mg/g) and its content showed a gradual reduction as HTC temperature increased. Three fluorescent components including mixed substance of fulvic acid-like and humic acid-like substances (C1, 30.92%-58.32%), UVA humic acid-like substance (C2, 25.27%-29.94%) and protein-like substance (C3, 11.74%-41.92%) were identified in hydrochar DOM by excitation emission matrix spectra coupled with parallel factor analysis. High HTC temperature increased the relative proportion of aromatic substances (C1+C2) and humification degree of hydrochar DOM from cow manure, while it presented adverse effects on the hydrochar DOM from corn stalk and Myriophyllum. aquaticum. The principal component analysis suggested that feedstock type and HTC temperature posed significant effects on the characteristics of hydrochar DOM. Additionally, seed germination test of all hydrochar DOM demonstrated that the root length was reduced by 8.88%-26.43% in contrast with control, and the germination index values were 73.57%-91.12%. These findings provided new insights into the potential environmental effects for hydrochar application in soil.


Asunto(s)
Sustancias Húmicas , Sustancias Húmicas/análisis , Suelo/química , Temperatura , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Zea mays/efectos de los fármacos , Estiércol , Carbón Orgánico/química
2.
Artículo en Inglés | MEDLINE | ID: mdl-39412717

RESUMEN

The unregulated use and improper management of herbicides can cause negative effects on non-target species and promote changes in biological communities. Therefore, the current study is aimed at understanding morphoanatomical responses and effects on seedling development induced by the herbicides glyphosate and saflufenacil in Enterolobium contortisiliquum, a non-target tropical species. The plants were cultivated in a greenhouse and subjected to herbicides at doses of 0, 160, 480, and 1440 g a.e ha-1 for glyphosate, and 0, 25, 50, and 100 g a.i ha-1 for saflufenacil. We conducted visual and morphological assessments over 90 days post-application. Leaf samples were collected 12 days after the application for anatomical analysis, and we also performed a micromorphometric analysis of the leaf tissues. Biomarkers of phytotoxicity were identified in plants exposed to both herbicides, even at the lowest doses, including in leaves without visual symptoms. The main morphological alterations were the decrease in growth, stem diameter, and dry mass. Furthermore, the leaves and stems visually exhibited chlorosis and necrosis. Both herbicides triggered anatomical modifications such as significant changes (p < 0.05) in the thickness of leaf tissues, hypertrophy, cell collapse, and changes in epicuticular waxes. However, the alterations induced by glyphosate were more widespread compared to saflufenacil, encompassing alterations in the root system. We confirmed that the different mechanisms of action of each herbicide and the existence of an underground reserve system in this species are intrinsically linked to the morphological and developmental responses described. Our findings suggest that E. contortisiliquum could be a potential bioindicator species for these herbicides in the environment, even at concentrations lower than those typically recommended for field application.

3.
Ecotoxicol Environ Saf ; 286: 117195, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39447293

RESUMEN

Seed priming with a composite of iron oxide (Fe3O4) and silicon dioxide (SiO2) nanoparticles (NPs) is an innovative technique to mitigate cadmium (Cd) and chromium (Cr) uptake in plants from rooting media. The current study explored the impact of seed priming with varying levels of Fe3O4 NPs, SiO2 NPs, and Fe3O4-SiO2 nanocomposites on Cd and Cr absorption and phytotoxicity, metal-induced oxidative stress mitigation, growth and biomass yield of spinach (Spinacia oleracea L.). The results showed that seed priming with the optimum level of 100 mg L-1 of Fe3O4-SiO2 nanocomposites significantly (p ≤ 0.05) increased root dry weight (144 %), shoot dry weight (243 %) and leaf area (34.4 %) compared to the control, primarily by safeguarding plant's photosynthetic machinery, oxidative stress and phytotoxicity of metals. Plants treated with this highest level of Fe3O4-SiO2 nanocomposites exhibited a substantial increase in photosynthetic and gas exchange indices of spinach plants and enhanced activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) antioxidant enzymes by 45 %, 48 %, and 60 %, respectively. Correspondingly, the relative gene expression levels of SOD, CAT, and APX also rose by 109 %, 181 %, and 137 %, respectively, compared to non-primed plants. This nanocomposite application also boosted the levels of phenolics (28 %), ascorbic acid (68 %), total sugars (129 %), flavonoids (39 %), and anthocyanin (29 %) in spinach leaves, while significantly reducing Cd (34.7 %, 53.4 %) and Cr (20.2 %, 28.8 %) contents in plant roots and shoots, respectively. These findings suggest that seed priming with Fe3O4-SiO2 nanocomposites effectively mitigated the toxic effects of Cd and Cr, enhancing the growth and biomass yield of spinach in Cd and Cr co-contaminated environments, offering a promising sustainable approach for producing metal-free crops.

4.
Ecotoxicol Environ Saf ; 286: 117237, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39447297

RESUMEN

Micro/nanoplastics (MNPs) and heavy metals (HMs) coexist worldwide. Existing studies have reported different or even contradictory toxic effects of co-exposure to MNPs and HMs on plants, which may be related to various influencing factors. In this study, existing publications were searched and analyzed using CiteSpace, meta-analysis, and machine learning. CiteSpace analysis showed that this research field was still in the nascent stage, and hotspots in this field included accumulation, cadmium (Cd), growth, and combined toxicity. Meta-analysis revealed the differential association of seven influencing factors (MNP size, pollutant treatment duration, cultivation media, plant species, MNP type, HM concentration, and MNP concentration) and 8 physiological parameters receiving the most attention. Co-exposure of the two contaminants had stronger toxic effects than HM treatment alone, and phytotoxicity was generally enhanced with increasing concentrations and longer exposure durations, especially when using nanoparticles, hydroponic medium, dicotyledons producing stronger toxic effects than microplastics, soil-based medium, and monocotyledons. Dry and fresh weight analysis showed that co-exposure to MNPs and Cd resulted in significant phytotoxicity in all classifications. Concerning the MNP types, polyolefins partially attenuated plant toxicity, but both modified polystyrene (PS) and biodegradable polymers exacerbated joint phytotoxicity. Finally, machine learning was used to fit and predict plant HM concentrations, showing five classifications with an accuracy over 80 %, implying that the polynomial regression model could be used to predict HM content in plants under complex pollution conditions. Overall, this study identifies current knowledge gaps and provides guidance for future research.

5.
Environ Pollut ; 363(Pt 1): 125178, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39447628

RESUMEN

Seed germination and early growth of grassland species might be influenced by veterinary antibiotics that are extensively released into agricultural habitats. Therefore, we tested impacts of the commonly used antibiotics tetracycline and sulfamethazine, single and in mixture, on seed germination and seedling root growth of six typical species of temperate European grasslands (Carum carvi, Centaurea jacea, Galium mollugo, Plantago lanceolata, Silene latifolia, Dactylis glomerata). In standardised germination experiments, we assessed three germination variables (germination percentage, mean germination time, synchrony of germination) and one post-germination variable (seedling root length) under different environmentally realistic antibiotic concentrations (0.1, 1, 10 mg l-1 and a water control). While the germination variables were only irregularly and weakly affected by both antibiotics, seedling root length was strongly reduced by tetracycline, but not by sulfamethazine. Among the test species, D. glomerata was most sensitive to tetracycline with the average root length reduced up to 81 % in the 10 mg l-1 treatment. Its germination behaviour, however, was almost insensitive to the two antibiotics. Mixture effects were only shown in relation to the germination of single species, where the binary mixture produced effects but not the two single antibiotics or, conversely, effects of single antibiotics were lost in the mixture. These findings highlight the potential threat of plant regeneration from seed by veterinary antibiotics, particularly affecting early root growth and potentially influencing plant population growth in natural habitats.

6.
J Hazard Mater ; 480: 136224, 2024 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-39442306

RESUMEN

Herbicides play a crucial role in managing weeds in agriculture, ensuring the productivity and quality of crops. However, herbicide drift poses a significant threat to sensitive plants, necessitating the consideration of ecosystem-based solutions to address this issue. In this study, foliar pre-spraying of atrazine-degrading Paenarthrobacter sp. AT5 was proposed as a new approach to mitigate the risks associated with atrazine drift on soybeans. Exposure to atrazine reduced chlorophyll levels and disturbed the antioxidant system and metabolic processes in soybean leaves, ultimately causing leaves to turn yellow. However, by pre-spraying, strain AT5 successfully colonized the surface of soybean leaves and mitigated the harmful effects of atrazine. This was achieved by slowing down atrazine absorption, expediting its reduction (half-life decreased from 2.22 d to 0.86 d), altering its degradation pathway (enhancing hydroxylation while weakening alkylation), and enhancing the interaction within phyllosphere bacteria communities. This study introduces a new approach that is both eco-friendly and user-friendly for reducing the risks of herbicide drift to sensitive crops, hence promoting the development of mixed cropping.

7.
Chemosphere ; : 143620, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39454766

RESUMEN

An environmentally friendly approach for caffeine degradation was explored in this study utilizing cylindrical dielectric barrier discharge (CDBD) plasma. The current-voltage characteristics and the plasma parameters of the CDBD, such as the electron temperature, electron density, density of nitrogen excited states, vibrational temperature, and rotational temperature, were assessed through electrical and optical characterization respectively. Fourier-transform infrared spectroscopy (FTIR) was employed to evaluate the reactive oxygen and nitrogen species (RONS) in the plasma-treated air. The physicochemical properties of deionized water (DW) were measured. To gain a deeper insight into the role of RONS in caffeine degradation, their concentrations in DW were analyzed. Furthermore, the effects of initial concentration, sample volume, and pH on caffeine degradation were investigated. The highest degradation of caffeine was 94% at initial concentration of 50 mg L-1, sample volume 50 mL and in neutral pH. Liquid chromatography-mass spectrometry (LC-MS) was then used to propose the degradation pathway for caffeine. The major reactive species involved in caffeine degradation was ozone. Finally, the phytotoxicity and cytotoxicity of caffeine were assessed before and after plasma treatment with plasma-treated caffeine (PTC) showing minimal toxicity to both plants and cells.

8.
Viruses ; 16(10)2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39459845

RESUMEN

Tomato brown rugose fruit virus (ToBRFV), being a mechanically transmitted disease, is usually difficult to control; therefore, an effective alternative to reduce transmission and replication in the crop is by spraying with chlorine dioxide (ClO2) during routine crop management. In this research, the efficacy of chlorine dioxide (ClO2) for ToBRFV management in a greenhouse and open field was determined. The phytotoxicity of ClO2 and its effective concentration against ToBRFV in Nicotiana longiflora plants were evaluated. Subsequently, the effect of ClO2 on ToBRFV was evaluated in tomato plants grown in an open field. Finally, the effectiveness of ClO2 on plants inoculated with ToBRFV under greenhouse conditions was evaluated and the number of necrotic local lesions (NLLs) was quantified. The results revealed that ClO2 at 760 mg L-1 did not show phytotoxicity and reduced the number of NLLs in N. longiflora plants. It also decreased ToBRFV transmission and replication in field- and greenhouse-grown tomato plants, improving agronomic parameters. ClO2 reduced replication in plants inoculated with different amounts of ToBRFV inoculum in a greenhouse. N. longiflora leaves expressed lower numbers of NLLs when inoculated with ClO2-treated tomato plant extracts. Finally, the results demonstrate that ClO2 represents an effective management alternative when used by direct application to plants. To our knowledge, this is the first study where the use of an antiviral compound is carried out under field and greenhouse conditions.


Asunto(s)
Antivirales , Compuestos de Cloro , Óxidos , Enfermedades de las Plantas , Solanum lycopersicum , Solanum lycopersicum/virología , Solanum lycopersicum/efectos de los fármacos , Compuestos de Cloro/farmacología , Óxidos/farmacología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/prevención & control , Antivirales/farmacología , Nicotiana/virología , Nicotiana/efectos de los fármacos , Replicación Viral/efectos de los fármacos
9.
Artículo en Inglés | MEDLINE | ID: mdl-39404946

RESUMEN

In light of the increasing water scarcity and the need for sustainable waste management, the use of landfill leachate for irrigation has emerged as both a solution and a concern, posing potential risks to soil health and plant vitality. This study examined the multifaceted impacts of leachate irrigation on the soil characteristics, plant growth, and enzymatic activities of Medicago sativa (M. sativa). By exposing alfalfa to different concentrations of leachate, we assessed the influence on heavy metal accumulation, physiological parameters, and enzyme functions. The physicochemical profile of the leachate indicated that the pH was within acceptable limits, but the chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and concentrations of lead (Pb) and aluminum (Al) exceeded regulatory standards. Morphological parameters exhibited dual effects: stimulation at lower leachate doses and inhibition at higher leachate doses. Our findings show that soil acts as a buffer, reducing heavy metal uptake by plants. Enzymatic activities, including catalase, peroxidase, and succinate dehydrogenase, fluctuated significantly at higher leachate concentrations, indicating stress responses. This research underscores the interplay between leachate irrigation, plant physiology, and soil health, emphasizing sustainable management to optimize plant growth and minimize environmental impacts. It also stresses refining leachate application protocols to preserve soil and ecosystem health.

10.
Sci Total Environ ; 955: 176870, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39414046

RESUMEN

Micro- and nanoplastics (MNPs) and polychlorinated biphenyls (PCBs) are prevalent in the environment and pose potential threats to ecosystems. However, studies on the phytotoxicity of MNPs and PCBs on primary producers are limited. This study investigated the effects of polystyrene nanoplastics (PS-NPs, 10 mg/L) and 2,2',5,5'-tetrachlorobiphenyl (PCB-52, 0.1 mg/L), on the growth of Spirodela polyrhiza and Salvinia natans, and their impact on plant competitive ability under co-culture conditions. Laser confocal microscopy images revealed that PS-NPs accumulated on the leaf and root surfaces of both species. Combined exposure to PS-NPs and PCB-52 significantly inhibited the average specific and relative growth rates (RGR) of both species, reduced chlorophyll a and b levels, and slightly increased carotenoid content, disrupting the photosynthetic system. PCB-52 exacerbated PS-NPs accumulation on plants, leading to increased hydrogen peroxide (H2O2) and superoxide anion (O2-) production in both roots and leaves. This affects the activity of superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and the soluble protein content. The combined treatment with PS-NPs and PCB-52 induced greater ecological stress in both species than the treatment with PS-NPs alone. In addition, the combined treatment with PS-NPs and PCB-52 significantly improved the relative yield and competition balance index of S. polyrhiza, indicating that PS-NPs + PCB-52 enhanced the competitive ability of S. polyrhiza when co-cultured with S. natans. This study confirmed the effects of co-exposure to PS-NPs and PCB-52 on aquatic plant growth and species competition, contributing to better insight into the ecological impacts of MNPs and organic pollutants.

11.
Sci Rep ; 14(1): 23781, 2024 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-39390006

RESUMEN

This study investigated the effects of corn cob biochar (CCB) and rice husk biochar (RHB) additions (at 0%, 5%, and 10% w/w) on nitrogen and carbon dynamics during co-composting with poultry litter, rice straw, and domestic bio-waste. The study further assessed the temperature, moisture, pH, and nutrient contents of the mature biochar co-composts, and their potential phytotoxicity effects on amaranth, cucumber, cowpea, and tomato. Biochar additions decreased NH4+-N and NO3- contents, but bacteria and fungi populations increased during the composting process. The mature biochar co-composts showed higher pH (9.0-9.7), and increased total carbon (24.7-37.6%), nitrogen (1.8-2.4%), phosphorus (6.5-8.1 g kg-1), potassium (26.8-42.5 g kg-1), calcium (25.1-49.5 g kg-1), and magnesium (4.8-7.2 g kg-1) contents compared to the compost without biochar. Germination indices (GI) recorded in all the plants tested with the different composts were greater than 60%. Regardless of the biochar additions, all composts treatments showed no or very minimal phytotoxic effects on cucumber, amaranth and cowpea seeds. We conclude that rice husk and corn cob biochar co-composts are nutrient-rich and safe soil amendment for crop production.


Asunto(s)
Amaranthus , Carbono , Carbón Orgánico , Compostaje , Nitrógeno , Carbón Orgánico/química , Nitrógeno/análisis , Nitrógeno/metabolismo , Carbono/análisis , Compostaje/métodos , Amaranthus/química , Amaranthus/efectos de los fármacos , Nutrientes/análisis , Oryza/crecimiento & desarrollo , Oryza/química , Concentración de Iones de Hidrógeno , Suelo/química , Fósforo/análisis , Zea mays/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Zea mays/química , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/efectos de los fármacos , Temperatura
12.
Artículo en Inglés | MEDLINE | ID: mdl-39417939

RESUMEN

Formaldehyde is a prominent volatile organic compound and also considered as an indoor air pollutant. Chlorophytum comosum, an indoor plant, has been reported to metabolize indoor formaldehyde. But the phytotoxic effects of formaldehyde, being a pollutant, on C. comosum are not well explored. Furthermore, C. comosum responses that can be considered as markers at the physiological and biochemical level against formaldehyde stress are not yet investigated. Therefore, the current research study was aimed to evaluate such potential markers against formaldehyde in C. comosum. Briefly, C. comosum was exposed to 5-, 10-, and 20-ppm formaldehyde doses in an airtight glass chamber. Plant samples were then taken to analyze morpho-anatomical, physiological, and biochemical responses after short (2, 4, and 6 h), medium (12 and 24 h), and extended durations (48 and 96 h) for each tested dose. Application of 10 and 20 ppm formaldehyde doses leads to a significant incline in enzymatic antioxidants. Formaldehyde concentration of 10 ppm leads to a maximum increase in catalase (30.30 U/mg of protein), guaiacol peroxidase (135.64 U/mg of protein), and superoxide dismutase (44.76 U/mg of protein) compared to their respective controls. A significant change is also observed in non-enzymatic parameters, including total phenolic content, which ranged from 3.62 mg GAE/g (control) to 10.51 mg GAE/g, total antioxidants vary from 27.37% (control) to 85.05% in 20 ppm formaldehyde, respectively. However, formaldehyde application negatively affected the physiological responses of C. comosum by reducing its photosynthetic rate, transpiration rate, and stomatal conductance. Additionally, extended exposure of C. comosum to 10- and 20-ppm formaldehyde doses leads to visible leaf damage. Principal component analysis indicated that enzymatic parameters including SOD, CAT, and GPX and non-enzymatic parameters including MDA, TPC, TFC, TAOs, carotenoids, TSS, and intercellular CO2 contributed the most to the total variance. Thus, these parameters have potential to serve as physiological and biochemical markers in C. comosum against formaldehyde stress.

13.
Sci Total Environ ; 955: 176875, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39395497

RESUMEN

Microplastics (MPs) pollution has recently become a major concern for agroecosystems. The interplay between MPs, and heavy metal(loid)s in the soil can intensify the risks to plant growth and human health. The current study investigated the interactive effects of arsenic (As) and biodegradable and petroleum-based conventional MPs on rice growth, As bioavailability, soil bacterial communities, and soil enzyme activities. As-contaminated soil (5 mg kg-1) was treated with conventional MPs i.e., polystyrene (PS) and polyethylene (PE) and biodegradable MPs i.e., polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT) at 0.1 % and 1 % rates. In a pot experiment, rice plants were cultivated in soil co-contaminated with As and MPs. PLA-MPs exhibited significant interactions with As, increasing its bioavailability and impairing rice plant growth by enhancing plant oxidative stress. The results illustrated that T2 treatment (PLA-MPs @ 1 % + As 5 mg kg-1) significantly decreased the root and shoot lengths, root and shoot dry weights as well as the rates of photosynthesis, transpiration, intercellular CO2, and stomatal conductance in rice plants. Biodegradable PLA-MPs @ 1 % resulted in increased uptake of As in rice roots, stems, and leaves by 13.4 %, 38.9 %, and 20.6 %, respectively. In contrast, conventional PE-MPs @ 1 % showed contradictory results with As uptake declined by 2.2 %, 5.1 %, and 9.9 % in rice roots, stem and leaves. Soil enzyme kinetics showed that biodegradable MPs increased the activities of soil catalase, dehydrogenase, and phytase enzymes, whereas both conventional PS and PE-MPs decreased their activities. Moreover, As and PLA-MPs combined stress altered soil bacterial communities by increasing the relative abundance of Protobacteria, Acidobacteria, Chloroflexi, and Firmicutes phyla by 49 %, 29 %, 82 %, and 57 %, respectively. This study provides new insights into MPs-As interactions in soil-plant system and ecological risks associated with their coexistence.

14.
J Environ Manage ; 370: 122856, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39405864

RESUMEN

Electrocoagulation of landfill leachate has been widely investigated, however, only few reports include the reuse of the treated water. In this work, treated leachate is evaluated as irrigation water. The main obstacle is the high Sodium Absorption Ratio (SAR=Na+/(Ca2++Mg2+)/2. Reducing this indicator involves decreasing Na+ and increasing Mg2+ or Ca2+. Sodium concentration reduction is difficult by electrochemical methods (E0 = -2.71 V); Ca2+ increasing is not feasible as it precipitates. Hence, the use of different Al-Mg anodes was tested tending to increase Mg2+ concentration in the treated water The alloy 88%wtAl-12%wtMg was able to remove 52.9% of COD, 98.1% of turbidity, 97.9% of color, obtaining a SAR of 8.2 meq·L-1, total hardness (TH) of 64.2 meq·L-1 and a soluble sodium percentage (SSP) of 75.8 meq·L-1. This was achieved by working at a current density of 15 mA cm-2, a treatment time of 15 min and a pH 5.0. The phytotoxicity of the treated leachate was evaluated by the germination index using Lactuca Sativa L., reaching a value of 83.2%, which is considered excellent for irrigation water. During growth, 3-4 primary leaves were observed in seedings after 21 days, similar to when potable water was used. The results demonstrate that electrocoagulation is an adequate treatment technique for the reuse of landfill leachate if appropriated materials are used as anodes working in well selected operational variables.

15.
Environ Monit Assess ; 196(11): 1093, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39436501

RESUMEN

Compost reactors, commonly used in experiments, industrial assays, and home residue treatment systems, have the potential to facilitate composting. Challenges persist in the realm of small-scale composting, encompassing facets such as temperature monitoring, homogenization of the compost mass, management of moisture with the control of leachate generation, and integration with a renewable energy source. This study assesses a pioneering composter prototype endowed with essential features to ensure a pragmatic and secure composting process. This includes the facilitation of remote access to temperature data via Bluetooth and a mobile application. Across successive trials, the scrutinized composter prototype consistently yielded reproducible outcomes, exhibiting a coefficient of variation below 25% for the majority of appraised parameters. In comparison to a conventional reactor, the decomposing residue mixture within the examined prototype manifested elevated temperatures (p < 0.05). Moreover, the tested prototype demonstrated C/N ratio lower than 20/1 within 45 days, a higher final nitrogen concentration, and enhanced germination of seeds that served as phytotoxicity bioindicators. Notably, the prototype needed 46.6% less space, offering improved leachate control, three times faster turning time, temperature monitoring, and reduced fly attraction.


Asunto(s)
Compostaje , Aplicaciones Móviles , Reciclaje , Temperatura , Compostaje/métodos , Reciclaje/métodos , Monitoreo del Ambiente/métodos , Suelo/química
16.
Environ Geochem Health ; 46(11): 473, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400738

RESUMEN

The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has biological toxicity, persistence, long-range migration and bioaccumulation ability. However, there is currently little research on the phytotoxicity of DBDPE in plants. The perennial herbaceous plant tall fescue (Festuca elata Keng ex E. B. Alexeev) was selected as the model organism for use in seed germination experiments, and the phytotoxicity of DBDPE in the soil of tall fescue was studied. The results indicated that DBDPE had a significant effect on the germination and growth of tall fescue seedlings. Citric acid reduced the stress caused by DBDPE in plants, effectively alleviating the phytotoxicity of DBDPE in tall fescue. The root vitality and protein content significantly increased after the application of citric acid, increasing by 74.93-183.90%, 146.44-147.67%, respectively. The contents of proline and soluble sugars significantly decreased after the application of citric acid, decreasing by 45.18-59.69% and 23.03%, respectively (P < 0.05). There was no significant difference in superoxide dismutase (SOD) or peroxidase (POD) activity in tall fescue seedlings, and the catalase (CAT) activity and malondialdehyde (MDA) content were significantly lower after the application of citric acid, decreasing by 64.62-67.91% and 29.10-49.80%, respectively (P < 0.05). Tall fescue seedlings bioaccumulated DBDPE, with biological concentration factors (BCFs) ranging from 4.28 to 18.38 and transfer factors (TFs) ranging from 0.43 to 0.54. This study provides theoretical support for the study of the toxicity of DBDPE to plants and offers a research foundation for exploring the phytoremediation of DBDPE-contaminated soil by tall fescue.


Asunto(s)
Ácido Cítrico , Festuca , Germinación , Plantones , Contaminantes del Suelo , Plantones/metabolismo , Plantones/efectos de los fármacos , Festuca/metabolismo , Festuca/efectos de los fármacos , Ácido Cítrico/metabolismo , Germinación/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Bromobencenos/toxicidad , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo , Semillas/efectos de los fármacos , Semillas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos
17.
Plants (Basel) ; 13(19)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39409628

RESUMEN

Sesquiterpene lactones (SLs) are compounds that are highly produced in Cynara cardunculus leaves, known for their phytotoxic activity. This study aims to assess SL-enriched fractions' (cynaropicrin, aguerin B, and grosheimin) phytotoxic potentials and putative modes of action, compared to an initial extract, using two approaches: first, against a panel of nine weed species in pre-emergence, and then on Portulaca oleracea L.'s post-emergency stage. The SL-enriched fractions demonstrated greater phytotoxic activity when compared with the C. cardunculus leaf initial extract. The SL-enriched fractions had higher activity at root growth inhibition over the panel tested, doubling the activity in five of them at 800 ppm. Regarding the post-emergence bioassay, the SL-enriched fractions had a higher influence on the plants' growth inhibition (67% at 800 ppm). The SL-effects on the plants' metabolisms were evidenced. The total chlorophyll content was reduced by 65% at 800 ppm. Oxidative stress induction was observed because of the enhancement in MDA levels at 800 ppm compared to control (52%) and the decrease in SOD-specific activity from 4.20 U/mg protein (400 ppm) to 1.74 U/mg protein (800 ppm). The phytotoxic effects of the SL-enriched fractions suggest that they could be used for a future bioherbicide development.

18.
Environ Geochem Health ; 46(10): 416, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240425

RESUMEN

Waste engine oils are hazardous waste oils originating from the transportation sector and industrial heavy-duty machinery operations. Improper handling, disposal, and miscellaneous misuses cause significant air, soil, sediments, surface water, and groundwater pollution. Occupational exposure by prolonged and repeated contact poses direct or indirect health risks, resulting in short-term (acute) or long-term (chronic) toxicities. Soil pollution causes geotoxicity by disrupting the biocenosis and physicochemical properties of the soil, and phytotoxicity by impairing plant growth, physiology and metabolism. Surface water pollution impacts aquatic ecosystems and biodiversity. Air pollution from incineration causes the release of greenhouse gases creating global warming, noxious gases and particulate matter eliciting pulmonary disorders. The toxicity of waste engine oil is due to the total petroleum hydrocarbons (TPH) composition, including polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, xylene (BTEX), polychlorinated biphenyls (PCBs) congeners, organometallic compounds, and toxic chemical additives. The paper aims to provide a comprehensive overview of the ecotoxicological effects, human and animal health toxicology and exposure to waste engine oils. It highlights the properties and functions of engine oil and describes waste engine oil generation, disposal and recycling. It provides intensive evaluations and descriptions of the toxicokinetics, metabolism, routes of exposure and toxicosis in human and animal studies based on toxicological, epidemiological and experimental studies. It emphasises the preventive measures in occupational exposure and recommends risk-based remediation techniques to mitigate environmental pollution. The review will assist in understanding the potential risks of waste engine oil with significant consideration of the public health benefits and importance.


Asunto(s)
Exposición a Riesgos Ambientales , Humanos , Animales , Medición de Riesgo , Exposición Profesional , Ecotoxicología
19.
Plants (Basel) ; 13(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39273844

RESUMEN

The rapid growth of the horticultural industry has increased demand for soilless cultivation substrates. Peat, valued for its physical and chemical properties, is widely used in soilless cultivation. However, peat is non-renewable, and over-extraction poses serious ecological risks. Therefore, sustainable alternatives are urgently needed. Ammonium incubation, a novel method to reduce phytotoxicity, offers the potential for green waste, a significant organic solid waste resource, to substitute peat. This study optimized the ammonium incubation process to reduce green waste phytotoxicity. It systematically examined different nitrogen salts (type and amount) and environmental conditions (temperature, aeration, duration) affecting detoxification efficiency. Results show a significant reduction in phytotoxicity with ammonium bicarbonate, carbonate, and sulfate, especially carbonate, at 1.5%. Optimal conditions were 30 °C for 5 days with regular aeration. Under these conditions, ammonium salt-treated green waste significantly reduced total phenolic content and stabilized germination index (GI) at a non-phytotoxic level (127%). Using treated green waste as a partial peat substitute in lettuce cultivation showed promising results. This low-cost, low-energy method effectively converts green waste into sustainable peat alternatives, promoting eco-friendly horticulture and environmental conservation.

20.
Polymers (Basel) ; 16(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274062

RESUMEN

In this study, the biodegradation of various natural rubber (NR) samples, i.e., neat NR and NR filled with two different curative contents was investigated under a long-term simulated soil condition at a temperature of 25 ± 2 °C in accordance with ISO 17556. Natural clay loam soil, with a pH of 7.2 and a water holding capacity of 57.6%, was employed. Under controlled test condition both unvulcanized and vulcanized NR samples having low curative content, respectively designated as UNRL and VNRL, exhibited similar biodegradation behaviors to the neat NR. They showed fast biodegradation at the early stage, and their biodegradation rate did not significantly change throughout the test period (365 days). However, for the NR samples having high curative content, respectively called UNRH and VNRH for the unvulcanized and vulcanized samples, a biodegradation delay was observed within the first 130 days. Surprisingly, the UNRH showed a relatively high biodegradation rate after the induction period. At the end of the test, most of the rubber samples (the neat NR, UNRL, VNRL, and UNRH) showed a comparable degree of biodegradation, with a value ranging from 54-59%. The VNRH, on the other hand, showed the lowest degree of biodegradation (ca. 28%). The results indicate that the number of curatives does not significantly affect the biodegradability of unvulcanized NR in the long term, despite the fact that a high curative content might retard microorganism activity at the beginning of the biodegradation process. Apparently, crosslink density is one of the key factors governing the biodegradability of NR. The phytotoxicity of the soils after the biodegradation test was also assessed and represented in terms of seedling emergence, survival rate, and plant biomass for Sorghum bicolor. The values of seedling emergence (≥80%), survival rate (100%), and plant biomass of all soil samples were not statistically different from those of the blank soil, indicating the low phytotoxicity of the tested soils subjected to the biodegradation of the rubber samples. Taken as a whole, it can be concluded that the CO2 measurement technique is one of the most effective methods to assess the biodegradability of rubbers. The knowledge obtained from this study can also be applied to formulate more environmentally friendly rubber products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...