Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Transl Cancer Res ; 13(8): 4172-4186, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39262484

RESUMEN

Background: Circular RNAs (circRNAs) have been found to be linked to cancer progression and metastasis, but there is not much known about their connection to lung adenocarcinoma (LAC). In the previous study reported by our group, has_circ_0002360 was highly expressed in LAC tissues. The goal of this study was to investigate the potential impact of has_circ_0002360 in LAC. Methods: Bioinformatics software, TargetScan, and miRanda were used to study the interactions of RNAs. Luciferase reporter assays further confirmed their relationship. The relative expression of has_circ_0002360 in 122 patients and four cell lines of the lung were obtained using real-time qualitative polymerase chain reaction (qRT-PCR). The target gene podocalyxin-like (PODXL) expression was confirmed by immunohistochemistry (IHC) in ten pairs of clinical samples. Then, cell counting kit-8 (CCK8), wound healing, and transwell experiments were applied to examine cell growth, migration, and infection-induced cell invasion. LAC cell lines were infected, and the process was monitored by examination of the related epithelial-mesenchymal transition (EMT) proteins. Results: The resulting data indicated that has_circ_0002360 and PODXL were overexpressed in LAC tissues, whereas miR-762 expression was repressed. The reduction of has_circ_0002360 or upregulation of miR-762 mitigated the proliferation, migration, invasion of LAC cells. Mechanistically, has_circ_0002360 upregulated PODXL expressions by targeting miR-762 to promote LAC progression. Conclusions: In general, the has_circ_0002360/miR-762/PODXL axis affected the progress of LAC. The results of our study identified has_circ_0002360 as a novel oncogenic RNA in LAC.

2.
Cell Rep ; 43(6): 114310, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38838223

RESUMEN

Elevated interferon (IFN) signaling is associated with kidney diseases including COVID-19, HIV, and apolipoprotein-L1 (APOL1) nephropathy, but whether IFNs directly contribute to nephrotoxicity remains unclear. Using human kidney organoids, primary endothelial cells, and patient samples, we demonstrate that IFN-γ induces pyroptotic angiopathy in combination with APOL1 expression. Single-cell RNA sequencing, immunoblotting, and quantitative fluorescence-based assays reveal that IFN-γ-mediated expression of APOL1 is accompanied by pyroptotic endothelial network degradation in organoids. Pharmacological blockade of IFN-γ signaling inhibits APOL1 expression, prevents upregulation of pyroptosis-associated genes, and rescues vascular networks. Multiomic analyses in patients with COVID-19, proteinuric kidney disease, and collapsing glomerulopathy similarly demonstrate increased IFN signaling and pyroptosis-associated gene expression correlating with accelerated renal disease progression. Our results reveal that IFN-γ signaling simultaneously induces endothelial injury and primes renal cells for pyroptosis, suggesting a combinatorial mechanism for APOL1-mediated collapsing glomerulopathy, which can be targeted therapeutically.


Asunto(s)
Apolipoproteína L1 , Interferón gamma , Enfermedades Renales , Piroptosis , Humanos , Apolipoproteína L1/metabolismo , Apolipoproteína L1/genética , COVID-19/metabolismo , COVID-19/patología , COVID-19/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Interferón gamma/metabolismo , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/genética , Piroptosis/genética , SARS-CoV-2/metabolismo , Transducción de Señal
3.
J Clin Med ; 13(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38929959

RESUMEN

Background/Objectives: Glomerulopathy is a term used to describe a broad spectrum of renal diseases, characterized by dysfunction of glomerular filtration barrier, especially of podocytes. Several podocyte-associated proteins have been found and proved their usefulness as urine markers of podocyte dysfunction. Two of them are nephrin (NEP) and prodocalyxin (PDC). This study aims to evaluate the association of podocyte damage, as it is demonstrated via the concentrations of urinary proteins, with clinical and histological data from patients with several types of glomerulonephritis. Methods: We measured urine levels of two podocyte-specific markers, NEP and PDC (corrected for urine creatinine levels), in patients with a wide range of glomerulopathies. Serum and urine parameters as well as histological parameters from renal biopsy were recorded. Results: In total, data from 37 patients with glomerulonephritis and 5 healthy controls were analyzed. PDC and NEP concentrations correlated between them and with serum creatinine levels (p = 0.001 and p = 0.013 respectively), and with histological lesions associated with chronicity index of renal cortex, such as severe interstitial fibrosis, severe tubular atrophy and hyalinosis (for PDC/NEP, all p < 0.05). In addition, the PDC and NEP demonstrated statistically significant correlations with interstitial inflammation (p = 0.018/p = 0.028). Regarding electron microscopy evaluation, PDC levels were correlated with distinct characteristics, such as fibrils and global podocyte foot process fusion, whereas the NEP/CR ratio was uniquely significantly associated with podocyte fusion only in non-immune-complex-mediated glomerulonephritis (p = 0.02). Among the other clinical and histological parameters included in our study, a strong correlation between proteinuria >3 g/24 h and diffuse fusion of podocyte foot processes (p = 0.016) was identified. Conclusions: Podocalyxin and nephrin concentrations in urine are markers of podocyte dysfunction, and in our study, they were associated both with serum creatinine and histological chronicity indices.

4.
Dev Cell ; 59(7): 853-868.e7, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38359833

RESUMEN

Phagocytes remove dead and dying cells by engaging "eat-me" ligands such as phosphatidylserine (PtdSer) on the surface of apoptotic targets. However, PtdSer is obscured by the bulky exofacial glycocalyx, which also exposes ligands that activate "don't-eat-me" receptors such as Siglecs. Clearly, unshielding the juxtamembrane "eat-me" ligands is required for the successful engulfment of apoptotic cells, but the mechanisms underlying this process have not been described. Using human and murine cells, we find that apoptosis-induced retraction and weakening of the cytoskeleton that anchors transmembrane proteins cause an inhomogeneous redistribution of the glycocalyx: actin-depleted blebs emerge, lacking the glycocalyx, while the rest of the apoptotic cell body retains sufficient actin to tether the glycocalyx in place. Thus, apoptotic blebs can be engaged by phagocytes and are targeted for engulfment. Therefore, in cells with an elaborate glycocalyx, such as mucinous cancer cells, this "don't-come-close-to-me" barrier must be removed to enable clearance by phagocytosis.


Asunto(s)
Actinas , Glicocálix , Animales , Humanos , Ratones , Glicocálix/metabolismo , Actinas/metabolismo , Fagocitos , Fagocitosis/fisiología , Ligandos , Apoptosis/fisiología , Fosfatidilserinas/metabolismo
5.
Kidney Res Clin Pract ; 43(3): 274-286, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38325865

RESUMEN

Podocytes are involved in maintaining kidney function and are a major focus of research on diabetic kidney disease (DKD). Urinary biomarkers derived from podocyte fragments and molecules have been proposed for the diagnosis and monitoring of DKD. Various methods have been used to detect intact podocytes and podocyte-derived microvesicles in urine, including centrifugation, visualization, and molecular quantification. Quantification of podocyte-specific protein targets and messenger RNA levels can be performed by Western blotting or enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, respectively. At present, many of these techniques are expensive and labor-intensive, all limiting their widespread use in routine clinical tests. While the potential of urinary podocyte markers for monitoring and risk stratification of DKD has been explored, systematic studies and external validation are lacking in the current literature. Standardization and automation of laboratory methods should be a priority for future research, and the added value of these methods to routine clinical tests should be defined.

6.
Exp Eye Res ; 238: 109741, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056552

RESUMEN

A variety of techniques exist to investigate retinal and choroidal vascular changes in experimental mouse models of human ocular diseases. While all have specific advantages, a method for evaluating the choroidal vasculature in pigmented mouse eyes has been more challenging especially for whole mount visualization and morphometric analysis. Here we report a simple, reliable technique involving bleaching pigment prior to immunostaining the vasculature in whole mounts of pigmented mouse choroids. Eyes from healthy adult pigmented C57BL/6J mice were used to establish the methodology. The retina and anterior segment were separated from the choroid. The choroid with retinal pigment epithelial cells (RPE) and sclera was soaked in 1% ethylenediaminetetraacetic acid (EDTA) to remove the RPE. Tissues were fixed in 2% paraformaldehyde (PFA) in phosphate-buffered saline (PBS). Choroids were subjected to melanin bleaching with 10% hydrogen peroxide (H2O2) at 55 °C for 90 min, washed in PBS and then immunostained with anti-podocalyxin antibody to label vascular endothelium followed by Cy3-AffiniPure donkey anti-goat IgG at 4 °C overnight. Images of immunostained bleached choroids were captured using a Zeiss 710 confocal microscope. In addition to control eyes, this method was used to analyze the choroids from subretinal sodium iodate (NaIO3) RPE atrophy and laser-induced choroidal neovascularization (CNV) mouse models. The H2O2 pretreatment effectively bleached the melanin, resulting in a transparent choroid. Immunolabeling with podocalyxin antibody following bleaching provided excellent visualization of choroidal vasculature in the flat perspective. In control choroids, the choriocapillaris (CC) displayed different anatomical patterns in peripapillary (PP), mid peripheral (MP) and far peripheral (FP) choroid. Morphometric analysis of the vascular area (VA) revealed that the CC was most dense in the PP region (87.4 ± 4.3% VA) and least dense in FP (79.9 ± 6.7% VA). CC diameters also varied depending on location from 11.4 ± 1.97 mm in PP to 15.1 ± 3.15 mm in FP. In the NaIO3-injected eyes, CC density was significantly reduced in the RPE atrophic regions (50.7 ± 5.8% VA in PP and 45.8 ± 6.17% VA in MP) compared to the far peripheral non-atrophic regions (82.8 ± 3.8% VA). CC diameters were significantly reduced in atrophic regions (6.35 ± 1.02 mm in PP and 6.5 ± 1.2 mm in MP) compared to non-atrophic regions (14.16 ± 2.12 mm). In the laser-induced CNV model, CNV area was 0.26 ± 0.09 mm2 and luminal diameters of CNV vessels were 4.7 ± 0.9 mm. Immunostaining on bleached choroids with anti-podocalyxin antibody provides a simple and reliable tool for visualizing normal and pathologic choroidal vasculature in pigmented mouse eyes for quantitative morphometric analysis. This method will be beneficial for examining and evaluating the effects of various treatment modalities on the choroidal vasculature in mouse models of ocular diseases such as age-related macular degeneration, and degenerative genetic diseases.


Asunto(s)
Neovascularización Coroidal , Peróxido de Hidrógeno , Adulto , Humanos , Animales , Ratones , Melaninas , Ratones Endogámicos C57BL , Coroides/irrigación sanguínea , Retina/patología , Neovascularización Coroidal/patología
7.
G Ital Nefrol ; 40(6)2023 Dec 22.
Artículo en Italiano | MEDLINE | ID: mdl-38156539

RESUMEN

In the last decades, our understanding of the genetic disorders of inherited podocytopathies has advanced immensely; this has been possible thanks to the development of next-generation sequencing technologies that offer the possibility to evaluate targeted genes at a lower cost than in the past. Identifying new genetic mutations has helped to recognize the key role of the podocyte in the health of the glomerular filter and to understand the mechanisms that regulate the cell biology and pathology of the podocyte. Here we describe a patient with congenital nephrotic syndrome due to a mutation in PODXL. This gene encodes podocalyxin, a podocyte-specific surface sialomucin known to maintain the characteristic architecture of the foot processes and the patency of the filtration slits.


Asunto(s)
Enfermedades Renales , Síndrome Nefrótico , Podocitos , Humanos , Enfermedades Renales/metabolismo , Glomérulos Renales/patología , Síndrome Nefrótico/genética , Podocitos/metabolismo
8.
Fluids Barriers CNS ; 20(1): 82, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932749

RESUMEN

Here, we report an experimental setup to benchmark different receptors for targeted therapeutic antibody delivery at the blood-brain barrier. We used brain capillary endothelial-like cells derived from induced pluripotent stem cells (hiPSC-BECs) as a model system and compared them to colon epithelial Caco-2 cells. This approach helped to identify favourable receptors for transport into the cell layer itself or for directing transport for transcytosis across the cell layer. The sorting receptors transferrin receptor and sortilin were shown to be efficient as antibody cargo receptors for intracellular delivery to the cell layer. In contrast, the cell surface receptors CD133 and podocalyxin were identified as static and inefficient receptors for delivering cargo antibodies. Similar to in vivo studies, the hiPSC-BECs maintained detectable transcytotic transport via transferrin receptor, while transcytosis was restricted using sortilin as a cargo receptor. Based on these findings, we propose the application of sortilin as a cargo receptor for delivering therapeutic antibodies into the brain microvascular endothelium.


Asunto(s)
Barrera Hematoencefálica , Transcitosis , Humanos , Barrera Hematoencefálica/metabolismo , Células CACO-2 , Transporte Biológico , Encéfalo/metabolismo , Receptores de Transferrina/metabolismo
9.
Glycobiology ; 33(2): 150-164, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36373215

RESUMEN

This report describes the isolation and characterization of two new antibodies, R-6C (IgM) and R-13E (IgM), which were generated in C57BL/6 mice (Mus musculus) using the Tic (JCRB1331) human induced pluripotent cell (hiPSC) line as an antigen, and their comparisons with two existing antibodies, R-10G (IgG1) and R-17F (IgG1). Their epitopes were studied by western blotting after various glycosidase digestions, binding analyses using enzyme-linked immunosorbent assays (ELISAs) and microarrays with various synthetic oligosaccharides. The minimum epitope structures identified were: Siaα2-3Galß1-3GlcNAc(6S)ß1-3Galß1-4GlcNAc(6S)ß1 (R-6C), Fucα1-2Galß1-3GlcNAcß1-3Galß1 (R-13E), Galß1-4GlcNAc(6S)ß1-3Galß1-4GlcNAc(6S)ß1 (R-10G), and Fucα1-2Galß1-3GlcNAß1-3Galß1-4Glc (lacto-N-fucopentaose I) (R-17F). Most glycoprotein epitopes are expressed as O-glycans. The common feature of these epitopes is the presence of an N-acetyllactosamine type 1 structure (Galß1-3GlcNAc) at their nonreducing termini, followed by a type 2 structure (Galß1-4GlcNAc); this arrangement comprises a type 1-type 2 motif. This motif is also shared by TRA-1-60, a traditional onco-fetal antigen. In contrast, the R-10G epitope has a type 2-type 2 motif. Among these antibodies, R-17F and R-13E exhibit cytotoxic activity toward hiPSCs. R-17F and R-13E exhibit extremely high similarity in the amino acid sequences in their complementarity-determining regions (CDRs), which is consistent with their highly similar glycan recognition. These antibodies are excellent tools for investigating the biological functions of glycoconjugates in hiPSCs/hESCs; they could be useful for the selection, isolation and selective killing of such undifferentiated pluripotent stem cells.


Asunto(s)
Sulfato de Queratano , Oligosacáridos , Ratones , Animales , Humanos , Sulfato de Queratano/química , Ratones Endogámicos C57BL , Oligosacáridos/química , Polisacáridos/química , Epítopos/química , Inmunoglobulina G , Inmunoglobulina M
10.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203331

RESUMEN

Podocalyxin (PODXL) overexpression is associated with poor clinical outcomes in various tumors. PODXL is involved in tumor malignant progression through the promotion of invasiveness and metastasis. Therefore, PODXL is considered a promising target of monoclonal antibody (mAb)-based therapy. However, PODXL also plays an essential role in normal cells, such as vascular and lymphatic endothelial cells. Therefore, cancer specificity or selectivity is required to reduce adverse effects on normal cells. Here, we developed an anti-PODXL cancer-specific mAb (CasMab), PcMab-6 (IgG1, kappa), by immunizing mice with a soluble PODXL ectodomain derived from a glioblastoma LN229 cell. PcMab-6 reacted with the PODXL-positive LN229 cells but not with PODXL-knockout LN229 cells in flow cytometry. Importantly, PcMab-6 recognized pancreatic ductal adenocarcinoma (PDAC) cell lines (MIA PaCa-2, Capan-2, and PK-45H) but did not react with normal lymphatic endothelial cells (LECs). In contrast, one of the non-CasMabs, PcMab-47, showed high reactivity to both the PDAC cell lines and LECs. Next, we engineered PcMab-6 into a mouse IgG2a-type (PcMab-6-mG2a) and a humanized IgG1-type (humPcMab-6) mAb and further produced the core fucose-deficient types (PcMab-6-mG2a-f and humPcMab-6-f, respectively) to potentiate the antibody-dependent cellular cytotoxicity (ADCC). Both PcMab-6-mG2a-f and humPcMab-6-f exerted ADCC and complement-dependent cellular cytotoxicity in the presence of effector cells and complements, respectively. In the PDAC xenograft model, both PcMab-6-mG2a-f and humPcMab-6-f exhibited potent antitumor effects. These results indicated that humPcMab-6-f could apply to antibody-based therapy against PODXL-expressing pancreatic cancers.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Sialoglicoproteínas , Humanos , Animales , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Xenoinjertos , Células Endoteliales , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Inmunoglobulina G
11.
Front Oncol ; 13: 1286754, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188285

RESUMEN

Introduction: Targeted-immunotherapies such as antibody-drug conjugates (ADC), chimeric antigen receptor (CAR) T cells or bispecific T-cell engagers (eg, BiTE®) all aim to improve cancer treatment by directly targeting cancer cells while sparing healthy tissues. Success of these therapies requires tumor antigens that are abundantly expressed and, ideally, tumor specific. The CD34-related stem cell sialomucin, podocalyxin (PODXL), is a promising target as it is overexpressed on a variety of tumor types and its expression is consistently linked to poor prognosis. However, PODXL is also expressed in healthy tissues including kidney podocytes and endothelia. To circumvent this potential pitfall, we developed an antibody, named PODO447, that selectively targets a tumor-associated glycoform of PODXL. This tumor glycoepitope is expressed by 65% of high-grade serous ovarian carcinoma (HGSOC) tumors. Methods: In this study we characterize these PODO447-expressing tumors as a distinct subset of HGSOC using four different patient cohorts that include pre-chemotherapy, post-neoadjuvant chemotherapy (NACT) and relapsing tumors as well as tumors from various peritoneal locations. Results: We find that the PODO447 epitope expression is similar across tumor locations and negligibly impacted by chemotherapy. Invariably, tumors with high levels of the PODO447 epitope lack infiltrating CD8+ T cells and CD20+ B cells/plasma cells, an immune phenotype consistently associated with poor outcome. Discussion: We conclude that the PODO447 glycoepitope is an excellent biomarker of immune "cold" tumors and a candidate for the development of targeted-therapies for these hard-to-treat cancers.

12.
Bioinformation ; 19(12): 1124-1128, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38250530

RESUMEN

The diabetic nephropathy is one of the most prevalent microvascular complications with type 2 diabetes mellitus. The most accurate and widely used marker for diabetic nephropathy is microalbuminuria and it is also regarded as conventional method. However, it is not a sensitive or specific nephropathy biomarker. Therefore, it is of interest to evaluate the role of podocalyxin to predict early onset of nephropathy in patients with type 2 diabetes mellitus. This cross - sectional study is conducted on 150 subjects. Among these 150 T2DM patients (Group 2: T2DM with normoalbuminuria and Group 3: T2DM with microalbuminuria) and 50 were age, gender and BMI matched healthy controls (Group 1). The biochemical and experimental parameters was analyzed. T2DM patients have higher levels of urine podocalyxin. This level was significantly elevated in patients with T2DM with microalbuminuria than normoalbuminuria. Urinary podocalyxin levels and HbA1c were found to be positively correlated. Thus, urinary podocalyxin is useful as early predictable marker for nephropathy in patients with type 2 diabetes mellitus.

13.
Adv Sci (Weinh) ; : e2205451, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36373710

RESUMEN

Deciphering signaling mechanisms critical for the extended pluripotent stem cell (EPSC) state and primed pluripotency is necessary for understanding embryonic development. Here, a membrane protein, podocalyxin-like protein 1 (PODXL) as being essential for extended and primed pluripotency, is identified. Alteration of PODXL expression levels affects self-renewal, protein expression of c-MYC and telomerase, and induced pluripotent stem cell (iPSC) and EPSC colony formation. PODXL is the first membrane protein reported to regulate de novo cholesterol biosynthesis, and human pluripotent stem cells (hPSCs) are more sensitive to cholesterol depletion than fibroblasts. The addition of exogenous cholesterol fully restores PODXL knockdown-mediated loss of pluripotency. PODXL affects lipid raft dynamics via the regulation of cholesterol. PODXL recruits the RAC1/CDC42/actin network to regulate SREBP1 and SREBP2 maturation and lipid raft dynamics. Single-cell RNA sequencing reveals PODXL overexpression enhanced chimerism between human cells in mouse host embryos (hEPSCs 57%). Interestingly, in the human-mouse chimeras, laminin and collagen signaling-related pathways are dominant in PODXL overexpressing cells. It is concluded that cholesterol regulation via PODXL signaling is critical for ESC/EPSC.

14.
Pak J Med Sci ; 38(5): 1170-1174, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799717

RESUMEN

Objectives: To investigate the effects of a glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide on podocytes, inflammation, and oxidative stress in patients with diabetic nephropathy (DN). Methods: Eighty-four DN patients treated by the department of endocrinology of the Affiliated Hospital of Hebei University during December 2017 and March 2019 were randomly assigned to a control group and a treatment group (n=42, respectively), with the control group prescribed with conventional DN medications and the treatment group receiving liraglutide treatment in addition to the conventional therapy. The course of treatment lasted for 12 weeks. hemoglobin A1c (HbA1C), body mass index (BMI), total cholesterol (TC), triglyceride (TG), urinary albumin excretion rate (UAER), urine podocalyxin (PCX), urine nephrin, as well as inflammation and oxidative stress markers such as tumor necrosis factor α (TNF-α), monocyte chemotactic protein-1 (MCP-1), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) were measured pre- and post-treatment for intergroup comparison. Results: After 12 weeks of treatment, HbA1C, BMI, TC, and TG in both groups were reduced in comparison with the pre-treatment levels, with the levels in the treatment group lower than in the control group (p<0.05); reduced levels of UAER, PCX, and nephrin were detected in the two groups, with the treatment group exhibiting a significant reduction in these markers compared with the control group (p<0.05); the 12-week treatment led to decreases in the TNF-α, MCP-1, and MDA levels in both groups, with the decline in the treatment group exceeding that in the control group, whereas both groups had an increased level of GSH-Px, with the level in the treatment group higher than that in the control group, and the differences were statistically significant (p<0.05, respectively). Conclusions: Liraglutide protects the kidneys and improves DN by inhibiting inflammation and oxidative stress, reducing urinary albumin excretion and podocyte damage and supporting renal function in addition to its hypoglycemic properties.

15.
Front Immunol ; 13: 835527, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711462

RESUMEN

Podocalyxin (PODXL), a cell surface sialomucin expressed in diverse types of normal and malignant cells, mediates cellular adhesion to extracellular matrix and cell-to-cell interaction. A previous study reported the expression of PODXL protein on monocytes undergoing macrophage differentiation, yet the expression of this molecule in other antigen presenting cells (APCs) and its function in the immune system still remain undetermined. In this study, we report that PODXL is expressed in human monocyte-derived immature dendritic cells at both the mRNA and protein levels. Following dendritric cells maturation using pro-inflammatory stimuli, PODXL expression level decreased substantially. Furthermore, we found that PODXL expression is positively regulated by IL-4 through MEK/ERK and JAK3/STAT6 signaling pathways. Our results revealed a polarized distribution of PODXL during the interaction of APCs with CD4+ T cells, partially colocalizing with F-actin. Notably, PODXL overexpression in APCs promoted their interaction with CD4+ T cells and CD8+ T cells and decreased the expression of MHC-I, MHC-II, and the costimulatory molecule CD86. In addition, PODXL reduced the translocation of CD4+ T-cell centrosome toward the APC-contact site. These findings suggest a regulatory role for PODXL expressed by APCs in immune responses, thus representing a potential target for therapeutic blockade in infection and cancer.


Asunto(s)
Linfocitos T CD8-positivos , Sialoglicoproteínas , Células Presentadoras de Antígenos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Centrosoma/metabolismo , Humanos , Sialoglicoproteínas/genética
16.
Front Oncol ; 12: 856424, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600398

RESUMEN

Podocalyxin (Podxl) is a CD34-related cell surface sialomucin that is normally highly expressed by adult vascular endothelia and kidney podocytes where it plays a key role in blocking adhesion. Importantly, it is also frequently upregulated on a wide array of human tumors and its expression often correlates with poor prognosis. We previously showed that, in xenograft studies, Podxl plays a key role in metastatic disease by making tumor initiating cells more mobile and invasive. Recently, we developed a novel antibody, PODO447, which shows exquisite specificity for a tumor-restricted glycoform of Podxl but does not react with Podxl expressed by normal adult tissue. Here we utilized an array of glycosylation defective cell lines to further define the PODO447 reactive epitope and reveal it as an O-linked core 1 glycan presented in the context of the Podxl peptide backbone. Further, we show that when coupled to monomethyl auristatin E (MMAE) toxic payload, PODO447 functions as a highly specific and effective antibody drug conjugate (ADC) in killing ovarian, pancreatic, glioblastoma and leukemia cell lines in vitro. Finally, we demonstrate PODO447-ADCs are highly effective in targeting human pancreatic and ovarian tumors in xenografted NSG and Nude mouse models. These data reveal PODO447-ADCs as exquisitely tumor-specific and highly efficacious immunotherapeutic reagents for the targeting of human tumors. Thus, PODO447 exhibits the appropriate characteristics for further development as a targeted clinical immunotherapy.

17.
World J Diabetes ; 13(3): 224-239, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35432754

RESUMEN

BACKGROUND: Only 50% of patients with type 2 diabetes mellitus (T2DM) can control their blood glucose levels. Dapagliflozin is a selective inhibitor of sodium-glucose co-transporter 2 (SGLT-2) that improves the insulin sensitivity of the liver and peripheral tissues. Many studies confirmed that SGLT2 inhibitors reduce blood glucose and have multiple beneficial effects such as weight loss, lipid regulation, and kidney protection. Nevertheless, the mechanisms of the renal and cardiovascular protective effects of dapagliflozin from the perspective of differentially expressed proteins in the serum of T2DM patients have not been intensively explored so far. AIM: To identify differentially expressed proteins associated with dapagliflozin treatment in patients with T2DM. METHODS: Twenty T2DM patients [hemoglobin A1c (HbA1c) 7.0%-10.0%] were enrolled at The Affiliated Hospital of Inner Mongolia Medical University between January 1, 2017 and December 1, 2018. They received dapagliflozin (10 mg/d) for 3 mo, and the HbA1c < 7.0% target was achieved. The changes in clinical indexes were compared before and after treatments. Label-free quantitative proteomics was used to identify differentially expressed proteins using the serum samples of five patients. The identified differentially expressed proteins were analyzed using various bioinformatics tools. RESULTS: Dapagliflozin significantly improved the clinical manifestation of the patients. There were 18 downregulated proteins and one upregulated protein in the serum samples of patients after dapagliflozin administration. Bioinformatics analyses, including subcellular localization, EuKaryotic Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes annotations, were used to profile the biological characteristics of the 19 differentially expressed proteins. Based on the literature and function enrichment analysis, two downregulated proteins, myeloperoxidase (MPO) and alpha II B integrin (ITGA2B), and one upregulated protein, podocalyxin (PCX), were selected for enzyme linked immunosorbent assay validation. These validated differentially expressed proteins had multiple correlations with clinical indexes, including HbAc1 and fasting C-peptide. CONCLUSION: Dapagliflozin has hypoglycemic effects and regulates the serum expressions of MPO, ITGA2B, and PCX, possibly contributing to the effects of dapagliflozin on oxidative stress, insulin resistance, and lipid metabolism.

18.
J Diabetes ; 14(4): 236-246, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35229458

RESUMEN

BACKGROUND: The aim of this study was to investigate the effects of sodium glucose cotransporter 2 inhibitors (SGLT2i) on the glomerulus through the evaluation of podocyturia in patients with diabetic kidney disease (DKD). METHODS: The study population was composed of 40 male patients with type 2 diabetes mellitus; 22 of them received SGLT2i (SGLT2i group), and the others who did not were the control. The DKD-related parameters of patients were monitored before SGLT2i initiation, and then in the third and sixth month of the follow-up period. Patients' demographic, clinical, laboratory, and follow-up data were obtained from medical charts. Microalbuminuria was measured in 24-h urine. The number of podocytes in the urine was determined by immunocytochemical staining of two different markers, namely podocalyxin (podx) and synaptopodin (synpo). Concentrations of urine stromal cell-derived factor 1a and vascular endothelial growth factor cytokines were quantified with an enzyme-linked immunosorbent assay kit. RESULTS: At the end of the follow-up period, decreases in glycosylated hemoglobin, glucose, systolic and diastolic blood pressure, uric acid level, and microalbuminuria, and improvement in body mass index level and weight loss were significant for the SGLT2i group. On the other hand, there was no significant difference in terms of these parameters in the control group. The excretion of synaptopodin-positive (synpo+ ) and podocalyxin-positive (podx+ ) cells was significantly reduced at the end of the follow-up period for the SGLT2i group, while there was no significant change for the control. CONCLUSIONS: At the end of the follow-up period, male patients receiving SGLT2i had better DKD-related parameters and podocyturia levels compared to baseline and the control group. Our data support the notion that SGLT2i might have structural benefits for glomerular health.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Albuminuria , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Femenino , Hemoglobina Glucada , Humanos , Masculino , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Factor A de Crecimiento Endotelial Vascular
19.
Biol Reprod ; 106(6): 1143-1158, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35284933

RESUMEN

Podocalyxin (PODXL) is a newly identified key negative regulator of human endometrial receptivity, specifically down-regulated in the luminal epithelium at receptivity to permit embryo implantation. Here, we bioinformatically compared the molecular characteristics of PODXL among the human, rhesus macaque, and mouse, determined by immunohistochemistry and in situ hybridization (mouse tissues) whether endometrial PODXL expression is conserved across the three species and examined if PODXL inhibits mouse embryo attachment in vitro. The PODXL gene, mRNA, and protein sequences showed greater similarities between humans and macaques than with mice. In all species, PODXL was expressed in endometrial luminal/glandular epithelia and endothelia. In macaques (n = 9), luminal PODXL was significantly down-regulated when receptivity is developed, consistent with the pattern found in women. At receptivity, PODXL was also reduced in shallow glands, whereas endothelial expression was unchanged across the menstrual cycle. In mice, endometrial PODXL did not vary considerably across the estrous cycle (n = 16); however, around embryo attachment on d4.5 of pregnancy (n = 4), luminal PODXL was greatly reduced especially near the site of embryo attachment. Mouse embryos failed to attach or thrive when co-cultured on a monolayer of Ishikawa cells overexpressing PODXL. Thus, endometrial luminal PODXL expression is down-regulated for embryo implantation in all species examined, and PODXL inhibits mouse embryo implantation. Rhesus macaques share greater conservations with humans than mice in PODXL molecular characteristics and regulation, thus represent a better animal model for functional studies of endometrial PODXL for treatment of human fertility.


Asunto(s)
Implantación del Embrión , Endometrio , Sialoglicoproteínas , Animales , Implantación del Embrión/fisiología , Endometrio/metabolismo , Femenino , Humanos , Macaca mulatta , Ciclo Menstrual/genética , Ciclo Menstrual/metabolismo , Ratones , Embarazo , Sialoglicoproteínas/genética , Sialoglicoproteínas/fisiología
20.
Clin Kidney J ; 15(2): 269-277, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35145641

RESUMEN

BACKGROUND: Fabry disease (FD) is a rare X-linked disorder of sphingolipid metabolism that results in chronic proteinuric nephropathy. Podocytes are one of the most affected renal cells and play an important role in the development and progression of kidney disease. Detached podocytes found in urine (podocyturia) are considered as a non-invasive early marker of kidney injury; however, the dynamics of podocyte loss remains unknown. METHODS: In this 10-year follow-up study, podocyturia and other renal clinical data were evaluated in 39 patients with FD. From 2009 to 2019, podocyturia was assessed in 566 fresh urine samples from 13 male and 26 female FD patients using immunocytochemical detection of podocalyxin. RESULTS: Podocyturia (number of podocytes per 100 mL of urine) was found in 311/566 (54.9%) of the samples, more frequently (68.9 ± 21.9% versus 50.6 ± 25.9%; P = 0.035) and with higher values (364 ± 286 versus 182 ± 180 number of podocytes per gram of creatinine (Cr) in urine; P = 0.020) in males compared with females. The mean number of assessed samples for each patient was 14.5 (range 3-40) and the frequency of samples with podocyturia ranged from 0% to 100% (median 57%). Podocyturia was already present in 42.9% of patients <20 years of age and in 89.5% of normoalbuminuric patients. Podocyturia correlated with albuminuria (urine albumin:Cr ratio) (r = 0.20, P < 0.001) and a higher incidence and values of podocyturia were observed in patients with lower estimated glomerular filtration rate. CONCLUSIONS: Our data demonstrated that podocyturia is an early clinical event in the development of nephropathy. In addition, we found podocyturia to be a discontinuous event with wide variability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...