Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Intervalo de año de publicación
1.
Curr Biol ; 34(3): 623-631.e6, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183985

RESUMEN

The regulation of behavioral and developmental decisions by small molecules is common to all domains of life. In plants, strigolactones and karrikins are butenolide growth regulators that influence several aspects of plant growth and development, as well as interactions with symbiotic fungi.1,2,3 DWARF14 (D14) and KARRIKIN INSENSITIVE2 (KAI2) are homologous enzyme-receptors that perceive strigolactones and karrikins, respectively, and that require hydrolase activity to effect signal transduction.4,5,6,7 RsbQ, a homolog of D14 and KAI2 from the gram-positive bacterium Bacillus subtilis, regulates growth responses to nutritional stress via the alternative transcription factor SigmaB (σB).8,9 However, the molecular function of RsbQ is unknown. Here, we show that RsbQ perceives butenolide compounds that are bioactive in plants. RsbQ is thermally destabilized by the synthetic strigolactone GR24 and its desmethyl butenolide equivalent dGR24. We show that, like D14 and KAI2, RsbQ is a functional butenolide hydrolase that undergoes covalent modification of the catalytic histidine residue. Exogenous application of both GR24 and dGR24 inhibited the endogenous signaling function of RsbQ in vivo, with dGR24 being 10-fold more potent. Application of dGR24 to B. subtilis phenocopied loss-of-function rsbQ mutations and led to a significant downregulation of σB-regulated transcripts. We also discovered that exogenous butenolides promoted the transition from planktonic to biofilm growth. Our results suggest that butenolides may serve as inter-kingdom signaling compounds between plants and bacteria to help shape rhizosphere communities.


Asunto(s)
Proteínas de Arabidopsis , Hidrolasas , Hidrolasas/genética , Bacillus subtilis , 4-Butirolactona , Lactonas/química , Percepción , Proteínas de Arabidopsis/genética , Reguladores del Crecimiento de las Plantas
2.
Plants (Basel) ; 12(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687299

RESUMEN

The problem of phosphorus and nitrogen deficiency in agricultural soils has been solved by adding chemical fertilizers. However, their excessive use and their accumulation have only contributed to environmental contamination. Given the high content of nutrients in biosolids collected from a food industry waste treatment plant, their use as fertilizers was investigated in Zea mays plants grown in sandy loam soil collected from a semi-desert area. These biosolids contained insoluble phosphorus sources; therefore, given the ability of Azotobacter nigricans to solubilize phosphates, this strain was incorporated into the study. In vitro, the suitable conditions for the growth of Z. mays plants were determined by using biosolids as a fertilizer and A. nigricans as a plant-growth-promoting microorganism; in vitro, the ability of A. nigricans to solubilize phosphates, fix nitrogen, and produce indole acetic acid, a phytohormone that promotes root formation, was also evaluated. At the greenhouse stage, the Z. mays plants fertilized with biosolids at concentrations of 15 and 20% (v/w) and inoculated with A. nigricans favored the development of bending strength plants, which was observed on the increased stem diameter (>13.5% compared with the negative control and >7.4% compared with the positive control), as well as a better absorption of phosphorus and nitrogen, the concentration of which increased up to 62.8% when compared with that in the control treatments. The interactions between plants and A. nigricans were observed via scanning electron microscopy. The application of biosolids and A. nigricans in Z. mays plants grown in greenhouses presented better development than when Z. mays plants were treated with a chemical fertilizer. The enhanced plant growth was attributed to the increase in root surface area.

3.
Microb Genom ; 9(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37466402

RESUMEN

Plant growth-promoting rhizobacteria benefit plants by stimulating their growth or protecting them against phytopathogens. Rhizobacteria must colonize and persist on plant roots to exert their benefits. However, little is known regarding the processes by which rhizobacteria adapt to different plant species, or behave under alternating host plant regimes. Here, we used experimental evolution and whole-population whole-genome sequencing to analyse how Bacillus subtilis evolves on Arabidopsis thaliana and tomato seedlings, and under an alternating host plant regime, in a static hydroponic setup. We observed parallel evolution across multiple levels of biological organization in all conditions, which was greatest for the two heterogeneous, multi-resource, spatially structured environments at the genetic level. Species-specific adaptation at the genetic level was also observed, possibly caused by the selection stress imposed by different host plants. Furthermore, a trade-off between motility and biofilm development was supported by mutational changes in motility- and biofilm-related genes. Finally, we identified several condition-specific and common targeted genes in different environments by comparing three different B. subtilis biofilm adaptation settings. The results demonstrate a common evolutionary pattern when B. subtilis is adapting to the plant rhizosphere in similar conditions, and reveal differences in genetic mechanisms between different host plants. These findings will likely support strain improvements for sustainable agriculture.


Asunto(s)
Arabidopsis , Bacillus subtilis , Bacillus subtilis/genética , Plantas , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Arabidopsis/genética , Arabidopsis/microbiología
4.
Microorganisms ; 11(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513019

RESUMEN

The use of biological inputs is an interesting approach to optimize crop production and reduce the use of chemical inputs. Understanding the chemical communication between bacteria and plants is critical to optimizing this approach. Recently, we have shown that Sphingomonas (S.) sediminicola can improve both nitrogen supply and yield in pea. Here, we used biochemical methods and untargeted metabolomics to investigate the chemical dialog between S. sediminicola and pea. We also evaluated the metabolic capacities of S. sediminicola by metabolic profiling. Our results showed that peas release a wide range of hexoses, organic acids, and amino acids during their development, which can generally recruit and select fast-growing organisms. In the presence of S. sediminicola, a more specific pattern of these molecules took place, gradually adapting to the metabolic capabilities of the bacterium, especially for pentoses and flavonoids. In turn, S. sediminicola is able to produce several compounds involved in cell differentiation, biofilm formation, and quorum sensing to shape its environment, as well as several molecules that stimulate pea growth and plant defense mechanisms.

5.
Ecotoxicol Environ Saf ; 262: 115148, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37331290

RESUMEN

Ground-level ozone (O3) pollution often rise in the summer and coincide with drought stress, which alters the relationships between trees and associated microbial communities in a manner that can have pronounced effects on associated biological activity and ecosystem integrity. Discerning the responses of phyllosphere microbial communities to O3 and water deficit could highlight the ability of plant-microbe interactions to either exacerbate or mitigate the effects of these stressors. Accordingly, this study was designed as the first report to specifically interrogate the impacts of elevated O3 and water deficit stress on phyllospheric bacterial community composition and diversity in hybrid poplar saplings. Significant reductions in phyllospheric bacterial alpha diversity indices were observed, with clear evidence of significant time × water deficit stress interactions. The combination of elevated O3 and water deficit stress shifted in the bacterial community composition over sampling time, resulted in significant increases in the relative abundance of the dominant Gammaproteobacteria phyla together with reductions in Betaproteobacteria. An increased prevalence of Gammaproteobacteria may represent a potential diagnostic dysbiosis-related biosignature associated with poplar disease risk. Significant positive correlations were observed between both Betaproteobacteria abundance and diversity indices and key foliar photosynthetic traits and isoprene emissions, whereas these parameters were negatively correlated with Gammaproteobacteria abundance. These findings suggest that the photosynthesis-related properties in plant leaves are closely related to the makeup of the phyllosphere bacterial community. These data provide novel insight into how plant-associated microbes can help maintain plant health and the stability of the local ecosystem in O3-polluted and dried environments.

6.
Prep Biochem Biotechnol ; 53(9): 1137-1142, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36762765

RESUMEN

The influence of the culture medium without bacterial cells, obtained after the cultivation of endophytic bacteria Priestia endophytica UCM B-5715, on the growth and synthesis of some metabolites in lettuce and chicory seedlings under in vitro conditions was studied. Bacteria were cultivated in liquid LB medium at 37 ºC for 24 h with periodic stirring. The culture fluid was separated from the cell biomass. For preparing the test solution, the supernatant was sterilized by filtration through a filter with a pore diameter of 0.2 µm (Sartorius, Minisart) and diluted with sterile distilled water. The 20% culture fluid (30 µl/plant) was applied to 3-day-old seedlings. In 28 days root and shoot weights of treated chicory plants were 54.3 ± 6.9 and 260.0 ± 20.2 mg, respectively (8.0 ± 0.7 and 91.4 ± 7.0 mg for the control plants). Total flavonoid content and antioxidant activity increased only in chicory plants after the addition of the test solution. Significant changes in the metabolism of treated plants were detected. In the treated lettuce plants asparagine content increased compared to the control (90 vs 22 µg/g, p < 0.1). The median content of fructose was also higher in treated lettuce and chicory plants (1469 vs 73 µg/g and 2278 vs 1051 µg/g). Therefore, the use of culture fluid obtained after the cultivation of P. endophytica UСM B-5715 stimulated the growth of lettuce and chicory plants, affecting the synthesis of some compounds in single-treated plants. These results indicate the potential of compounds excreted during bacterial growth to create natural growth stimulators.


Asunto(s)
Cichorium intybus , Lactuca , Lactuca/metabolismo , Lactuca/microbiología , Cichorium intybus/metabolismo , Cichorium intybus/microbiología , Plantas/metabolismo , Antioxidantes/farmacología
7.
Microorganisms ; 10(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36557594

RESUMEN

Strawberry (Fragaria x ananassa, Duch.) is an important crop worldwide. However, since it is a highly demanding crop in terms of the chemical conditions of the substrate, a large part of strawberry production implies the application of large amounts of fertilizers in the production fields. This practice can cause environmental problems, in addition to increases in the fruit's production costs. In this context, applying plant growth-promoting bacteria in production fields can be an essential strategy, especially thanks to their ability to stimulate plant growth via different mechanisms. Therefore, this study aimed to test in vitro and in vivo the potential of bacteria isolated from strawberry leaves and roots to directly promote plant growth. The isolates were tested in vitro for their ability to produce auxins, solubilize phosphate and fix nitrogen. Isolates selected in vitro were tested on strawberry plants to promote plant growth and increase the accumulation of nitrogen and phosphorus in the leaves. The tested isolates showed an effect on plant growth according to biometric parameters. Among the tested isolates, more expressive results for the studied variables were observed with the inoculation of the isolate MET12M2, belonging to the species Brevibacillus fluminis. In general, bacterial inoculation induced strain-dependent effects on strawberry growth. In vitro and in vivo assays showed the potential use of the B. fluminis MET12M2 isolate as a growth promoter for strawberries.

8.
Front Microbiol ; 13: 910644, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832804

RESUMEN

The composition and structure of the rhizosphere microbiome is affected by many factors, including soil type, genotype, and cultivation time of the plant. However, the interaction mechanisms among these factors are largely unclear. We use culture-independent 16S rRNA amplicon sequencing to investigate the rhizosphere bacterial composition and the structure of cultivated cucumber Xintaimici (XT) and wild-type cucumber Cucumis sativus var. hardwickii (HD) in four kinds of soils. We found that soil type, cultivation time, and genotype affected the composition and structure of cucumber rhizosphere bacterial communities. Notably, HD showed better physiological features in sandy soil and sandy loam soil than it did in black soil and farm soil at 50 days post-sowing, which was due to its stronger recruitment ability to Nitrospira, Nocardioides, Bacillus, and Gaiella in sandy soil, and more Tumebacillus, Nitrospira, and Paenibacillus in sandy loam soil. Meanwhile, we also found that HD showed a better recruiting capacity for these bacterial genera than XT in both sandy soil and sandy loam soil. Functional predictions indicated that these bacteria might have had stronger root colonization ability and then promoted the growth of cucumbers by enhancing nitrogen metabolism and active metabolite secretion. In this study, our findings provided a better insight into the relationship between cucumber phenotype, genotype, and the rhizosphere bacterial community, which will offer valuable theoretical references for rhizosphere microbiota studies and its future application in agriculture.

9.
Front Microbiol ; 13: 906026, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756054

RESUMEN

Neonicotinoids (NEOs) are the most widely used insecticides in the world and pose a serious threat to aquatic ecosystems. The combined use of free-floating aquatic plants and associated microorganisms has a tremendous potential for remediating water contaminated by pesticides. The aim of this study was to determine whether plant growth-promoting bacteria (PGPB) could enhance the phytoremediation efficiency of duckweed (Lemna aequinoctialis) in NEO-contaminated water. A total of 18 different bacteria were isolated from pesticide-stressed agricultural soil. One of the isolates, Pseudomonas monteilii FC02, exhibited an excellent ability to promote duckweed growth and was selected for the NEO removal experiment. The influence of strain FC02 inoculation on the accumulation of three typical NEOs (dinotefuran, thiacloprid, and imidaclothiz) in plant tissues, the removal efficiency in water, and plant growth parameters were evaluated during the 14-day experimental period. The results showed that strain FC02 inoculation significantly (p < 0.05) increased plant biomass production and NEO accumulation in plant tissues. The maximum NEO removal efficiencies were observed in the inoculated duckweed treatment after 14 days, with 92.23, 87.75, and 96.42% for dinotefuran, thiacloprid, and imidaclothiz, respectively. This study offers a novel view on the bioremediation of NEOs in aquatic environments by a PGPB-duckweed partnership.

10.
Microorganisms ; 10(3)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35336124

RESUMEN

In plants, aldoximes per se act as defense compounds and are precursors of complex defense compounds such as cyanogenic glucosides and glucosinolates. Bacteria rarely produce aldoximes, but some are able to transform them by aldoxime dehydratase (Oxd), followed by nitrilase (NLase) or nitrile hydratase (NHase) catalyzed transformations. Oxds are often encoded together with NLases or NHases in a single operon, forming the aldoxime-nitrile pathway. Previous reviews have largely focused on the use of Oxds and NLases or NHases in organic synthesis. In contrast, the focus of this review is on the contribution of these enzymes to plant-bacteria interactions. Therefore, we summarize the substrate specificities of the enzymes for plant compounds. We also analyze the taxonomic and ecological distribution of the enzymes. In addition, we discuss their importance in selected plant symbionts. The data show that Oxds, NLases, and NHases are abundant in Actinobacteria and Proteobacteria. The enzymes seem to be important for breaking through plant defenses and utilizing oximes or nitriles as nutrients. They may also contribute, e.g., to the synthesis of the phytohormone indole-3-acetic acid. We conclude that the bacterial and plant metabolism of aldoximes and nitriles may interfere in several ways. However, further in vitro and in vivo studies are needed to better understand this underexplored aspect of plant-bacteria interactions.

11.
Metabolites ; 12(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35323679

RESUMEN

Plant roots exude a wide variety of secondary metabolites able to attract and/or control a large diversity of microbial species. In return, among the root microbiota, some bacteria can promote plant development. Among these, Pseudomonas are known to produce a wide diversity of secondary metabolites that could have biological activity on the host plant and other soil microorganisms. We previously showed that wheat can interfere with Pseudomonas secondary metabolism production through its root metabolites. Interestingly, production of Pseudomonas bioactive metabolites, such as phloroglucinol, phenazines, pyrrolnitrin, or acyl homoserine lactones, are modified in the presence of wheat root extracts. A new cross metabolomic approach was then performed to evaluate if wheat metabolic interferences on Pseudomonas secondary metabolites production have consequences on wheat metabolome itself. Two different Pseudomonas strains were conditioned by wheat root extracts from two genotypes, leading to modification of bacterial secondary metabolites production. Bacterial cells were then inoculated on each wheat genotypes. Then, wheat root metabolomes were analyzed by untargeted metabolomic, and metabolites from the Adular genotype were characterized by molecular network. This allows us to evaluate if wheat differently recognizes the bacterial cells that have already been into contact with plants and highlights bioactive metabolites involved in wheat-Pseudomonas interaction.

12.
Phytopathology ; 112(8): 1620-1629, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35196066

RESUMEN

Copper (Cu) is an essential element that can be toxic if homeostasis is disrupted. Xylella fastidiosa, a xylem-limited plant pathogenic bacterium that causes disease in many economically important crops worldwide, has been exposed to Cu stress caused by wide application of Cu-containing antimicrobials used to control other diseases. However, X. fastidiosa Cu homeostasis mechanisms are still poorly understood. The potentially Cu-related protein CutC, which is involved in Cu tolerance in Escherichia coli and humans, has not been analyzed functionally in plant pathogenic bacteria. We demonstrate that recombinantly expressed X. fastidiosa CutC binds Cu and deletion of cutC gene (PD0586) in X. fastidiosa showed increased sensitivity to Cu-shock compared with wild type (WT) strain TemeculaL. When infecting plants in the greenhouse, cutC mutant showed decreased disease incidence and severity compared with WT but adding Cu exaggerated severity. Interestingly, the inoculation of cutC mutant caused reduced symptoms in the acropetal regions of plants. We hypothesize that X. fastidiosa cutC is involved in Cu homeostasis by binding Cu in cells, leading to Cu detoxification, which is crucial to withstand Cu-shock stress. Unveiling the role of cutC gene in X. fastidiosa facilitates further understanding of Cu homeostasis in bacterial pathogens.


Asunto(s)
Cobre , Xylella , Proteínas Portadoras , Homeostasis , Humanos , Enfermedades de las Plantas/microbiología , Virulencia/genética , Xylella/genética , Xilema/microbiología
13.
Mol Plant Microbe Interact ; 35(1): 28-38, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34622686

RESUMEN

Duckweeds (Lemnaceae) are representative producers in fresh aquatic ecosystems and also yield sustainable biomass for animal feeds, human foods, and biofuels, and contribute toward effective wastewater treatment; thus, enhancing duckweed productivity is a critical challenge. Plant-growth-promoting bacteria (PGPB) can improve the productivity of terrestrial plants; however, duckweed-PGPB interactions remain unclear and no previous study has investigated the molecular mechanisms underlying duckweed-PGPB interaction. Herein, a PGPB, Ensifer sp. strain SP4, was newly isolated from giant duckweed (Spirodela polyrhiza), and the interactions between S. polyrhiza and SP4 were investigated through physiological, biochemical, and metabolomic analyses. In S. polyrhiza and SP4 coculture, SP4 increased the nitrogen (N), chlorophyll, and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) contents and the photosynthesis rate of S. polyrhiza by 2.5-, 2.5-, 2.7-, and 2.4-fold, respectively. Elevated photosynthesis increased the relative growth rate and biomass productivity of S. polyrhiza by 1.5- and 2.7-fold, respectively. Strain SP4 significantly altered the metabolomic profile of S. polyrhiza, especially its amino acid profile. N stable isotope analysis revealed that organic N compounds were transferred from SP4 to S. polyrhiza. These N compounds, particularly glutamic acid, possibly triggered the increase in photosynthetic and growth activities. Accordingly, we propose a new model for the molecular mechanism underlying S. polyrhiza growth promotion by its associated bacteria Ensifer sp. SP4, which occurs through enhanced N compound metabolism and photosynthesis. Our findings show that Ensifer sp. SP4 is a promising PGPB for increasing biomass yield, wastewater purification activity, and CO2 capture of S. polyrhiza.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Araceae , Ecosistema , Animales , Biomasa , Nitrógeno , Fotosíntesis
14.
Cell Host Microbe ; 29(10): 1507-1520.e4, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34610294

RESUMEN

Although plant roots encounter a plethora of microorganisms in the surrounding soil, at the rhizosphere, plants exert selective forces on their bacterial colonizers. Unlike immune recognition of pathogenic bacteria, the mechanisms by which beneficial bacteria are selected and how they interact with the plant immune system are not well understood. To better understand this process, we studied the interaction of auxin-producing Bacillus velezensis FZB42 with Arabidopsis roots and found that activation of the plant immune system is necessary for efficient bacterial colonization and auxin secretion. A feedback loop is established in which bacterial colonization triggers an immune reaction and production of reactive oxygen species, which, in turn, stimulate auxin production by the bacteria. Auxin promotes bacterial survival and efficient root colonization, allowing the bacteria to inhibit fungal infection and promote plant health. Thus, a feedback loop between bacteria and the plant immune system promotes the fitness of both partners.


Asunto(s)
Arabidopsis/inmunología , Ácidos Indolacéticos/metabolismo , Inmunidad de la Planta , Raíces de Plantas/microbiología , Arabidopsis/genética , Arabidopsis/microbiología , Bacillus/genética , Bacillus/crecimiento & desarrollo , Bacillus/metabolismo , Interacciones Microbiota-Huesped , Raíces de Plantas/inmunología , Especies Reactivas de Oxígeno/inmunología , Rizosfera
15.
3 Biotech ; 11(6): 292, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34136329

RESUMEN

Bacterial transcriptome profiling in the presence of plant fluids or extracts during microbial growth may provide relevant information on plant-bacteria interactions. Here, RNA sequencing (RNA-Seq) was used to determine the transcriptomic profile of Herbaspirillum seropedicae strain HRC54 at the early stages of response to sugarcane apoplastic fluid. Differentially expressed gene (DEG) analysis was performed using the DESeq2 and edgeR packages, followed by functional annotation using Blast2GO and gene ontology enrichment analysis using the COG and KEGG databases. After 2 h of sugarcane apoplastic fluid addition to the H. seropedicae HRC54 culture, respectively, 44 and 45 genes were upregulated and downregulated. These genes were enriched in bacterial metabolism (e.g., oxidoreductase and transferase), ABC transporters, motility, secretion systems, and signal transduction. RNA-Seq expression profiles of 12 genes identified in data analyses were verified by RT-qPCR. The results suggested that H. seropedicae HRC54 recognized sugarcane apoplastic fluid as the host signal, and some DEGs were closely involved at the early stages of the establishment of plant-bacteria interactions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02848-y.

16.
Bio Protoc ; 11(7): e3976, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33889670

RESUMEN

Root-associated bacteria are able to influence plant fitness and vigor. A key step in understanding the belowground plant-bacteria interactions is to quantify root colonization by the bacteria of interest. Probably, genetic engineering with fluorescence markers is the most powerful way to monitor bacterial strains in plant. However, this could have some collateral problems and some strains can be challenging to label. In this sense, bacterial inoculation under properly controlled conditions can enable reliable and reproducible quantification of natural bacterial strains. In this protocol, we describe a detailed procedure for quantification of root-associated bacteria. This method applies non-aggressive samples processed with morphological identification and PCR-based genetic fingerprinting. This easy-to-follow protocol is suitable for studying bacterial colonization of plants grown either in artificial medium or in soil.

17.
Arch Microbiol ; 203(6): 3373-3388, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33880605

RESUMEN

Mitsuaria sp. TWR114 is a biocontrol agent against tomato bacterial wilt (TBW). We aimed to gain genomic insights relevant to the biocontrol mechanisms and colonization ability of this strain. The draft genome size was found to be 5,632,523 bp, with a GC content of 69.5%, assembled into 1144 scaffolds. Genome annotation predicted a total of 4675 protein coding sequences (CDSs), 914 pseudogenes, 49 transfer RNAs, 3 noncoding RNAs, and 2 ribosomal RNAs. Genome analysis identified multiple CDSs associated with various pathways for the metabolism and transport of amino acids and carbohydrates, motility and chemotactic capacities, protection against stresses (oxidative, antibiotic, and phage), production of secondary metabolites, peptidases, quorum-quenching enzymes, and indole-3-acetic acid, as well as protein secretion systems and their related appendages. The genome resource will extend our understanding of the genomic features related to TWR114's biocontrol and colonization abilities and facilitate its development as a new biopesticide against TBW.


Asunto(s)
Agentes de Control Biológico , Burkholderiales/genética , Genoma Bacteriano , Enfermedades de las Plantas/prevención & control , Solanum lycopersicum/microbiología , Proteínas Bacterianas/genética , Composición de Base , Agentes de Control Biológico/metabolismo , Burkholderiales/metabolismo , ADN Bacteriano/química , Genómica , Ácidos Indolacéticos/metabolismo , Enfermedades de las Plantas/microbiología , Metabolismo Secundario/genética , Estrés Fisiológico
18.
Microorganisms ; 9(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800326

RESUMEN

Proficient crop production is needed to ensure the feeding of a growing global population. The association of bacteria with plants plays an important role in the health state of the plants contributing to the increase of agricultural production. Endophytic bacteria are ubiquitous in most plant species providing, in most cases, plant promotion properties. However, the knowledge on the genetic determinants involved in the colonization of plants by endophytic bacteria is still poorly understood. In this work we have used a genetic approach based on the construction of fliM, pilX and eps knockout mutants to show that the motility mediated by a functional flagellum and the pili type IV, and the adhesion modulated by exopolysaccarides are required for the efficient colonization of rice roots by the endophyte Azoarcus sp. CIB. Moreover, we have demonstrated that expression of an exogenous diguanylate cyclase or phophodiesterase, which causes either an increase or decrease of the intracellular levels of the second messenger cyclic di-GMP (c-di-GMP), respectively, leads to a reduction of the ability of Azoarcus sp. CIB to colonize rice plants. Here we present results demonstrating the unprecedented role of the universal second messenger cyclic-di-GMP in plant colonization by an endophytic bacterium, Azoarcus sp. CIB. These studies pave the way to further strategies to modulate the interaction of endophytes with their target plant hosts.

19.
Microbiol Res ; 248: 126743, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33713869

RESUMEN

The interaction between plants and microorganisms directly affects plant health and sustainable agricultural development. Leaves represent a wide-area habitat populated by a variety of microorganisms, whose impact on host environmental adaptability could influence plant growth and function. The driving factors for phyllosphere microbiota assemblage are the focus of current research. Here, we investigated the effect of growth stage (i.e., bolting, flowering, and maturation) and genotype of Arabidopsis thaliana (wild-type and the two photosynthetic mutants ndf4 and pgr5) on the composition of phyllosphere microbiota. Our results show that species abundance varied significantly between the three genotypes at different growth stages, whereas species richness and evenness varied only for ndf4. The leaf surface shared a core microbiota dominated by Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes in all tested growth stages and genotypes. Phyllosphere specificity varied more with respect to growth stage than to genotype. In summary, both the growth stage and genotype of A. thaliana are crucial in shaping phyllosphere bacterial composition, with the former being a stronger driver. Our findings provide a novel for investigating whether the host properties influence the phyllosphere community and favor healthy development of plants.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Bacterias/aislamiento & purificación , Microbiota , Arabidopsis/genética , Bacterias/clasificación , Bacterias/genética , Genotipo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Microbiología del Suelo
20.
Metabolites ; 11(2)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572622

RESUMEN

Roots contain a wide variety of secondary metabolites. Some of them are exudated in the rhizosphere, where they are able to attract and/or control a large diversity of microbial species. In return, the rhizomicrobiota can promote plant health and development. Some rhizobacteria belonging to the Pseudomonas genus are known to produce a wide diversity of secondary metabolites that can exert a biological activity on the host plant and on other soil microorganisms. Nevertheless, the impact of the host plant on the production of bioactive metabolites by Pseudomonas is still poorly understood. To characterize the impact of plants on the secondary metabolism of Pseudomonas, a cross-metabolomic approach has been developed. Five different fluorescent Pseudomonas strains were thus cultivated in the presence of a low concentration of wheat root extracts recovered from three wheat genotypes. Analysis of our metabolomic workflow revealed that the production of several Pseudomonas secondary metabolites was significantly modulated when bacteria were cultivated with root extracts, including metabolites involved in plant-beneficial properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...