Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202406398, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190831

RESUMEN

As organic semiconductor materials gain increasing prominence in the realm of photocatalysis, two carbon-nitrogen materials, poly (heptazine imide) (PHI) and poly (triazine imide) (PTI), have garnered extensive attention and applications owing to their unique structure properties. This review elaborates on the distinctive physical and chemical features of PHI and PTI, emphasizing their formation mechanisms and the ensuing properties. Furthermore, it elucidates the intricate correlation between the energy band structures and various photocatalytic reactions. Additionally, the review outlines the primary synthetic strategies for constructing PHI and PTI, along with characterization techniques for their identification. It also summarizes the primary strategies for enhancing the photocatalytic performance of PHI and PTI, whose advantages in various photocatalytic applications are discussed. Finally, it highlights the promising prospects and challenges pertaining to PHI and PTI as photocatalysts.

2.
ACS Nano ; 18(21): 13939-13949, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38749923

RESUMEN

The structure tuning of bulk graphitic carbon nitride (g-C3N4) is a critical way to promote the charge carriers dynamics for enhancing photocatalytic H2-evolution activity. Exploring feasible post-treatment strategies can lead to effective structure tuning, but it still remains a great challenge. Herein, a supercritical CH3OH (ScMeOH) post-treatment strategy (250-300 °C, 8.1-11.8 MPa) is developed for the structure tuning of bulk g-C3N4. This strategy presented advantages of time-saving (less than 10 min), high yield (over 80%), and scalability due to the enhanced mass transfer and high reactivity of ScMeOH. During the ScMeOH post-treatment process, CH3OH molecules diffused into the interlayers of g-C3N4 and subsequently participated in N-methylation and hydroxylation reactions with the intralayers, resulting in a partial phase transformation from g-C3N4 into carbon nitride with a poly(heptazine imide)-like structure (Q-PHI) as well as abundant methyl and hydroxyl groups. The modified g-C3N4 showed enhanced photocatalytic activity with an H2-evolution rate 7.2 times that of pristine g-C3N4, which was attributed to the synergistic effects of the g-C3N4/Q-PHI isotype heterojunction construction, group modulation, and surface area increase. This work presents a post-treatment strategy for structure tuning of bulk g-C3N4 and serves as a case for the application of supercritical fluid technology in photocatalyst synthesis.

3.
Small ; 20(36): e2401392, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38705862

RESUMEN

Enhancing the utilization of visible-light-active semiconductors with an excellent apparent quantum efficiency (AQE) remains a significant and challenging goal in the realm of photocatalytic water splitting. In this study, a fully condensed sulfur-doped poly(heptazine imide) metalized with Na (Na-SPHI) is synthesized by an ionothermal method by using eutectic NaCl/LiCl mixture as the ionic solvent. Comprehensive characterizations of the obtained Na-SPHI reveal several advantageous features, including heightened light absorption, facilitated exciton dissociation, and expedited charge transfer. More importantly, solvated electron, powerful reducing agents, can be generated on the surface of Na-SPHI upon irradiation with visible light. Benefiting from above advantage, the Na-SPHI exhibits an excellent H2 evolution rate of 571.8 µmol·h-1 under visible light illumination and a super-high AQE of 61.7% at 420 nm. This research emphasizes the significance of the solvated electron on the surface of photocatalyst in overcoming the challenges associated with visible light-driven photocatalysis, showcasing its potential application in photocatalytic water splitting.

4.
ChemSusChem ; 17(12): e202301849, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38316609

RESUMEN

The construction of heterojunctions is challenging, requiring atomic-level contact and interface matching. Here, we have achieved atomic-level interfacial matching by constructing poly(heptazine imide)/poly(triazine imide) crystalline carbon nitride heterojunctions in an in-situ one-step method. The content of poly(triazine imide) in heterojunctions is positively related to the proportion of lithium chloride in potassium chloride and lithium chloride mixed-salts. The optimized heterojunction achieves an apparent quantum efficiency of 48.34 % for photocatalytic hydrogen production at 420 nm, which is at a good level in polymeric carbon nitride photocatalysts. The proposed ion-thermal assisted heterojunction construction strategy contributes to the development of polymeric carbon nitride photocatalysts with high crystallization and high charge separation efficiency.

5.
ACS Nano ; 18(4): 3456-3467, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227835

RESUMEN

Carbon nitrides with layered structures and scalable syntheses have emerged as potential anode choices for the commercialization of sodium-ion batteries. However, the low crystallinity of materials synthesized through traditional thermal condensation leads to insufficient conductivity and poor cycling stability, which significantly hamper their practical applications. Herein, a facile salt-covering method was proposed for the synthesis of highly ordered crystalline C3N4-based all-carbon nanocomposites. The sealing environment created by this strategy leads to the formation of poly(heptazine imide) (PHI), the crystalline phase of C3N4, with extended π-conjugation and a fully condensed nanosheet structure. Meanwhile, theoretical calculations reveal the high crystallinity of C3N4 significantly reduces the energy barrier for electron transition and enables the generation of efficient charge transfer channels at the heterogeneous interface between carbon and C3N4. Accordingly, such nanocomposites present ultrastable cycling performances over 5000 cycles, with a high reversible capacity of 245.1 mAh g-1 at 2 A g-1 delivered. More importantly, they also exhibit an outstanding low-temperature capacity of 196.6 mAh g-1 at -20 °C. This work offers opportunities for the energy storage use of C3N4 and provides some clues for developing long-life and high-capacity anodes operated under extreme conditions.

6.
Small ; 20(5): e2304813, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37752747

RESUMEN

Anti-site defective potassium poly(heptazine imide) (KPHI) with the central nitrogen atoms partially replaced by graphitic carbon atoms in the flawed heptazine rings is prepared by direct ionothermal treatment of the rationally designed supramolecular complex in KSCN salt molten. Compared to the KPHIs without the anti-site defect, the anti-site defective KPHI demonstrates significantly improved photocatalytic and dark photocatalytic performances for H2 evolution reaction (HER). In the presence of the hole scavenger, the anti-site defective KPHI exhibits superior photocatalytic stability for HER lasting 20 h, whereas the deactivation is observed from the ordinary KHPIs after 3 h HER. Moreover, the H2 yield in the dark by the stored photoelectrons in the anti-site defective KPHI increases by more than an order of magnitude. Density functional theory calculations reveal that the anti-site defective unit in KPHI not only prevents spin delocalization but also inhibits the deactivation of hole transfer, which are beneficial to photoelectron storage and photocatalytic activity. The findings in this study provide insight into the photophysical and catalytic properties of KPHI, which conclude a strategy to improve the performances for solar energy conversion and storage by incorporating intrinsic anti-site defects in KPHI.

7.
Angew Chem Int Ed Engl ; 62(47): e202314213, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37794843

RESUMEN

Poly(heptazine imide) (PHI) salts, as crystalline carbon nitrides, exhibit high photocatalytic activity and are being extensively researched, but its photochemical instability has not drawn researchers' attention yet. Herein, sodium PHI (PHI-Na) ultrathin nanosheets with increased crystallinity, synthesized by enhancing contact of melamine with NaCl functioning as a structure-induction agent and hard template, exhibits improved photocatalytic hydrogen evolution activity, but low photochemical stability, owing to Na+ loss in the photocatalytic process, which, interestingly, can be enhanced by the common ion effect, e.g., addition of NaCl that is also able to remarkably increase the photoactivity with the apparent quantum yield at 420 nm reaching 41.5 %. This work aims at attracting research peers' attention to photochemical instability of PHI salts and provides a way to enhance their crystallinity.

8.
Adv Mater ; 35(46): e2305077, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37497609

RESUMEN

Recently, single-atom nanozymes have made significant progress in the fields of sterilization and treatment, but their catalytic performance as substitutes for natural enzymes and drugs is far from satisfactory. Here, a method is reported to improve enzyme activity by adjusting the spatial position of a single-atom site on the nanoplatforms. Two types of Cu single-atom site nanozymes are synthesized in the interlayer (CuL /PHI) and in-plane (CuP /PHI) of poly (heptazine imide) (PHI) through different synthesis pathways. Experimental and theoretical analysis indicates that the interlayer position of PHI can effectively adjust the coordination number, coordination bond length, and electronic structure of Cu single atoms compared to the in-plane position, thereby promoting photoinduced electron migration and O2 activation, enabling effective generate reactive oxygen species (ROS). Under visible light irradiation, the photocatalytic bactericidal activity of CuL /PHI against aureus is ≈100%, achieving the same antibacterial effect as antibiotics, after 10 min of low-dose light exposure and 2 h of incubation.


Asunto(s)
Antibacterianos , Electrónica , Antibacterianos/farmacología , Catálisis , Electrones , Imidas
9.
ChemSusChem ; 16(13): e202202255, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882386

RESUMEN

Broadening the visible light absorption range and accelerating the separation and migration process of charge carriers are effective ways to improve photocatalytic quantum efficiencies. In this study, we show that poly heptazine imides with enhanced optical absorption and promoted charge carrier separation and migration could be obtained by means of a rational design of the band structures and crystallinity of polymeric carbon nitride. Copolymerization of urea with monomers such as 2-aminothiophene-3-carbonitrile would first generate amorphous melon with enhanced optical absorption, while further ionothermal treatment of melon in eutectic salts would increase the polymerization degree and create condensed poly heptazine imides as final products. Accordingly, the optimized poly heptazine imide presents an apparent quantum yield of 12 % at 420 nm for photocatalytic hydrogen production.


Asunto(s)
Imidas , Hidrógeno/química , Cloruro de Sodio/química , Imidas/química , Catálisis
10.
ChemSusChem ; 15(24): e202201616, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36319589

RESUMEN

Poly(heptazine imide) (PHI), one of the attractive allotropes of polymeric carbon nitride, has recently received extensive attention in photocatalysis due to its extended conjugation for fast separation and transfer of the charges. However, pristine PHI bears an intrinsic optical absorption band edge at 460 nm, which largely restrains the visible light utilization. Herein, the narrow-bandgap PHI (N-PHI) with an ordered-distorted interface was fabricated from polycondensation of the mixture of NaSCN, cyanuric chloride, and LiCl. Results revealed that the enhanced optical absorption and the promoted separation and transfer of the charge carriers at the interface greatly improved the photocatalytic performance, which endowed N-PHI with an apparent quantum yield of 20 % for hydrogen production at 450 nm.

11.
ACS Appl Mater Interfaces ; 14(36): 41131-41140, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36047678

RESUMEN

Poly(heptazine imide) (abbreviated as PHI), a heptazine-based crystalline carbon nitride photocatalyst, has attracted widespread attention in the photocatalytic H2 evolution benefiting from its high crystallinity. Nevertheless, the optical absorption range of the directly synthesized PHI is generally narrow, which severely hinders the utilization of visible light. Much research aimed to extend the optical absorption range of PHI; however, either the optimization degree was insufficient or the synthesis process was cumbersome. Herein, red PHI (RPHI) for improving the photocatalytic H2 evolution was facilely synthesized by the one step method. The optimal RPHI sample possesses an obvious new absorption band of the n → π* electron transition and exhibits a significantly enhanced photocatalytic H2 evolution rate of 169 µmol h-1 (λ > 510 nm) and 46 µmol h-1 (λ > 600 nm), which is about 5 times (λ > 510 nm) and 7.7 times (λ > 600 nm) that of pristine PHI and surpasses most reported RPHIs. This work may promote the development of the PHI photocatalyst for near-infrared photocatalytic H2 production.

12.
ACS Appl Mater Interfaces ; 14(11): 13419-13430, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35275489

RESUMEN

Crystalline carbon nitride (CCN) with a poly(heptazine imide) structure is efficient in photocatalytic hydrogen evolution (PHE), but synthesis of CCN ultrathin nanosheets (CCNuns) and their use in PHE with selective organic oxidation are still rare. Herein, CCNuns with Na+ doping are prepared using NaCl as the ion-induction and templating agent and mesoporous melon as the feedstock, exhibiting efficient synchronous PHE and benzyl alcohol oxidation to benzaldehyde, with an apparent quantum yield of 10.5% at 420 nm and a visible light PHE rate that is 94.3 times that of bulk polymeric carbon nitride (PCN). The selectivity of benzaldehyde formation (90.5%) is also much higher than that of PCN (40.7%). Interestingly, this selectivity increases gradually with increasing light wavelengths. The high photoactivity of CCNuns originates from their ultrathinness and Na+ doping, which considerably enhance the photogenerated charge separation. This work opens up an avenue for the synthesis of CCNuns and extends their application.

13.
Adv Mater ; 34(7): e2107061, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34870342

RESUMEN

Carbon nitrides are among the most studied materials for photocatalysis; however, limitations arise from inefficient charge separation and transport within the material. Here, this aspect is addressed in the 2D carbon nitride poly(heptazine imide) (PHI) by investigating the influence of various counterions, such as M = Li+ , Na+ , K+ , Cs+ , Ba2+ , NH4 + , and tetramethyl ammonium, on the material's conductivity and photocatalytic activity. These ions in the PHI pores affect the stacking of the 2D layers, which further influences the predominantly ionic conductivity in M-PHI. Na-containing PHI outperforms the other M-PHIs in various relative humidity (RH) environments (0-42%RH) in terms of conductivity, likely due to pore-channel geometry and size of the (hydrated) ion. With increasing RH, the ionic conductivity increases by 4-5 orders of magnitude (for Na-PHI up to 10-5 S cm-1 at 42%RH). At the same time, the highest photocatalytic hydrogen evolution rate is observed for Na-PHI, which is mirrored by increased photogenerated charge-carrier lifetimes, pointing to efficient charge-carrier stabilization by, e.g., mobile ions. These results indicate that also ionic conductivity is an important parameter that can influence the photocatalytic activity. Besides, RH-dependent ionic conductivity is of high interest for separators, membranes, or sensors.

14.
Exploration (Beijing) ; 1(3): 20210063, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37323696

RESUMEN

A combination of photochemistry and proton coupled electron transfer (PCET) is a primary strategy employed by biochemical systems and synthetic chemistry to enable uphill reactions under mild conditions. Degenerate nanometer-sized n-type semiconductor nanoparticles (SCNPs) with the Fermi level above the bottom of the conduction band are strongly reducing and act more like metals than semiconductors. Application of the degenerate SCNPs is limited to few examples. Herein, we load microporous potassium poly(heptazine imide) (K-PHI) nanoparticles with electrons (e‒) and charge balancing protons (H+) in an illumination phase using sacrificial agents. e‒/H+ in the K-PHI nanoparticles are weakly bound and therefore could be used in a range of PCET reactions in dark, such as generation of aryl radicals from aryl halides, ketyl radicals from ketones, and 6e‒/6H+ reduction of nitrobenzene to aniline. The integration of several features that until now were intrinsic for plants and natural photosynthesis into a transition metal free nanomaterial composed of abundant elements (C, N, and K) offers a powerful tool for synthetic organic chemistry.

15.
Angew Chem Int Ed Engl ; 59(35): 15061-15068, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32412175

RESUMEN

Polymeric carbon nitride materials have been used in numerous light-to-energy conversion applications ranging from photocatalysis to optoelectronics. For a new application and modelling, we first refined the crystal structure of potassium poly(heptazine imide) (K-PHI)-a benchmark carbon nitride material in photocatalysis-by means of X-ray powder diffraction and transmission electron microscopy. Using the crystal structure of K-PHI, periodic DFT calculations were performed to calculate the density-of-states (DOS) and localize intra band states (IBS). IBS were found to be responsible for the enhanced K-PHI absorption in the near IR region, to serve as electron traps, and to be useful in energy transfer reactions. Once excited with visible light, carbon nitrides, in addition to the direct recombination, can also undergo singlet-triplet intersystem crossing. We utilized the K-PHI centered triplet excited states to trigger a cascade of energy transfer reactions and, in turn, to sensitize, for example, singlet oxygen (1 O2 ) as a starting point to synthesis up to 25 different N-rich heterocycles.

16.
Adv Mater ; 29(32)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28632318

RESUMEN

Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photocatalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger.

17.
ACS Appl Mater Interfaces ; 9(27): 22941-22949, 2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28609616

RESUMEN

Photocatalytically active composites comprising potassium poly(heptazine imide) (PHIK) and a Ti-based metal-organic framework (MOF, MIL-125-NH2) are prepared in situ by simply dispersing both materials in water. The driving forces of composite formation are the electrostatic interactions between the solids and the diffusion of potassium ions from PHIK to MIL-125-NH2. This mechanism implies that other composites of poly(heptazine imide) salts and different MOFs bearing positive surface charge can potentially be obtained in a similar fashion. The suggested strategy thus opens a new avenue for the facile synthesis of such materials. The composites are shown to have a superior photocatalytic activity in Rhodamine B degradation under blue light irradiation. The reaction rate is doubled compared to that of pure MOF compound and is 7 times higher than the activity of the pristine PHIK. The results of the electron paramagnetic resonance (EPR) investigations and the analysis of the electronic structures of the solids suggest the electron transfer from MIL-125-NH2 to PHIK in the composite. The possible pathways for the dye degradation and the rationalization of the increased activity of the composites are elaborated.

18.
Chem Asian J ; 12(13): 1517-1522, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28199049

RESUMEN

Highly crystalline potassium (heptazine imides) were prepared by the thermal condensation of substituted 1,2,4-triazoles in eutectic salt melts. These semiconducting salts are already known to be highly active photocatalysts, for example, for the visible-light-driven generation of hydrogen from water. Herein, we show that within the solid-state structure, potassium ions can be exchanged to other metal ions while the crystal habitus is essentially preserved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...