Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
J Chromatogr A ; 1735: 465323, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39244911

RESUMEN

Plastic additives are introduced in plastic material formulations, along with organic polymers, to offer different properties such as stability, plasticity or color. However, plastic additives may migrate from the plastic material to the content (in case of plastic containers) or to the material in contact with the plastic, like human skin. In the case of plastic medical devices, this migration is of particular interest, as plastic additives may be deleterious to health. In the present paper, we examined the interest of combining supercritical fluid extraction (SFE) to supercritical fluid chromatography (SFC) hyphenated to mass spectrometry (MS) in an online system to characterize plastic additives in laboratory gloves, taken as samples of medical devices. A set of target compounds comprising 18 plasticizers, 4 antioxidants and 2 lubricants was defined and their detectability with MS was examined, where it appeared that electrospray ionization (ESI) provided better detectability than atmospheric pressure chemical ionization (APCI). After examining possible stationary phases with the help of Derringer desirability function, an isocratic chromatographic method (CO2:methanol 95:5) was developed on Shim-pack UC Phenyl column. The extraction method was examined with a 3-level full factorial design of experiments to optimize the extraction temperature (40 °C) and pressure (200 bar). The online SFE-SFC-MS method was compared to offline methods where the samples were extracted with liquid solvents at atmospheric pressure or high pressure then analysed with SFC-MS. In all cases, offline methods showed significant contaminants (like the oleamide lubricant) issuing from laboratory plastic materials as nitrogen drying station, syringes and filters, while the online method allowed a complete elimination of laboratory contaminations. Furthermore, the online method saved time, solvents and laboratory consumables. It will also show that transferring a compressible fluid from a loading loop is favourable to high efficiency, as the resulting chromatographic peaks are much thinner than when transferring a liquid. Compared to injecting liquid heptane, the efficiency increase was 3.4-fold, while compared to injecting liquid methanol (a common practice in SFC), the efficiency increase was 13-fold. Finally, the additive composition of different laboratory gloves was compared.


Asunto(s)
Cromatografía con Fluido Supercrítico , Plásticos , Cromatografía con Fluido Supercrítico/métodos , Plásticos/química , Espectrometría de Masas/métodos , Plastificantes/análisis , Guantes Protectores , Antioxidantes/análisis , Antioxidantes/química , Espectrometría de Masa por Ionización de Electrospray/métodos
2.
Mar Pollut Bull ; 208: 116935, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278179

RESUMEN

Numerous studies have investigated the occurrence of plastic additives in marine biota. Yet, their main vector of transfer into organisms tissues remains unknown. We explored seven common additives in benthic coral reef invertebrates residing on natural/plastic substrates in a protected marine reserve versus an unprotected reef to ascertain whether additives transfer by substrate leaching. Samples of three coral-reef species were extracted and analyzed by GCMS and HPLC. Of the seven chemical additives investigated, dibenzylamine and bis(2-ethylhexyl) phthalate were detected. No significant association was found between additives and substrate type, possibly because these plastics have been submerged for years, and the majority of additives within them have leached. The marine reserve had fewer samples with additives, highlighting the importance of active management. Understanding the transfer vectors of plastic additives into biota is essential for assessing the risk they pose and devising effective management tools for protecting coral reefs.

3.
Environ Res ; 263(Pt 1): 120007, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284493

RESUMEN

Discharge or leaching of plastic additives, which are an essential part of the plastic production process, can lead to environmental pollution with serious impacts on human and ecosystem health. Recently, the emission of plastic additives is increasing dramatically, but its pollution condition has not received enough attention. Meanwhile, the effective treatment strategy of plastic additive pollution is lack of systematic introduction. Therefore, it is crucial to analyze the harm and pollution status of plastic additives and explore effective pollution control strategies. This paper reviews the latest research progress on additives in plastics, describes the effects of their migration into packaged products and leaching into the environment, presents the hazards of four major classes of plastic additives (i.e., plasticizers, flame retardants, stabilizers, and antimicrobials), summarizes the existing abiotic/biotic strategies for accelerated the remediation of additives, and finally provides perspectives on future research on the removal of plastic additives. To the best of our knowledge, this is the first review that systematically analyzes strategies for the treatment of plastic additives. The study of these strategies could (i) provide feasible, cost-effective abiotic method for the removal of plastic additives, (ii) further enrich the current knowledge on plastic additive bioremediation, and (iii) present application and future development of plants, invertebrates and machine learning in plastic additive remediation.

4.
Sci Total Environ ; 954: 176308, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284443

RESUMEN

Marine vertebrates are known to ingest significant amounts of microplastics (MPs). Once ingested, MPs might cause gastrointestinal injuries and serve as a path of harmful plastic components, such as phthalate esters (PAEs) and bisphenol A (BPA) in the food chain. However, there is a lack of standardized in-vitro methods capable of simulating fish uptake of chemicals from MPs in the environment as potential vectors of such contaminants. In this work, leaching and in-vitro oral bioaccessibility testing of PAEs and BPA from MPs were conducted batchwise using artificial seawater and gut fluids mimicking gastric, intestinal, and gastrointestinal compartments of marine vertebrates at physiological temperature. The environmental and physiologically relevant extraction tests were applied to medium-density polyethylene (PE) and polyvinyl chloride (PVC) certified reference materials containing eight PAEs of varying hydrophobicity, namely, dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate, benzylbutyl phthalate, diethylhexyl phthalate, di-n-octyl phthalate, diisononyl phthalate and diisodecyl phthalate, and BPA (only in PE) as MP surrogates with realistic analyte concentrations of additives for primary MPs. The analysis of the leachates/gut fluid extracts was performed via dilute-and-shoot by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Only the most hydrophilic compounds, i.e. DMP, DEP and BPA, were found to get released significantly in saline waters, and exhibited the highest oral bioaccessibility rates (34-83 %). Based on our results, a dual-compartment physiologically relevant gastrointestinal test is recommended for appropriate estimation of fish bioaccessibility. The fish daily intakes of DMP, DEP and BPA from MPs, and seawater ingestion as well were estimated using several contamination scenarios (10th percentile as the low level, 50th percentile as the medium level and 90th percentile as the high level) based on probabilistic distributions and cumulative probability curves of measured environmental concentrations of (i) MPs in seawater throughout the world, (ii) DMP, DEP and BPA in beached MPs and those sampled in the open ocean (including both incurred and adsorbed contaminants), and (iii) DMP, DEP and BPA in seawater as reported in recent literature. Under a medium-level concentration scenario (50th percentile) in marine settings, and taking the gastrointestinal bioaccessibility factor into account, the daily intake of DMP, DEP and BPA from MPs accounted for a mere 0.02 % of the waterborne contribution. Hence, the ingestion of MPs should not be considered the primary route of fish exposure to BPA and the most polar PAEs in marine environments. However, more studies on the local and the global scales for mass concentrations of MPs and additives in marine settings are needed for further confirmation of our findings.

5.
Comp Biochem Physiol C Toxicol Pharmacol ; 287: 110042, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306266

RESUMEN

The increase in plastic debris and its environmental impact has been a major concern for scientists. Physical destruction, chemical reactions, and microbial activity can degrade plastic waste into particles smaller than 5 mm, known as microplastics (MPs). MPs may eventually enter aquatic ecosystems through surface runoff. The accumulation of MPs in aquatic environments poses a potential threat to finfish, shellfish, and the ecological balance. This study investigated the effect of MP exposure on freshwater and marine fish. MPs could cause significant harm to fish, including physical damage, death, inflammation, oxidative stress, disruption of cell signalling and cellular biochemical processes, immune system suppression, genetic damage, and reduction in fish growth and reproduction rates. The activation of the detoxification system of fish exposed to MPs may be associated with the toxicity of MPs and chemical additives to plastic polymers. Furthermore, MPs can enhance the bioavailability of other xenobiotics, allowing these harmful substances to more easily enter and accumulate in fish. Accumulation of MPs and associated chemicals in fish can have adverse effects on the fish and humans who consume them, with these toxic substances magnifying as they move up the food chain. Changes in migration and reproduction patterns and disruptions in predator-prey relationships in fish exposed to MPs can significantly affect ecological dynamics. These interconnected changes can lead to cascading effects throughout aquatic ecosystems. Thus, implementing solutions like reducing plastic production, enhancing recycling efforts, using biodegradable materials, and improving waste management is essential to minimize plastic waste and its environmental impact.

6.
Environ Pollut ; 360: 124693, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39122173

RESUMEN

Plastic additives, such as phthalates, are ubiquitous contaminants that can have detrimental impacts on marine organisms and overall ecosystems' health. Valuable information about the status and resilience of marine ecosystems can be obtained through the monitoring of key indicator species, such as cetaceans. In this study, fatty acid profiles and phthalates were examined in blubber biopsies of free-ranging individuals from two delphinid species (short-finned pilot whale - Globicephala macrorhynchus, n = 45; common bottlenose dolphin - Tursiops truncatus, n = 39) off Madeira Island (NE Atlantic). This investigation aimed to explore the relations between trophic niches (epipelagic vs. mesopelagic), contamination levels, and the health status of individuals within different ecological and biological groups (defined by species, residency patterns and sex). Multivariate analysis of selected dietary fatty acids revealed a clear niche segregation between the two species. Di-n-butylphthalate (DBP), diethyl phthalate (DEP), and bis(2-ethylhexyl) phthalate (DEHP) were the most prevalent among the seven studied phthalates, with the highest concentration reached by DEHP in a bottlenose dolphin (4697.34 ± 113.45 ng/g). Phthalates esters (PAEs) concentration were higher in bottlenose dolphins (Mean ∑ PAEs: 947.56 ± 1558.34 ng/g) compared to pilot whales (Mean ∑ PAEs: 229.98 ± 158.86 ng/g). In bottlenose dolphins, DEHP was the predominant phthalate, whereas in pilot whales, DEP and DBP were more prevalent. Health markers suggested pilot whales might suffer from poorer physiological conditions than bottlenose dolphins, although high metabolic differences were seen between the two species. Phthalate levels showed no differences by ecological or biological groups, seasons, or years. This study is the first to assess the extent of plastic additive contamination in free-ranging cetaceans from a remote oceanic island system, underscoring the intricate relationship between ecological niches and contaminant exposure. Monitoring these chemicals and their potential impacts is vital to assess wild population health, inform conservation strategies, and protect critical species and habitats.


Asunto(s)
Delfín Mular , Monitoreo del Ambiente , Ácidos Grasos , Ácidos Ftálicos , Contaminantes Químicos del Agua , Calderón , Animales , Ácidos Ftálicos/metabolismo , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Ácidos Grasos/metabolismo , Calderón/metabolismo , Masculino , Delfín Mular/metabolismo , Femenino , Ecosistema , Biomarcadores/metabolismo , Dietilhexil Ftalato/metabolismo
7.
Arch Toxicol ; 98(10): 3299-3321, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097536

RESUMEN

Plastics are widespread pollutants found in atmospheric, terrestrial and aquatic ecosystems due to their extensive usage and environmental persistence. Plastic additives, that are intentionally added to achieve specific functionality in plastics, leach into the environment upon plastic degradation and pose considerable risk to ecological and human health. Limited knowledge concerning the presence of plastic additives throughout plastic life cycle has hindered their effective regulation, thereby posing risks to product safety. In this study, we leveraged the adverse outcome pathway (AOP) framework to understand the mechanisms underlying plastic additives-induced toxicities. We first identified an exhaustive list of 6470 plastic additives from chemicals documented in plastics. Next, we leveraged heterogenous toxicogenomics and biological endpoints data from five exposome-relevant resources, and identified associations between 1287 plastic additives and 322 complete and high quality AOPs within AOP-Wiki. Based on these plastic additive-AOP associations, we constructed a stressor-centric AOP network, wherein the stressors are categorized into ten priority use sectors and AOPs are linked to 27 disease categories. We visualized the plastic additives-AOP network for each of the 1287 plastic additives and made them available in a dedicated website: https://cb.imsc.res.in/saopadditives/ . Finally, we showed the utility of the constructed plastic additives-AOP network by identifying highly relevant AOPs associated with benzo[a]pyrene (B[a]P), bisphenol A (BPA), and bis(2-ethylhexyl) phthalate (DEHP) and thereafter, explored the associated toxicity pathways in humans and aquatic species. Overall, the constructed plastic additives-AOP network will assist regulatory risk assessment of plastic additives, thereby contributing towards a toxic-free circular economy for plastics.


Asunto(s)
Rutas de Resultados Adversos , Plásticos , Toxicogenética , Plásticos/toxicidad , Humanos , Toxicogenética/métodos , Medición de Riesgo , Contaminantes Ambientales/toxicidad , Animales , Fenoles/toxicidad , Compuestos de Bencidrilo
8.
J Hazard Mater ; 479: 135697, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39216238

RESUMEN

The use of "crumb rubber" coming from recycling materials in outdoor floors like playgrounds has been a frequent practice during the last years. However, these surfaces are object of abrasion and weathering being a potential source of micro and nanoplastics (MNPLs) to the atmosphere and a potential source of human exposure to them. Our main goal has been to expose different crumb rubber materials to summer weathering effects. The released inhalable fractions were sampled for two months with passive samplers and the composition of MNPLs and plastic additives (organic and inorganic) were evaluated. The ecotoxicological effects of leached materials emulating runoff events was evaluated in freshwater micro crustacean Daphnia magna and the green algae Chlorella vulgaris. The analysis of MNPLs showed the presence of polyethylene, polypropylene, polybutadiene, polysiloxanes and polybutylene at concentrations up to 30,426 ng/m3. In the same fraction, we also identified up to 56 plastic additives, including antioxidants, pigments, copolymers, flame retardants, fungicides, lubricants, plasticizers, UV filters and metal ions. Finally, runoff ecotoxicological effects on D. magna and C. vulgaris showed that leached compounds, either from virgin or aged material, would be toxicants for exposed organisms although at concentrations much higher than those expected to be released to the media.


Asunto(s)
Daphnia , Microplásticos , Plásticos , Goma , Daphnia/efectos de los fármacos , Animales , Microplásticos/toxicidad , Microplásticos/análisis , Plásticos/toxicidad , Plásticos/química , Plásticos/análisis , Chlorella vulgaris/efectos de los fármacos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente
9.
Mar Pollut Bull ; 206: 116753, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089205

RESUMEN

Benzotriazole-type ultraviolet stabilizers (BUVSs) are emerging contaminants whose exposure to wildlife is of concern. In this study, we investigated the contamination status of BUVSs in green turtles (Chelonia mydas) breeding at Ogasawara Islands, Japan, through chemical analysis of 10 BUVSs and 26 congeners of polychlorinated biphenyls (PCBs) in adipose tissue (n = 21) and blood plasma (n = 9). BUVSs were detected significant levels in adipose tissue (19 of 21 turtles), and UV-327 (not detected - 14.8 ng/g-lipid, detection frequency: 76 %), UV-326 (not detected - 24.1 ng/g-lipid, 29 %), and UV-328 (not detected - 5.8 ng/g-lipid, 24 %) were frequently detected. Turtles exhibiting sporadically high concentrations of BUVSs (>10 ng/g-lipid) did not necessarily correspond to individuals with high total PCB concentrations (1.03-70.2 ng/g-lipid). The sporadic occurrence pattern of BUVSs suggested that these contaminants in sea turtles cannot be explained solely by diet but are likely derived from plastic debris.


Asunto(s)
Monitoreo del Ambiente , Bifenilos Policlorados , Triazoles , Tortugas , Contaminantes Químicos del Agua , Animales , Océano Pacífico , Contaminantes Químicos del Agua/análisis , Triazoles/análisis , Bifenilos Policlorados/análisis , Japón , Cruzamiento , Protectores Solares , Tejido Adiposo
10.
Anal Bioanal Chem ; 416(22): 4973-4985, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38995406

RESUMEN

This study investigates the efficacy of supramolecular solvent (SUPRAS) in extracting a diverse spectrum of organic contaminants from indoor dust. Initially, seven distinct SUPRAS were assessed across nine categories of contaminants to identify the most effective one. A SUPRAS comprising Milli-Q water, tetrahydrofuran, and hexanol in a 70:20:10 ratio, respectively, demonstrated the best extraction performance and was employed for testing a wider array of organic contaminants. Furthermore, we applied the selected SUPRAS for the extraction of organic compounds from the NIST Standard Reference Material (SRM) 2585. In parallel, we performed the extraction of NIST SRM 2585 with conventional extraction methods using hexane:acetone (1:1) for non-polar contaminants and methanol (100%) extraction for polar contaminants. Analysis from two independent laboratories (in Norway and the Czech Republic) demonstrated the viability of SUPRAS for the simultaneous extraction of twelve groups of organic contaminants with a broad range of physico-chemical properties including plastic additives, pesticides, and combustion by-products. However, caution is advised when employing SUPRAS for highly polar contaminants like current-use pesticides or volatile substances like naphthalene.

11.
Sci Total Environ ; 948: 174827, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047819

RESUMEN

Microplastics (MPs) and plastic additive chemicals are emerging pollutants of great concerns around the world. Open dumping sites can be important sources of those pollutants in emerging countries, but little is known about their occurrence, distribution, transport pathway, and remediation approach. This study aimed to obtain the comprehensive dataset on plastic pollution in an open dumping site in Thailand, including (1) the polymer types and organic/inorganic plastic additives in plastic garbage, (2) horizontal distribution of MPs and plastic additives in the surface soil, (3) the effects of soil-capping treatment, and (4) the vertical transport. First, thirty-two plastic garbage collected from the dumping site were analyzed, and a total of 40 organic chemicals (mean: 1400,000 ng/g dw) and 7 heavy metals (mean: 2,030,000 ng/g dw) were identified. The burdens stored in the dumping site were estimated to reach to 3.3-18 tons for organic additives and 4.9-26 tons for heavy metals. In the surface soil analysis, 13 types of polymers in MPs, 20 elements, and 37 organic plastic additives were detected. The pollution levels were significantly higher near the dumping site than at control sites, indicating that the open dumping site is a point source of MPs and plastic additives. Interestingly, a significantly positive correlation was found between the concentrations of MPs and organic additives in soil. This suggests that MPs act as carriers of plastic-derived chemicals. Soil-capping treatment (including removal of some trash) drastically mitigated the contaminant levels in the surface soil, indicating this treatment is one of the effective approaches to control the horizontal distribution of MPs and plastic additives. However, soil core analyzes implied that the vertical transport is still continued even after soil-capping treatment. Our findings provided the comprehensive dataset to support for understanding plastic pollution in the open dumping site.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Plásticos , Contaminantes del Suelo , Tailandia , Plásticos/análisis , Microplásticos/análisis , Contaminantes del Suelo/análisis , Suelo/química , Instalaciones de Eliminación de Residuos , Metales Pesados/análisis
12.
Mar Pollut Bull ; 206: 116740, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059217

RESUMEN

Plastics can contain two types of organic contaminants; absorbed from ambient water, and already contained as additives. To investigate the bioaccumulation of these substances, we conducted two types of exposure experiments using mussels and polyethylene microplastics with absorbed PCBs and containing four types of additives (BDE209, DBDPE, UV327 and UV234). After dietary exposure for 15 days, significantly higher concentrations of total PCBs, UV327 and UV234 were detected in the gonad of exposed groups than in the control groups, respectively. However, no significant differences in BDE209 or DBDPE levels were observed between the control and exposure groups. Although a higher transfer ratio was shown for PCB congeners with octanol-water partition coefficients (logKow) below 7, the ratio was lower for higher-hydrophobic PCBs with logKow above 7. This suggests that higher hydrophobic compounds (not only highly chlorinated PCBs, but also BDE209 and DBDPE) tend not to desorb or leach from plastics.


Asunto(s)
Bivalvos , Exposición Dietética , Microplásticos , Bifenilos Policlorados , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Microplásticos/análisis , Exposición Dietética/análisis , Bifenilos Policlorados/análisis , Éteres Difenilos Halogenados/análisis , Monitoreo del Ambiente
13.
Sci Total Environ ; 946: 174492, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38969113

RESUMEN

Certain agricultural plastics, i.e., mulching films, are generally considered as potent sources of micro- and nanoplastics (MNPs), due to their direct application on soil and waste mishandling. During the synthesis and fabrication of such agricultural plastics, it is necessary to use chemicals, the so-called plastic additives (PAs), improving the physicochemical properties of the final polymeric product. However, since PAs are loosely bound on the polymer matrix, they can potentially leach into the soil environment with unidentified effects. Clearly, to monitor the fate of PAs in the terrestrial ecosystem, it is necessary to develop accurate, sensitive and robust analytical methods. To this end, a comprehensive analytical strategy was developed for monitoring 16 PAs with diverse physicochemical properties (partition coefficient; -3 < logP<19) in soil samples using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). For this purpose, two different extraction procedures were developed, namely, a single step ultrasound-assisted extraction (UAE) using ethyl acetate or an aqueous solution of methanol and a binary extraction, combining Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) and UAE principles with n-hexane as the extractant. Interestingly, within the sample preparation investigation, we identified in-lab contamination sources of PAs, e.g., centrifuge tubes or microfilters. Such consumables are made of plastic contaminating the procedural blanks and omitting their use was necessary to acquire satisfactory analytical performance. In detail, method validation was performed for 16 compounds achieving recoveries mainly in the range 70-120 %, repeatability (expressed as relative standard deviation, RSD %) < 20 % and limits of quantification (LOQs) ranging between 0.2 and 20 ng/g dry weight (dw). Importantly, the presented strategies are added to the very limited available for PA determination in soil, a topical issue with a significant and rather understudied impact on agriculture.


Asunto(s)
Agricultura , Plásticos , Contaminantes del Suelo , Suelo , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Contaminantes del Suelo/análisis , Plásticos/análisis , Cromatografía Líquida de Alta Presión/métodos , Suelo/química , Monitoreo del Ambiente/métodos
14.
J Environ Manage ; 367: 121880, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059307

RESUMEN

Plastic weathering in the natural environment is a dynamic and complex process, where the release of microplastics, nanoplastics and additives poses potential threats to ecosystems. Understanding the release of different weathering products from plastics is crucial for predicting and assessing the environmental hazards of plastics. This study systematically explored these phenomena by exposing polystyrene (PS) to UV irradiation and mechanical agitation for different durations (1 day, 5 days, 10 days, 20 days). The degree of aging, yellowing, brittleness, and the abundance of carbonyl (CO) functional groups in PS were all gradually increasing over time. The weathering pattern of PS surfaces manifested as initial particle oxidation followed by later cracks or flakes formation. The release of products was positively correlated with the aging degree of plastics, as well as among the various released products. Laser infrared and Raman tests indicated that, for microplastics, the size range of 10-20 µm consistently dominated over time, while the primary size range of nanoplastics shifted towards smaller sizes. Additives and other soluble products were prone to release from weathering plastics, with 20 different chemicals detected after 20 d. The release of plastic additives was closely related to aging time, additive type, and quantity. This study contributes to our understanding of the weathering process of plastics, clarifies the release patterns of products over time, and the relationships among different products. It helps predict and assess the environmental pollution caused by plastics.


Asunto(s)
Microplásticos , Plásticos , Poliestirenos , Poliestirenos/química , Microplásticos/química , Plásticos/química
15.
Molecules ; 29(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38930935

RESUMEN

Antimony (Sb) contamination poses significant environmental and health concerns due to its toxic nature and widespread presence, largely from anthropogenic activities. This study addresses the urgent need for an accurate speciation analysis of Sb, particularly in water sources, emphasizing its migration from polyethylene terephthalate (PET) plastic materials. Current methodologies primarily focus on total Sb content, leaving a critical knowledge gap for its speciation. Here, we present a novel analytical approach utilizing frontal chromatography coupled with inductively coupled plasma mass spectrometry (FC-ICP-MS) for the rapid speciation analysis of Sb(III) and Sb(V) in water. Systematic optimization of the FC-ICP-MS method was achieved through multivariate data analysis, resulting in a remarkably short analysis time of 150 s with a limit of detection below 1 ng kg-1. The optimized method was then applied to characterize PET leaching, revealing a marked effect of the plastic aging and manufacturing process not only on the total amount of Sb released but also on the nature of leached Sb species. This evidence demonstrates the effectiveness of the FC-ICP-MS approach in addressing such an environmental concern, benchmarking a new standard for Sb speciation analysis in consideration of its simplicity, cost effectiveness, greenness, and broad applicability in environmental and health monitoring.


Asunto(s)
Antimonio , Espectrometría de Masas , Tereftalatos Polietilenos , Antimonio/análisis , Antimonio/química , Tereftalatos Polietilenos/química , Espectrometría de Masas/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Monitoreo del Ambiente/métodos
16.
Sci Total Environ ; 946: 173884, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38885719

RESUMEN

Soft plastic lures (SPLs) are commonly used artificial lures in recreational angling. Anglers regularly lose SPLs while fishing and there is little knowledge about the environmental impacts of lost SPLs. As with other plastic items, SPLs contain phthalates and other persistent additives that may leach into water. In this study, 16 randomly chosen SPLs of common models were analyzed for the leaching of persistent, water-soluble plastic additives, including phthalates. The estrogenicity of sample extracts from a subsample of 10 SPLs was assessed using luciferase reporter gene bioassays. Over a period of 61 days, 10 of the 16 SPLs leached the targeted phthalates dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP) and di-n-butyl phthalate (DnBP) at median detectable concentrations ranging from 10 ng/g sample BBP to a median of 1001 ng/g DMP as well as 45 persistent, mobile, and toxic (PMT) plastic additives. DEP was detected most frequently in 8 SPLs, followed by BBP (2 SPLs), DMP (2 SPLs) and DnBP (1 SPL). The extract from one SPL with comparatively low phthalate and PMT plastic additive levels was active in the bioassay, indicating high endocrine-disruptive potential, presumably due to unknown additives that were not among the target substances of the methodology used in this study. The study was supplemented by a mail survey among anglers, in which attitudes of anglers towards SPLs were investigated. The survey indicated that SPL loss is a common event during angling. Most participants were concerned about potential ecological impacts of SPLs, wanted the ingredients of SPLs to be labelled and supported legal restrictions concerning toxic ingredients of SPLs. The study shows that SPLs are a potential source of environmental pollution, may pose human health risks and need further investigation, considering the frequent use of SPLs in recreational angling.


Asunto(s)
Ácidos Ftálicos , Plásticos , Plásticos/análisis , Ácidos Ftálicos/análisis , Humanos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Recreación , Exposición a Riesgos Ambientales
17.
J Hazard Mater ; 476: 134631, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38901257

RESUMEN

The occurrence and health risks of fluorescent whitening agents (FWAs) in bottled water were reported for the first time. FWA184 and FWA393 were the most frequently detected FWAs, with mean concentrations of 3.99-17.00 ng L-1. Phthalates (PAEs) such as dibutyl phthalate (DBP), di-iso-butyl phthalate (DiBP), and diethylhexyl phthalate (DEHP) were prevalent in bottled water, with mean levels of 40.89-716.66 ng L-1, and their concentrations in bottled water were much higher than those of FWAs. FWAs and PAEs in bottles and caps were extracted using organic solvent, and the correlation analysis showed that FWA393 and DEHP most likely originated from bottles, while bottle caps were the main sources of DBP and DiBP. The calculated risk quotients (RQs) of target substances and all age groups were considerably lower than the threshold of 0.1, indicating that consuming bottled water containing these plastic additives was unlikely to pose health risks for people of all ages. However, RQ values for underage people were several times higher than those for adults and hence cannot be neglected; therefore, special attention should be paid to understand the potential risks posed by the exposure to these plastic additives during early life stages, especially the infant stage.


Asunto(s)
Agua Potable , Ácidos Ftálicos , Contaminantes Químicos del Agua , Ácidos Ftálicos/análisis , Ácidos Ftálicos/toxicidad , Agua Potable/análisis , Agua Potable/química , Humanos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Medición de Riesgo , Blanqueadores/análisis , Adulto
18.
J Hazard Mater ; 476: 134997, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38908188

RESUMEN

Microplastics (MPs) co-exist with plastic additives and other emerging pollutants in the drinking water distribution systems (DWDSs). Due to their strong adsorption capacity, MPs may influence the occurrence of additives in DWDSs. The article investigated the occurrence of typical additives bisphenol A (BPA) and dibutyl phthalate (DBP) in DWDSs under the influence of polyamide 6 (PA6) MPs and further discussed the partitioning of BPA/DBP on PA6s, filling a research gap regarding the impact of adsorption between contaminants on their occurrence within DWDSs. In this study, adsorption experiments of BPA/DBP with PA6s and pipe scales were conducted and their interaction mechanisms were investigated. Competitive adsorption experiments of BPA/DBP were also carried out with site energy distribution theory (SEDT) calculations. The results demonstrated that PA6s might contribute to the accumulation of BPA/DBP on pipe scales. The adsorption efficiencies of BPA/DBP with both PA6s and pipe scales were 26.47 and 2.61 times higher than those with only pipe scales. It was noteworthy that BPA had a synergistic effect on the adsorption of DBP on PA6s, resulting in a 26.47 % increase in DBP adsorption. The article provides valuable insights for the compounding effect of different types of additives in water quality monitoring and evaluation.

19.
Sci Total Environ ; 946: 174325, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38942306

RESUMEN

Soil environments across the globe, particularly in agricultural settings, have now been shown to be contaminated with microplastics. Agricultural plastics - such as mulching films - are used in close or direct contact with soils and there is growing evidence demonstrating that they represent a potential source of microplastics. There is a demand to undertake fate and effects studies to understand the behaviour and potential long-term ecological risks of this contamination. Yet, there is a lack of test materials available for this purpose. This study describes the manufacture and characterisation of five large (1-40 kg) batches of microplastic test materials derived from agricultural mulching films. Batches were produced from either polyethylene-based conventional mulching films or starch-polybutadiene adipate terephthalate blend mulching films that are certified biodegradable in soil. Challenges encountered and overcome during the micronisation process provide valuable insights into the future of microplastic test material generation from these material types. This includes difficulties in micronising virgin polyethylene film materials. All five batches were subjected to a thorough physical and chemical characterisation - both of the original virgin films and the subsequent microplastic particles generated - including a screening for the presence of chemical additives. This is a critical step to provide essential information for interpreting particle fate or effects in scientific testing. Trade-offs between obtaining preferred particle typologies and time and cost constraints are elucidated. Several recommendations emerging from the experiences gained in this study are put forward to advance the research field towards greater harmonisation and utilisation of environmentally relevant test materials.

20.
J Hazard Mater ; 473: 134479, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762985

RESUMEN

Once in the marine environment, fishing nets and cables undergo weathering, breaking down into micro and nano-size particles and leaching plastic additives, which negatively affect marine biota. This study aims to unravel the ecotoxicological impact of different concentrations of leachate obtained from abandoned or lost fishing nets and cables in the mussel Mytilus galloprovincialis under long-term exposure (28 days). Biochemical biomarkers linked to antioxidant defense system, xenobiotic biotransformation, oxidative damage, genotoxicity, and neurotoxicity were evaluated in different mussel tissues. The chemical nature of the fishing nets and cables and the chemical composition of the leachate were assessed and metals, plasticizers, UV stabilizers, flame retardants, antioxidants, dyes, flavoring agents, preservatives, intermediates and photo initiators were detected. The leachate severely affected the antioxidant and biotransformation systems in mussels' tissues. Following exposure to 1 mg·L-1 of leachate, mussels' defense system was enhanced to prevent oxidative damage. In contrast, in mussels exposed to 10 and 100 mg·L-1 of leachate, defenses failed to overcome pro-oxidant molecules, resulting in genotoxicity and oxidative damage. Principal component analysis (PCA) and Weight of Evidence (WOE) evaluation confirmed that mussels were significantly affected by the leachate being the hazard of the leachate concentrations of 10 mg·L-1 ranked as major, while 1 and 100 mg·L-1 was moderate. These results highlighted that the leachate from fishing nets and cables can be a threat to the heath of the mussel M. galloprovincialis.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Mytilus/efectos de los fármacos , Mytilus/metabolismo , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Biomarcadores/metabolismo , Antioxidantes/metabolismo , Ecotoxicología , Daño del ADN/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...