Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57.012
Filtrar
1.
Food Qual Prefer ; 1232025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39372321

RESUMEN

A transition to greater plant-based protein consumption is recognized as a necessity for planetary and human well-being. A critical driver of acceptance of plant-based meat alternatives (PBMAs) is perceived similarity in their sensory and nutritional profiles with conventional animal-based meat. Consumers vary in food essentialism - beliefs that categories of foods have innate and immutable 'essences' that are responsible for their shared properties. Here, we examined whether food essentialism is associated with perceptions that PBMAs share similar properties as the animal-based products they replicate. Participants (N=298) rated two animal-based food items (beef burger and canned tuna) and two corresponding PBMAs (plant-based burger and tuna) on perceived processing, naturalness, nutritiousness, taste (like beef or fish), typical health benefits, and liking. Participants holding higher (vs. lower) food essentialism beliefs rated PBMAs as less processed, more natural, tasting more like beef (plant-based burger only), possessing greater health benefits of the animal-based products, and as more liked (plant-based tuna only). These relationships between food essentialism and perceived food properties were observed more consistently for PBMAs than their animal-based counterparts. Beliefs that food items from a common category, such as beef, share similar essences and properties may extend to PBMAs despite their non-animal origins. Given the challenges in developing PBMAs that adequately replicate the taste, texture, and nutritional properties of meat, targeting intuitions that guide perceived similarities of PBMAs and meat, like food essentialism, may be a promising approach for supporting the protein transition.

2.
J Environ Sci (China) ; 150: 318-331, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306407

RESUMEN

The relationship between chemodiversity and microbial succession in wastewater treatment plants (WWTPs) is highly intricate and bidirectional. The specific contribution of the microbial community to changes in the composition of dissolved organic matter (DOM) within different biological treatment units remains unclear, as does the reciprocal influence of DOM composition on microbial succession. In this study, spectroscopy ((Excitation-emission matrix) EEM-PARAFAC, Ultraviolet (UV)-spectrum, Fourier transform infrared spectrometer (FT-IR)), Liquid chromatograph mass spectrometer (LC‒MS) and Fourier transform ion cyclotron resonance (FT-ICR) MS along with high-throughput sequencing technology were used to explore the relationship between chemodiversity and microbial succession in WWTPs concerning seasonal changes. The results showed that WWTPs with anaerobic/anoxic/oxic (A2O) processes can metabolize and transform most of the wastewater DOM, and the anaerobic unit has the highest removal rate for fluorescence DOM (FDOM, 14.07%-64.43%); the anaerobic unit increased aliphatic/proteins and lignin-like molecules but decreased relative intensity, while the anoxic unit removed unsaturated hydrocarbons, aromatic structures, and lignin-like substances. The impact of seasonal changes on the composition and removal of FDOM and DOM in wastewater treatment is significant, and the variations that occur during different seasons affect microbial activity, as well as the production, degradation, and transformation of organic compounds throughout the wastewater treatment process. Network analysis shows that Parcubacteria_genera_incertae_sedis plays a crucial role in DOM chemodiversity, highlighting the crucial contribution of microbial communities to both the structure and operation of the entire DOM network. The results in this study could provide some theoretical and practical basis for guiding the process optimization of WWTPs.


Asunto(s)
Estaciones del Año , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/microbiología , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Microbiota , Bacterias
3.
Methods Mol Biol ; 2834: 197-230, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39312167

RESUMEN

During the past few decades and especially during and after the COVID-19 pandemic, the use of nutraceuticals has become increasingly popular in both humans and animals due to their easy access, cost-effectiveness, and tolerability with a wide margin of safety. While some nutraceuticals are safe, others have an inherent toxic potential. For a large number of nutraceuticals, no toxicity/safety data are available due to a lack of pharmacological/toxicological studies. The safety of some nutraceuticals can be compromised via contamination with toxic plants, metals, mycotoxins, pesticides, fertilizers, drugs of abuse, etc. Knowledge of pharmacokinetic/toxicokinetic studies and biomarkers of exposure, effect, and susceptibility appears to play a pivotal role in the safety and toxicity assessment of nutraceuticals. Interaction studies are essential to determine efficacy, safety, and toxicity when nutraceuticals and therapeutic drugs are used concomitantly or when polypharmacy is involved. This chapter describes various aspects of nutraceuticals, particularly their toxic potential, and the factors that influence their safety.


Asunto(s)
Suplementos Dietéticos , Humanos , Animales , COVID-19 , SARS-CoV-2/efectos de los fármacos
4.
J Environ Sci (China) ; 149: 99-112, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181682

RESUMEN

With the increasing demand for water in hydroponic systems and agricultural irrigation, viral diseases have seriously affected the yield and quality of crops. By removing plant viruses in water environments, virus transmission can be prevented and agricultural production and ecosystems can be protected. But so far, there have been few reports on the removal of plant viruses in water environments. Herein, in this study, easily recyclable biomass-based carbon nanotubes catalysts were synthesized with varying metal activities to activate peroxymonosulfate (PMS). Among them, the magnetic 0.125Fe@NCNTs-1/PMS system showed the best overall removal performance against pepper mild mottle virus, with a 5.9 log10 removal within 1 min. Notably, the key reactive species in the 0.125Fe@NCNTs-1/PMS system is 1O2, which can maintain good removal effect in real water matrices (river water and tap water). Through RNA fragment analyses and label free analysis, it was found that this system could effectively cleave virus particles, destroy viral proteins and expose their genome. The capsid protein of pepper mild mottle virus was effectively decomposed where serine may be the main attacking sites by 1O2. Long viral RNA fragments (3349 and 1642 nt) were cut into smaller fragments (∼160 nt) and caused their degradation. In summary, this study contributes to controlling the spread of plant viruses in real water environment, which will potentially help protect agricultural production and food safety, and improve the health and sustainability of ecosystems.


Asunto(s)
Biomasa , Nanotubos de Carbono , Nanotubos de Carbono/química , Virus de Plantas/fisiología , Purificación del Agua/métodos , Tobamovirus , Peróxidos
5.
Food Chem ; 462: 140943, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217744

RESUMEN

Application of microbial-based biopreparations as a pre-harvest strategy offers a method to obtain sustainable agricultural practices and could be an important approach for advancing food science, promoting sustainability, and meeting global food market demands. The impact of a bacterial-fungal biopreparation mixture on soil-plant-microbe interactions, fruit chemical composition and yield of 7 raspberry clones was investigated by examining the structural and functional profiles of microbial communities within leaves, fruits, and soil. Biopreparation addition caused the enhancement of the microbiological utilization of specific compounds, such as d-mannitol, relevant in plant-pathogen interactions and overall plant health. The biopreparation treatment positively affected the nitrogen availability in soil (9-160%). The analysis of plant stress marker enzymes combined with the evaluation of fruit quality and chemical properties highlight changes inducted by the pre-harvest biopreparation application. Chemical analyses highlight biopreparations' role in soil and fruit quality improvement, promoting sustainable agriculture. This effect was dependent on tested clones, showing increase of soluble solid content in fruits, concentration of polyphenols or the sensory quality of the fruits. The results of the next-generation sequencing indicated increase in the effective number of bacterial species after biopreparation treatment. The network analysis showed stimulating effect of biopreparation on microbial communities by enhancing microbial interactions (increasing the number of network edges up to 260%) of and affecting the proportions of mutual relationships between both bacteria and fungi. These findings show the potential of microbial-based biopreparation in enhancing raspberry production whilst promoting sustainable practices and maintaining environmental homeostasis and giving inshght in holistic understanding of microbial-based approaches for advancing food science monitoring.


Asunto(s)
Bacterias , Frutas , Hongos , Rubus , Microbiología del Suelo , Suelo , Frutas/química , Frutas/microbiología , Frutas/metabolismo , Rubus/química , Rubus/microbiología , Rubus/metabolismo , Rubus/crecimiento & desarrollo , Suelo/química , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/crecimiento & desarrollo , Hongos/metabolismo , Hongos/crecimiento & desarrollo , Agricultura , Microbiota
6.
J Ethnopharmacol ; 336: 118701, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39153519

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Mouthwashes based on medicinal plants have demonstrated benefits in controlling plaque and inflammation, acting positively on the oral hygiene of patients with gingivitis. In traditional medicine, Punica granatum L. has been used to treat oral diseases in countries in Europe, Asia, North America, and Africa. AIM OF THE STUDY: The present study aimed to conduct a comprehensive review on the dental applications of Punica granatum L. for the treatment of gingivitis, including ethnomedicinal uses, analysis of randomized clinical trials, antibacterial activity against Porphyromonas gingivalis, mechanisms of action of phytochemicals isolated from this plant, and preclinical toxicity. MATERIALS AND METHODS: The literature was retrieved from Google Scholar, PubMed®, SciELO, and ScienceDirect®, since the first report published on the topic in 2001 until March 2024. RESULTS: Several clinical trials have demonstrated that mouthwashes containing P. granatum have equal or better efficacy than chlorhexidine in treating patients with gingivitis, confirming the indications for use of this plant by traditional communities. However, reports on the in vitro antibacterial activity of extracts from the fruits of this plant have not shown clinical relevance against the pathogen P. gingivalis. The ellagitannin punicalagin isolated from P. granatum has shown potential against several strains of Gram-positive and Gram-negative bacteria, but, to date, this compound has not yet been tested against P. gingivalis. It is likely that the mechanisms of action of flavonoids, such as quercetin, are involved in the inhibition of the activities of the RgpA, RgpB, and Kgp proteases of P. gingivalis. CONCLUSIONS: In summary, natural products obtained from P. granatum do not present toxic side effects and can be considered as possible substitutes of commercial products recommended for the treatment of gingivitis and other oral diseases.


Asunto(s)
Antibacterianos , Gingivitis , Extractos Vegetales , Porphyromonas gingivalis , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Gingivitis/tratamiento farmacológico , Porphyromonas gingivalis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Granada (Fruta)/química , Medicina Tradicional , Animales , Fitoterapia
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124983, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39159511

RESUMEN

Mercury ion (Hg2+), a heavy metal cation with greater toxicity, is widely present in the ecological environment and has become a serious threat to human health and environmental safety. Currently, developing a solution to simultaneously visualize and monitor Hg2+ in environmental samples, including water, soil, and plants, remains a great challenge. In this work, we created and synthesized a near-infrared fluorescent probe, BBN-Hg, and utilized Hg2+ to trigger the partial cleavage of the carbon sulfate ester in BBN-Hg as a sensing mechanism, and the fluorescence intensity of BBN-Hg was significantly enhanced at 650 nm, thus realizing the visualization of Hg2+ with good selectivity (detection limit, 53 nM). In live cells and zebrafish, the probe BBN-Hg enhances the red fluorescence signal in the presence of Hg2+, and successfully performs 3D imaging on zebrafish, making it a powerful tool for detecting Hg2+ in living systems. More importantly, with BBN-Hg, we are able to detect Hg2+ in actual water samples, soil and plant seedling roots. Furthermore, the probe was prepared as a test strip for on-site determination of Hg2+ with the assistance of a smartphone. Therefore, this study offers an easy-to-use and useful method for tracking Hg2+ levels in living organisms and their surroundings.


Asunto(s)
Colorantes Fluorescentes , Mercurio , Pez Cebra , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Mercurio/análisis , Animales , Humanos , Espectrometría de Fluorescencia/métodos , Límite de Detección
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125001, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39180971

RESUMEN

Utilizing visible and near-infrared (Vis-NIR) spectroscopy in conjunction with chemometrics methods has been widespread for identifying plant diseases. However, a key obstacle involves the extraction of relevant spectral characteristics. This study aimed to enhance sugarcane disease recognition by combining convolutional neural network (CNN) with continuous wavelet transform (CWT) spectrograms for spectral features extraction within the Vis-NIR spectra (380-1400 nm) to improve the accuracy of sugarcane diseases recognition. Using 130 sugarcane leaf samples, the obtained one-dimensional CWT coefficients from Vis-NIR spectra were transformed into two-dimensional spectrograms. Employing CNN, spectrogram features were extracted and incorporated into decision tree, K-nearest neighbour, partial least squares discriminant analysis, and random forest (RF) calibration models. The RF model, integrating spectrogram-derived features, demonstrated the best performance with an average precision of 0.9111, sensitivity of 0.9733, specificity of 0.9791, and accuracy of 0.9487. This study may offer a non-destructive, rapid, and accurate means to detect sugarcane diseases, enabling farmers to receive timely and actionable insights on the crops' health, thus minimizing crop loss and optimizing yields.


Asunto(s)
Aprendizaje Profundo , Enfermedades de las Plantas , Saccharum , Espectroscopía Infrarroja Corta , Análisis de Ondículas , Saccharum/química , Espectroscopía Infrarroja Corta/métodos , Hojas de la Planta/química , Análisis de los Mínimos Cuadrados , Análisis Discriminante
9.
Semina cienc. biol. saude ; 45(2): 145-158, jul./dez. 2024. Ilus, Tab
Artículo en Portugués | LILACS | ID: biblio-1513096

RESUMEN

As condições fitossanitárias de plantas arbóreas podem ser utilizadas para caracterizar comunidades vegetais, indicando condições de qualidade estrutural do componente vegetal. Assim, ambientes alterados antropicamente podem representar uma ameaça à fitossanidade. O objetivo deste estudo foi averiguar as características fitossanitárias do componente arbóreo em um trecho de 400 metros de extensão ao longo da linha férrea localizada no município de Três Barras, estado de Santa Catarina, Brasil. Foram registradas 33 espécies arbóreas, 29 gêneros e 19 famílias. Os índices ecológicos avaliados foram a abundância, densidade, riqueza e equabilidade. Foram avaliados 190 indivíduos em relação a qualidade da copa, grau de infestação de cipós e sanidade da árvore. Embora a qualidade da copa e a sanidade sejam majoritariamente boas, houve um relativo alto número de infestação de cipós. Tal ocorrência pode ser devido à condição de borda em que as plantas se encontram. Os bons índices ecológicos aliados ao baixo número de espécies arbóreas exóticas também indicam boas condições ecológicas e de fitossanidade local. Contudo, são necessários mais estudos (p. ex. florísticos e fitossociológicos) na área. A arborização urbana das proximidades aliada à formação de corredores ecológicos que liguem os fragmentos à Floresta Nacional de Três Barras pode ser uma medida de conservação e regeneração a ser explorada.


Phytosanitary conditions of tree plants can be used to characterize plant communities, indicating structural quality conditions of the plant component. Thus, anthropically altered environments may pose a threat to plant health. The objective of this study was to investigate the phytosanitary and ecological condition of the tree component in a stretch of 400 meters along the railway line located in the municipality of Três Barras, Santa Catarina state, Brazil. Thirty-three tree species were recorded, in addition to 54 taxonomically unidentified individuals. The ecological indices evaluated were abundance, density, richness and evenness. 190 individuals were evaluated in terms of crown quality, Abstract degree of liana infestation and tree health. Although canopy quality and health are mostly good, there was a relatively high number of vine infestations. Such an occurrence may be due to the edge condition in which the plants are located. The good ecological indices combined with the low number of exotic tree species also indicate good ecological conditions and local plant health. However, more studies are needed in the area. Urban afforestation, combined with the formation of ecological corridors that connect the fragments to the Três Barras National Forest, can be a conservation and regeneration measure to be explored.

10.
Plant Reprod ; 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367960

RESUMEN

KEY MESSAGE: Different plant hormones contribute to maize reproductive success. Maize is a major crop species and significantly contributes directly and indirectly to human calorie uptake. Its success can be mainly attributed to its unisexual inflorescences, the tassel and the ear, whose formation is regulated by complex genetic and hormonal networks, and is influenced by environmental cues such as temperature, and nutrient and water availability. Traditional genetic analysis of classic developmental mutants, together with new molecular approaches, have shed light on many crucial aspects of maize reproductive development including the influence that phytohormones exert on key developmental steps leading to successful reproduction and seed yield. Here we will review both historical and recent findings concerning the main roles that phytohormones play in maize reproductive development, from the commitment to reproductive development to sexual reproduction.

11.
Elife ; 132024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360693

RESUMEN

The extracellular matrix plays an integrative role in cellular responses in plants, but its contribution to the signalling of extracellular ligands largely remains to be explored. Rapid alkalinisation factors (RALFs) are extracellular peptide hormones that play pivotal roles in various physiological processes. Here, we address a crucial connection between the de-methylesterification machinery of the cell wall component pectin and RALF1 activity. Pectin is a polysaccharide, contributing to the structural integrity of the cell wall. Our data illustrate that the pharmacological and genetic interference with pectin methyl esterases (PMEs) abolishes RALF1-induced root growth repression. Our data suggest that positively charged RALF1 peptides bind negatively charged, de-methylesterified pectin with high avidity. We illustrate that the RALF1 association with de-methylesterified pectin is required for its FERONIA-dependent perception, contributing to the control of the extracellular matrix and the regulation of plasma membrane dynamics. Notably, this mode of action is independent of the FER-dependent extracellular matrix sensing mechanism provided by FER interaction with the leucine-rich repeat extensin (LRX) proteins. We propose that the methylation status of pectin acts as a contextualizing signalling scaffold for RALF peptides, linking extracellular matrix dynamics to peptide hormone-mediated responses.


Asunto(s)
Arabidopsis , Hidrolasas de Éster Carboxílico , Pectinas , Transducción de Señal , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Pectinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Pared Celular/metabolismo , Matriz Extracelular/metabolismo
12.
Plant Physiol Biochem ; 216: 109161, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39378645

RESUMEN

Strigolactones (SLs) play crucial roles in both plant growth and stress responses. However, their impact on the secondary metabolites of woody plants remains elusive. Here, we found that exogenous strigolactone analogue GR24 positively regulates tea plant flavor secondary metabolites, concurrently inhibiting caffeine biosynthesis and promoting the accumulation of caffeine catabolic pathway products. In this process, SL directly or indirectly inhibits the expression of CsSAMSs by inducing CsbHLH80, thereby reducing caffeine biosynthesis. Furthermore, CsbHLH80 enhances caffeine degradation, leading to increased allantoin. Under normal conditions, heightened allantoin reduces abscisic acid (ABA) accumulation. This inhibition reverses under drought stress. Increased ABA significantly enhances tea plant tolerance to both drought and Phyllosticta theicola Petch. In summary, this study offers novel insights for improving tea plant adaptation and quality in arid regions, particularly emphasizing the selection of stress-tolerant varieties and the refinement of production measures with a focus on high-quality production and environmentally friendly biological control methods.

13.
Dev Cell ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39378877

RESUMEN

Differential growth is central to eukaryotic morphogenesis. We showed using cellular imaging, simulations, and perturbations that light-induced differential growth in a curved organ, the Arabidopsis thaliana apical hook, emerges from the longitudinal expansion of subepidermal cells, acting in parallel with a differential in the material properties of epidermal cell walls that resist expansion. The greater expansion of inner hook cells that results in apical hook opening is gated by wall alkalinity and auxin, both of which are depleted upon illumination. We further identified mechanochemical feedback from wall mechanics to light stimulated auxin depletion, which may contribute to gating hook opening under mechanical restraint. These results highlight how plant cells coordinate growth among tissue layers by linking mechanics and hormonal gradients with the cell wall remodeling required for differential growth.

14.
Curr Biol ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39378881

RESUMEN

Arbuscular mycorrhizal (AM) fungi (e.g., Rhizophagus species) recruit specific bacterial species in their hyphosphere. However, the chemical interplay and the mutual benefit of this intricate partnership have not been investigated yet, especially as it involves bacteria known as strong producers of antifungal compounds such as Bacillus velezensis. Here, we show that the soil-dwelling B. velezensis migrates along the hyphal network of the AM fungus R. irregularis, forming biofilms and inducing cytoplasmic flow in the AM fungus that contributes to host plant root colonization by the bacterium. During hyphosphere colonization, R. irregularis modulates the biosynthesis of specialized metabolites in B. velezensis to ensure stable coexistence and as a mechanism to ward off mycoparasitic fungi and bacteria. These mutual benefits are extended into a tripartite context via the provision of enhanced protection to the host plant through the induction of systemic resistance.

15.
Sci Total Environ ; : 176721, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39378953

RESUMEN

The apple (Malus domestica), a cultivated fruit extensively grown in temperate regions worldwide, is abundant in nutrients and phytochemicals that promote health. However, the application of pesticides in apple cultivation raises significant concern regarding their influence on food safety. This study investigated the dynamic behavior of five pesticides, including chlorpyrifos, imidacloprid, acetamiprid, carbendazim, prochloraz, in apple trees, utilizing both field experiments and predictive modeling to analyze their distribution, transfer, and degradation patterns. Results from the field experiment revealed that at harvest, the residue levels of the five pesticides on apple were below international and national maximum residue limits. The dynamiCROP modeling results, corresponding to the field trial findings, demonstrated that these pesticides exhibited comparable dissipation patterns across various environmental compartments. The primary sources of pesticides in apples were the air and the fruit surface up to 10 days after application, while the soil and leaf surface became the main sources over time. The transferred pesticides adhered to the apple fruits at varying rates and persist therein. Choosing pesticides with lower impact scores helped reduce the impacts on human health and the environment. The assessment of health risks associated with consuming apples containing pesticide residues suggested that the impact on human health is acceptable. These findings were crucial for apple producers, as they enable the optimization of pesticide application timing to ensure compliance with food safety standards and help improve pesticide management strategies in agriculture. This study is essential for minimizing the environmental impact of pesticides and enhancing sustainable agricultural practices.

16.
J Control Release ; 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39378978

RESUMEN

Inflammatory bowel disease (IBD) is a group of chronic relapsing diseases associated with inflammatory disorders and microbial dysbiosis of the intestine. The use of traditional Chinese medicine (TCM) to treat colitis has the advantage of fewer side effects, but the molecular mechanism is not clear. Recently, miRNAs have been recognized as novel functional small molecules in plants that have regulatory effects on biological activities. This study mainly investigated the mechanism of action of MIR2911 from Honeysuckle, the main component of TCM preparations for colitis. The results demonstrated that MIR2911 can be absorbed through the diet and secreted within host small extracellular vesicles (sEVs), acting directly on intestinal bacteria, reducing the abundance of Escherichia-Shigella, and improving colitis symptoms. This study provides a new theoretical basis for the molecular mechanism of TCM therapy and identifies a potential new drug a new drug target for the treatment of colitis.

17.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119858, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39370045

RESUMEN

Microtubules (MTs) are dynamic cytoskeletal polymers that play a critical role in determining cell polarity and shape. In plant cells, acentrosomal MTs are localized on the cell surface and are referred to as cortical MTs. Cortical MTs nucleate in the cell cortex and detach from nucleation sites. The released MT filaments perform treadmilling, with the plus-ends of MTs polymerizing and the minus-ends depolymerizing. Minus-end targeting proteins, -TIPs, include Spiral2, which regulates the minus-end dynamics of acentrosomal MTs. Spiral2 accumulates autonomously at MT minus-ends and inhibits filament shrinkage, but the mechanism by which Spiral2 specifically recognizes minus-ends of MTs remains unknown. Here we describe the crystal structure of Spiral2's N-terminal MT-binding domain. The structural properties of this domain resemble those of the HEAT repeat structure of the tumor overexpressed gene (TOG) domain, but the number of HEAT repeats is different and the conformation is highly arched. Gel filtration and co-sedimentation analyses demonstrate that the domain binds preferentially to MT filaments rather than the tubulin dimer, and that the tubulin-binding mode of Spiral2 via the basic surface is similar to that of the TOG domain. We constructed an in silico model of the Spiral2-tubulin complex to identify residues that potentially recognize tubulin. Mutational analysis revealed that the key residues inferred in the model are involved in microtubule recognition, and provide insight into the mechanism by which end-targeting proteins stabilize MT ends.

18.
J Oleo Sci ; 73(10): 1349-1360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39358218

RESUMEN

Typhonium flagelliforme (T. flagelliforme) is an Indonesian rodent tuber plant traditionally used to treat cancer diseases. Although gamma-ray irradiation has been used to increase the content in the chemical compounds of the T. flagelliforme plants with anticancer activity ten times effective, the specific effect of the isolated compounds from the mutant plants has never been reported yet. The potential cytotoxic agents were characterized via nuclear magnetic resonance spectroscopy, infrared spectroscopy, and mass spectrometry as stigmasterol and 7α-hydroxyl stigmasterol; and their anticancer activity was investigated. The in silico biochemical profile of the two compounds were analyzed by molecular docking and molecular dynamics simulation to confirm its interaction with the agonist binding site of Farsenoid X receptor (FXR). Stigmasterol and 7α-hydroxyl stigmasterol can act as a competitive regulator with a high-affinity for the FXR. The results also showed that stigmasterol and 7α-hydroxyl stigmasterol were the most potential and active fraction of the T. flagelliforme mutant plant against the MCF-7 human breast cancer cell line, with IC 50 value 9.13 µM and 12.97 µM, compared with cisplastin as a control about 13.20 µM. These results demonstrate the potential of stigmasterol and 7α-hydroxyl stigmasterol in T. flagelliforme mutant plants to act towards cancer diseases.


Asunto(s)
Simulación del Acoplamiento Molecular , Humanos , Células MCF-7 , Estigmasterol/farmacología , Estigmasterol/aislamiento & purificación , Tubérculos de la Planta/química , Antineoplásicos Fitogénicos/farmacología , Simulación por Computador , Animales , Mutación , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Simulación de Dinámica Molecular , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo
19.
Sci Total Environ ; 954: 176664, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362557

RESUMEN

The invasion of alien plants has significant implications for vegetation structure and diversity, which could lead to changes in the carbon (C) input from vegetation and change the transformation and decomposition processes of C, thereby altering the dynamics of soil organic carbon (SOC) within ecosystems. Whether alien plant invasion increases the SOC stock and changes SOC fractions consistently within regional scales, and the underlying mechanisms driving these SOC dynamics remain poorly understood. This study investigated SOC dynamics by comparing the plots that suffered invasion and non-invasion of Solidago Canadensis across five ecological function areas in Anhui Province, China, considering climate, edaphic factors, vegetation, and soil microbes. The results demonstrated that the impact of S. Canadensis invasion on SOC storage was not consistent at each site in the 0-20 cm soil layer, as indicated by the range of SOC content (5.94-12.45 g kg-1) observed at non-invaded plots. Stable SOC exhibited similar response patterns with SOC to plant invasion, whereas labile SOC did not. In addition, bacterial and fungal communities were shifted in structure at each site by plant invasion. Bacterial communities exhibited greater resistance to S. Canadensis invasion than did fungal communities, as evidenced by three aspects of the resistance indices-community resistance, phylogenetic conservation, and network complexity. The mechanisms driving SOC dynamics under S. Canadensis invasion were explored using structural equation models. This revealed that fungal keystone taxa responsible for community resistance controlled stable SOC fractions. In contrast, bacterial keystone taxa had the opposite effect on labile and stable SOC. Climatic and edaphic factors were also involved in the labile and stable SOC dynamics. Overall, this study provides novel insights into the dynamics of SOC under S. Canadensis invasion on a regional scale.

20.
Environ Pollut ; 363(Pt 1): 125059, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362621

RESUMEN

Acid mine drainage (AMD) is considered as one of the most important global environmental challenges. Therefore, understanding the impact of AMD on the diversity of microbial communities associated with native plants is important for phytoremediation. In this study, the community assembly and microbial diversity associated with native plants growing along an AMD impact gradient was investigated using metabarcoding and high throughput iChip technique. The study revealed that across both domains of bacteria and fungi, richness and species diversity decreased according to AMD impact. Bacterial species diversity was more stratified according to the pH gradient than fungi, and the AMD impact on the plant-associated microbial diversity decreased towards the plant roots. The microbial community composition of the undisturbed site was significantly different from the AMD impacted sites, and the communities in the AMD impacted sites were further stratified according to the degree of impact. The overall microbial diversity was mediated by the AMD impact, niche differences and plant species differences. Dispersal limitation was the most important community assembly process in the undisturbed site, while the homogenous selection of Burkholderia, Actinospica, Puia and Bradyrhizobium increased along the AMD impact gradient. Differential abundance analysis further revealed that Umbelopsis, Burkholderia and Sphingomonas were among the biomarkers of the AMD impacted sites. Several strains of some of these responsive genera were subsequently isolated using the iChip. Overall, this study presents novel insight into the ecology of plant-associated microbial communities that are relevant for environmental monitoring and for enhancing the revegetation of AMD impacted sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...