Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.617
Filtrar
1.
J Environ Sci (China) ; 150: 288-296, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306404

RESUMEN

Polybrominated biphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) are commonly detected contaminants at e-waste recycling sites. Against the conventional wisdom that PBDEs and PAHs are highly immobile and persist primarily in shallow surface soils, increasing evidence shows that these compounds can leach into the groundwater. Herein, we compare the leachabilities of PBDEs vs. PAHs from contaminated soils collected at an e-waste recycling site in Tianjin, China. Considerable amounts of BDE-209 (0.3-2 ng/L) and phenanthrene (42-106 ng/L), the most abundant PBDE and PAH at the site, are detected in the effluents of columns packed with contaminated soils, with the specific concentrations varying with hydrodynamic and solution chemistry conditions. Interestingly, the leaching potential of BDE-209 appears to be closely related to the release of colloidal mineral particles, whereas the leachability of phenanthrene correlates well with the concentration of dissolved organic carbon in the effluent, but showing essentially no correlation with the concentration of mineral particles. The surprisingly different trends of the leachability observed between BDE-209 and phenanthrene is counterintuitive, as PBDEs and PAHs often co-exist at e-waste recycling sites (particularly at the sites wherein incineration is being practiced) and share many similarities in terms of physicochemical properties. One possible explanation is that due to its extremely low solubility, BDE-209 predominantly exists in free-phase (i.e., as solid (nano)particles), whereas the more soluble phenanthrene is mainly sorbed to soil organic matter. Findings in this study underscore the need to better understand the mobility of highly hydrophobic organic contaminants at contaminated sites for improved risk management.


Asunto(s)
Residuos Electrónicos , Monitoreo del Ambiente , Agua Subterránea , Éteres Difenilos Halogenados , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Contaminantes Químicos del Agua , Éteres Difenilos Halogenados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Residuos Electrónicos/análisis , Contaminantes del Suelo/análisis , China , Agua Subterránea/química , Carbono/análisis , Minerales/análisis , Minerales/química
2.
J Environ Sci (China) ; 149: 57-67, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181668

RESUMEN

Size-fractionated particulate matter (PM2.5 and PM>2.5) was collected at a traffic site in Kanazawa, Japan in a seasonal sampling work in 2020. Nine polycyclic aromatic hydrocarbons (4- to 6-ring PAHs) were determined in fine and coarse particles. The gas/particle partitioning coefficients (Kp) of the PAHs were calculated from the supercooled liquid vapour pressure and octanol-air partitioning coefficient based on the relationships obtained in previous traffic pollution-related studies. Gaseous PAHs were estimated by Kp and the concentrations of PM and particulate PAHs. The concentrations of total PAHs were 32.5, 320.1 and 5646.2 pg/m3 in the PM>2.5, PM2.5 and gas phases, respectively. Significant seasonal trends in PAHs were observed (particle phase: lowest in summer, gas phase: lowest in spring, particle and gas phase: lowest in spring). Compared to 2019, the total PAH concentrations (in particles) decreased in 2020, especially in spring and summer, which might be due to reduced traffic trips during the COVID-19 outbreak. The incremental lifetime cancer risk (ILCR) calculated from the toxic equivalent concentrations relative to benzo[a]pyrene (BaPeq) was lower than the acceptable limit issued by the US Environmental Protection Agency, indicating a low cancer risk in long-term exposure to current PAH levels. It is notable that gaseous PAHs considerably contributed to BaPeq and ILCR (over 50%), which highlighted the significance of gaseous PAH monitoring for public health protection. This low-cost estimation method for gaseous PAHs can be expected to reliably and conveniently obtain PAH concentrations as a surrogate for traditional sampling in the future work.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Material Particulado , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/análisis , Japón , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Emisiones de Vehículos/análisis , Estaciones del Año
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124971, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39208542

RESUMEN

In this work, we present a comprehensive experimental and theoretical study of the vibrational spectra of PAH molecules recently detected in the interstellar medium: 1-cyanonaphthalene and 2-cyanonaphthalene. The room temperature IR spectra of 1- and 2-cyanonaphthalene in the region 100-3100 cm-1 and their vibrational Raman spectra in the region 35-3100 cm-1 are reported here for the first time. A detailed spectral analysis is carried out using quantum chemical calculations employing the DFT methodology. Anharmonic corrections using the VPT2 method yield excellent agreement with the experimental spectra. A re-investigation of the vibrational spectrum of the parent molecule: naphthalene validates the experimental and theoretical methods used. A consistent set of assignments is reported for the fundamental bands of 1- and 2-cyanonapththalene. The experimental and theoretical data presented here would be useful inputs for modelling the role of cyanonaphthalene in astrophysical processes.

4.
J Environ Sci (China) ; 147: 550-560, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003070

RESUMEN

This study investigated environmental distribution and human exposure of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in one Chinese petroleum refinery facility. It was found that, following with high concentrations of 16 EPA PAHs (∑Parent-PAHs) in smelting subarea of studied petroleum refinery facility, total derivatives of PAHs [named as XPAHs, including nitro PAHs (NPAHs), chlorinated PAHs (Cl-PAHs), and brominated PAHs (Br-PAHs)] in gas (mean= 1.57 × 104 ng/m3), total suspended particulate (TSP) (mean= 4.33 × 103 ng/m3) and soil (mean= 4.37 × 103 ng/g) in this subarea had 1.76-6.19 times higher levels than those from other subareas of this facility, surrounding residential areas and reference areas, indicating that petroleum refining processes would lead apparent derivation of PAHs. Especially, compared with those in residential and reference areas, gas samples in the petrochemical areas had higher ∑NPAH/∑PAHs (mean=2.18), but lower ∑Cl-PAH/∑PAHs (mean=1.43 × 10-1) and ∑Br-PAH/∑PAHs ratios (mean=7.49 × 10-2), indicating the richer nitrification of PAHs than chlorination during petrochemical process. The occupational exposure to PAHs and XPAHs in this petroleum refinery facility were 24-343 times higher than non-occupational exposure, and the ILCR (1.04 × 10-4) for petrochemical workers was considered to be potential high risk. Furthermore, one expanded high-resolution screening through GC Orbitrap/MS was performed for soils from petrochemical area, and another 35 PAHs were found, including alkyl-PAHs, phenyl-PAHs and other species, indicating that profiles and risks of PAHs analogs in petrochemical areas deserve further expanded investigation.


Asunto(s)
Monitoreo del Ambiente , Petróleo , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/análisis , China , Petróleo/análisis , Humanos , Industria del Petróleo y Gas , Exposición a Riesgos Ambientales/análisis , Contaminantes Atmosféricos/análisis , Medición de Riesgo
5.
Bull Environ Contam Toxicol ; 113(4): 40, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305385

RESUMEN

Coastal ecosystems are characterized by various human activities with potential adverse impacts. This study aimed to evaluate the potential oxidative stress effects in representative aquatic biota deployed in situ at a sawmill wastes dump (test site) and reference site in a coastal ecosystem for a short term (28 days) period. PAHs and OCPs were analysed using GC-FID and GC-MS respectively in surface water and sediments. Oxidative stress indices (malondialdehyde, glutathione-s-transferase, reduced glutathione, catalase and superoxide dismutase) were evaluated following standard methods in Coptodon guineensis (Guinean Tilapia) and Callinectes amnicola (Blue crab) over a period of 28 days. Sum PAHs in the test site sediments, oxidative stress indices in C. guineensis liver and C. amnicola haemolymph after 28 days exposure were significantly higher (p < 0.0.5) compared to the reference site. The results showed the adverse impacts to biota of sawmill wastes which are continuously burnt at the test site with potential for long-term effects. Sustainable sawmill wastes management at the test site are recommended to sustain life below water (UNSDG 14).


Asunto(s)
Braquiuros , Monitoreo del Ambiente , Estrés Oxidativo , Tilapia , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Ecosistema , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-39305415

RESUMEN

The presence of polycyclic hydrocarbons (PAHs) and microplastics (MPs) in aquatic environments affects the ecosystems and threatens human health. In this study, the abundance, composition, and morphological characteristics of MPs were determined for the first time in the inland freshwater resources of the Konya Closed Basin, Turkey. The abundance of MPs ranged from 1139 to 23,444 particles/m3 and 150 to 3510 particles/kg in the surface water and sediment, respectively. Fragments and fibers were the most abundant MP shapes in the surface waters (51%, 34%) and sediments (29%, 40%), followed by films, pellets, and foams. Transparent and white MPs were present at the highest percentage in surface waters (72%) and sediments (69%), followed by blue, grey, black, brown, and green. In addition, polyethylene, polypropylene, and cellophane were identified as the main polymers in surface waters (34%, 25%, 24%) and sediments (37%, 17%, 31%). In the Konya Closed Basin, 35% of the surface water samples and 54% of the sediment samples were exposed to very high contamination (CF ≥ 6). Surface waters (PLI: 2.51) and sediments (PLI: 1.67) in the basin were contaminated (PLI > 1) with MPs. The 16 PAHs sorbed on MPs in the surface water and sediment ranged from 394 to 24,754 ng/g and from 37 to 18,323 ng/g, respectively. Phenanthrene and fluoranthene were the most abundant PAHs sorbed on MPs in all surface waters and sediments. Two to three-ring PAH compounds sorbed on MPs were also dominantly detected in surface waters and sediments, accounting for 68% and 78% of the total 16 PAHs, respectively. The source of PAHs carried by MPs in the Konya Closed Basin was mainly of petrogenic origin. Incremental lifetime cancer risk (ILCR) results indicated that the maximum ILCR values were higher than the EPA acceptable level (10-6) for child (2.95 × 10-5) and adult (1.46 × 10-4), indicating a potential cancer risk.

7.
Mar Pollut Bull ; 208: 116977, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39306966

RESUMEN

Marphysa sp. E (Annelida, Eunicidae), inhabiting the Yoro tidal flat (inner part of Tokyo Bay, Japan), ingests reduced mud comprising black and high viscosity sediments that contain high levels of polycyclic aromatic hydrocarbons (PAHs); these PAHs are excreted within the fecal pellets. PAH concentration in the fecal pellets rapidly decrease to half its quantity 2 h after its excretion. To investigate their specificity of change, we analyzed the PAHs in fecal pellets and reduced mud using gas chromatography-mass spectrometry. PAH concentration of the fecal pellets was observed to decrease by 46 % in 2 h, whereas that of reduced mud decreased by only 8 % in the same duration. This suggests that the PAH concentration of reduced mud decreases only after passing through the worm's digestive system. These results indicate that Marphysa sp. E contributes to the purification of the tidal flat environment.

8.
Proc Natl Acad Sci U S A ; 121(37): e2322155121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226345

RESUMEN

Utilizing molecular dynamics and free energy perturbation, we examine the relative binding affinity of several covalent polycyclic aromatic hydrocarbon - DNA (PAH-DNA) adducts at the central adenine of NRAS codon-61, a mutational hotspot implicated in cancer risk. Several PAHs classified by the International Agency for Research on Cancer as probable, possible, or unclassifiable as to carcinogenicity are found to have greater binding affinity than the known carcinogen, benzo[a]pyrene (B[a]P). van der Waals interactions between the intercalated PAH and neighboring nucleobases, and minimal disruption of the DNA duplex drive increases in binding affinity. PAH-DNA adducts may be repaired by global genomic nucleotide excision repair (GG-NER), hence we also compute relative free energies of complexation of PAH-DNA adducts with RAD4-RAD23 (the yeast ortholog of human XPC-RAD23) which constitutes the recognition step in GG-NER. PAH-DNA adducts exhibiting the greatest DNA binding affinity also exhibit the least RAD4-RAD23 complexation affinity and are thus predicted to resist the GG-NER machinery, contributing to their genotoxic potential. In particular, the fjord region PAHs dibenzo[a,l]pyrene, benzo[g]chrysene, and benzo[c]phenanthrene are found to have greater binding affinity while having weaker RAD4-RAD23 complexation affinity than their respective bay region analogs B[a]P, chrysene, and phenanthrene. We also find that the bay region PAHs dibenzo[a,j]anthracene, dibenzo[a,c]anthracene, and dibenzo[a,h]anthracene exhibit greater binding affinity and weaker RAD4-RAD23 complexation affinity than B[a]P. Thus, the study of PAH genotoxicity likely needs to be substantially broadened, with implications for public policy and the health sciences. This approach can be broadly applied to assess factors contributing to the genotoxicity of other unclassified compounds.


Asunto(s)
Aductos de ADN , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Aductos de ADN/química , Aductos de ADN/metabolismo , Aductos de ADN/genética , Humanos , Reparación del ADN , Mutágenos/toxicidad , Mutágenos/química , Simulación de Dinámica Molecular , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Termodinámica , Benzo(a)pireno/toxicidad , Benzo(a)pireno/química , Benzo(a)pireno/metabolismo , ADN/química , ADN/metabolismo , Benzopirenos/toxicidad , Benzopirenos/química , Benzopirenos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química
9.
Sci Total Environ ; 952: 175878, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39222821

RESUMEN

Hydroxy-polycyclic aromatic hydrocarbons (OH-PAHs) are a growing worldwide concern because of their persistence, ubiquity, and toxicity. Nonetheless, research on the toxicological mechanisms of OH-PAHs remains sparse, particularly concerning the risk of liver cancer. This study evaluated the effects of OH-PAHs on disrupting estrogen receptor α (ERα) and subsequently facilitating hepatocellular invasion and metastasis. Results revealed that all six OH-PAHs exhibited ERα agonistic activities at noncytotoxic levels, which were partially validated using molecular docking (MD) and molecular dynamics simulations (MDS). Furthermore, OH-PAHs with ERα agonistic properties stimulated a concentration-dependent increase in the migration and invasion of HepG2 cells. In addition, they disturbed the expression of target genes associated with epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM), and the invasion effects were significantly reversed by adding an ERα antagonist. Our results suggest an essential role of ERα in the metastasis of liver cancer cells induced by OH-PAHs and emphasize their potential ecological and health hazards.


Asunto(s)
Receptor alfa de Estrógeno , Neoplasias Hepáticas , Hidrocarburos Policíclicos Aromáticos , Receptor alfa de Estrógeno/metabolismo , Humanos , Neoplasias Hepáticas/inducido químicamente , Células Hep G2 , Hidrocarburos Policíclicos Aromáticos/toxicidad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Simulación del Acoplamiento Molecular , Movimiento Celular/efectos de los fármacos
10.
Front Microbiol ; 15: 1439216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39282554

RESUMEN

Microbial remediation has become the most promising technical means for the remediation of polycyclic aromatic hydrocarbons (PAHs) non-point source contaminated soil due to its low cost of treatment, complete degradation of pollutants, and in-situ remediation. In this study, in order to demonstrate the phenanthrene degrading microbial diversity, phenanthrene was chosen as the representative of PAHs and strains capable of degrading phenanthrene were isolated and screened from the sedimentation sludge and the bottom sludge of oil tank trucks, and high throughput sequencing was used to check the dominant strains with a good degrading effect on phenanthrene. Results showed even more than 50% of phenanthrene was degraded in all samples, the composition of PAH-degrading bacteria was diverse, and different environments constructed different functional microbial groups, which resulted in the microbial adapting to the diversity of the environment. Finally, a series of bacterial species with phenanthrene-degrading functions such as Achromobacter, Pseudomonas, Pseudochelatococcus, Bosea was enriched after nine transferring process. Overall, our study offers value information for the enrichment of functional degrading microbes of phenanthrene or other pollutants that more concern should be paid in not only the degradation rate, but also the diversity variation of microbial community composition.

11.
Arch Toxicol ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287666

RESUMEN

The cGAS-STING pathway plays an essential role in the activation of tumor immune cells. Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants with potential carcinogenicity, and their exposure is associated with the development of colorectal cancer. However, the impacts of genetic factors in the cGAS‒STING pathway and gene‒environment interactions on colorectal cancer remain understudied. We used logistic regression models and interaction analysis to evaluate the impact of genetic variants on colorectal cancer risk and gene‒environment interactions. We analysed the expression patterns of candidate genes based on the RNA-seq data. Molecular biology experiments were performed to investigate the impact of PAHs exposure on candidate gene expression and the progression of colorectal cancer. We identified the susceptibility locus rs3750511 in the cGAS‒STING pathway, which is associated with colorectal cancer risk. A negative interaction between TRAF2 rs3750511 and PAHs exposure was also identified. Single-cell RNA-seq analysis revealed significantly elevated expression of TRAF2 in colorectal cancer tissues compared with normal tissues, especially in T cells. BPDE exposure increased TRAF2 expression and the malignant phenotype of colorectal cancer cells. The treatment also further increased the expression of the TRAF2 downstream gene NF-κB and decreased the expression of Caspase8. Our results suggest that the genetic variant of rs3750511 affects the expression of TRAF2, thereby increasing the risk of colorectal cancer through interaction with PAHs. Our study provides new insights into the influence of gene‒environment interactions on the risk of developing colorectal cancer.

12.
Food Chem X ; 24: 101810, 2024 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-39310888

RESUMEN

A novel ultrasound-assisted magnetic solid-phase extraction coupled with gas chromatography-mass spectrometry (US-MSPE-GC/MS) was developed to detect trace amounts of polycyclic aromatic hydrocarbons (PAHs) in tomato paste, using a magnetic biochar adsorbent derived from nectarine cores. The highest extraction recovery was attained under 10 mg adsorbent mass, 30 min extraction time, 9 % (w/v) sodium chloride, and elution with 200 µL of dichloromethane. Under optimum conditions, the method demonstrated excellent linearity (R2 > 0.992) across a wide concentration range (0.01-100 ng g-1) with high sensitivity (LODs: 0.028-0.053 ng g-1, LOQs: 0.094-0.176 ng g-1) and good repeatability (RSDs <5.96 %). The application of the US-MSPE-GC/MS method was tested on four brands of real tomato paste and no PAHs were detected in unspiked samples, indicating no background contamination. This method showed high relative recoveries 88.03-98.52 %) and good reproducibility (<9.19 %.) at two concentration levels, confirming its effectiveness for PAH analysis in real samples.

13.
Angew Chem Int Ed Engl ; : e202415940, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39314126

RESUMEN

Single-molecule diode was the first proposed device in molecular electronics. Despite the great efforts and advances over 50 years, the reported rectification ratios, the most critical parameter of a diode, remain moderate for the single-molecule diode. Herein, we report an approach to achieve a larger rectification ratio by adopting the combined strategies of p-type boron doping, the single-layer graphene nodes, and the van der Waals layer-by-layer architecture. Measured current-voltage curves showed one of the as-fabricated single-molecule diodes hit an unprecedented large rectification ratio of 457 at ±1 V. Break junction operations and spectroscopic measurements revealed the three-atom-thick configuration of the single-molecule diodes. With the experimental and theoretical calculation results, we demonstrated the doped boron atoms induced holes to redistribute the electron density, making the asymmetric coupling at positive and negative biases, and the van der Waals interaction promoted asymmetric coupling and significantly boosted diode performance.

14.
Talanta ; 281: 126882, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39298806

RESUMEN

Contamination by polycyclic aromatic hydrocarbons (PAHs) is an urgent environmental concern, given its atmospheric dispersion and deposition in water bodies and soils. These compounds and their nitrated and oxygenated derivatives, which can exhibit high toxicities, are prioritized in environmental analysis contexts. Amid the demand for precise analytical techniques, comprehensive two-dimensional chromatography coupled with mass spectrometry (GCxGC/Q-TOFMS) has emerged as a promising tool, especially in the face of challenges like co-elution. This study introduces an innovation in the pre-concentration and detection of PAHs using an extraction fiber based on polydimethylsiloxane (PDMS), offering greater robustness and versatility. The proposed technique, termed in-tube extraction, was developed and optimized to effectively retain PAHs and their derivatives in aqueous media, followed by GCxGC/Q-TOFMS determination. Fiber characterization, using techniques such as TG, DTG, FTIR, and SEM, confirmed the hydrophobic compounds retention properties of the PDMS. The determination method was validated, pointing to a significant advancement in the detection and analysis of PAHs in the environment, and proved effective even for traces of these compounds. The results showed that the detection limits (LOD) and quantification limits (LOQ) ranged from 0.07 ng L-1 to 1.50 ng L-1 and 0.33 ng L-1 to 6.65 ng L-1, respectively; recovery ranged between 72 % and 117 %; and the precision intraday and interday ranged from 1 % to 20 %. The fibers were calibrated in the laboratory, with exposure times for analysis in the equilibrium region ranging from 3 to 10 days. The partition coefficients between PDMS and water were also evaluated, showing logarithm values ranging from 2.78 to 5.98. The fibers were applied to the analysis of real water samples, demonstrating high capacity. Additionally, given the growing demand for sustainable methods, the approach presented here incorporates green chemistry principles, providing an efficient and eco-friendly solution to the current chemical analysis scenario.

15.
J Xenobiot ; 14(3): 1293-1311, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39311152

RESUMEN

Gene mutations linked to diseases like cancer may be caused by exposure to environmental chemicals. The X-linked phosphatidylinositol glycan class A (PIG-A) gene, required for glycosylphosphatidylinositol (GPI) anchor biosynthesis, is a key target locus for in vitro genetic toxicity assays. Various organisms and cell lines may respond differently to genotoxic agents. Here, we compared the mutagenic potential of directly genotoxic ethyl methane sulfonate (EMS) to metabolically activated pro-mutagenic polycyclic aromatic hydrocarbons (PAHs). The two classes of mutagens were compared in an in vitro PIG-A gene mutation test using the metabolically active murine hepatoma Hepa1c1c7 cell line and the human TK6 cell line, which has limited metabolic capability. Determination of cell viability is required for quantifying mutagenicity. Two common cell viability tests, the MTT assay and propidium iodide (PI) staining measured by flow cytometry, were evaluated. The MTT assay overestimated cell viability in adherent cells at high benzo[a]pyrene (B[a]P) exposure concentrations, so PI-based cytotoxicity was used in calculations. The spontaneous mutation rates for TK6 and Hepa1c1c7 cells were 1.87 and 1.57 per million cells per cell cycle, respectively. TK6 cells exposed to 600 µM and 800 µM EMS showed significantly higher mutation frequencies (36 and 47 per million cells per cell cycle, respectively). Exposure to the pro-mutagen benzo[a]pyrene (B[a]P, 10 µM) did not increase mutation frequency in TK6 cells. In Hepa1c1c7 cells, mutation frequencies varied across exposure groups (50, 50, 29, and 81 per million cells per cell cycle when exposed to 10 µM B[a]P, 5-methylcholanthrene (5-MC), chrysene, or 16,000 µM EMS, respectively). We demonstrate that the choice of cytotoxicity assay and cell line can determine the outcome of the Pig-A mutagenesis assay when assessing a specific mutagen.

16.
Chemosphere ; 364: 143304, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39251158

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) constitute a class of persistent organic pollutants with strong lipophilicity, which readily accumulate within organisms and have the effect to induce disorders in lipid metabolism. The present study aimed to investigate the accumulation localization and pattern of PAHs in Ruditapes philippinarum, and to reveal the association between PAHs and lipids metabolism. The 21-day exposure experiment was conducted using a mixture of phenanthrene, chrysene, and benzo[a]pyrene (the proportion is 1:1:1) at concentrations of 0.4 µg/L, 2 µg/L, and 10 µg/L. The tissue distribution of PAHs indicated that the digestive gland was the primary site of PAHs accumulation. Meanwhile, fluorescence colocalization suggested that PAHs primarily accumulated within the lipid droplets of digestive gland cells. This study further determined the transcriptomic and lipidomic profiles of the digestive gland to analyze the key genes involved in disrupted lipid metabolism and the major lipids affected. Lipidomic analysis identified the key differential metabolites as triglycerides (TGs). Furthermore, TGs were upregulated in the digestive gland had a total carbon atom number of 50-64 and a total number of 3-9 double bonds in the acyl side chains. Biochemical analysis experiments and oil red O stained frozen sections confirmed that the content of TGs steadily increased in various tissues during the experiment, leading to an elevated digestive gland index. Changes of lipid metabolism associated genes expression level also indicated that the synthesis of lipid in digestive gland were up-regulated while the decomposition was down-regulated. This study is the first to demonstrate the cellular localization of PAHs accumulation in bivalves and confirms the pattern of variation in TGs, providing new insights into the mechanisms of PAHs bioaccumulation and lipid metabolism disruption.


Asunto(s)
Bivalvos , Metabolismo de los Lípidos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/metabolismo , Animales , Bivalvos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Lípidos , Fenantrenos/metabolismo , Benzo(a)pireno/metabolismo , Crisenos/metabolismo , Triglicéridos/metabolismo
17.
Environ Sci Pollut Res Int ; 31(43): 55132-55144, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39218846

RESUMEN

Sixteen PAHs in ambient air samples collected from residential and roadside areas in the Hanoi metropolitan were investigated. Total PAH concentrations in the ambient air samples ranged from 45.0 to 451 ng/m3. Among PAHs, phenanthrene was found at the most abundant and highest levels. The distributions of PAHs in the ambient air collected in the dry season were on average 26% higher than in the wet season. The PAH concentrations in the air samples collected from the traffic areas were significantly higher (about 2.7 times) than those in the residential areas, indicating that these chemicals originated from motor vehicles. According to vertical, the PAH concentrations found in the ambient air samples collected from the ground floor were significantly higher than on the upper level, however, there was not much difference when going higher (from 24 m (8th floor) to 111 m (37th floor)). The human exposure doses were estimated for two age groups (adults and children) based on the measured PAH concentrations, the inhalation rates, and body weights. The estimated exposure doses to PAHs through inhalation for adults/children were 1.13/2.86 (ng/kg-bw/d) (residential areas) and 3.24/8.18 (ng/kg-bw/d) (traffic areas), respectively. The average lifetime excess cancer risk (ECR) from inhalation exposure to PAHs was 3.0 × 10-4 at the traffic areas and 1.4 × 10-4 at the residential areas. These estimated exposure doses were above the acceptable level of the California Environmental Protection Agency (CalEPA) Office of Environmental Health Hazard Assessment (1*10-6).


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Exposición por Inhalación , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Atmosféricos/análisis , Humanos , Exposición por Inhalación/análisis , Vietnam
18.
J Egypt Public Health Assoc ; 99(1): 23, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39285014

RESUMEN

BACKGROUND: The textile industry is the second risk factor for bladder cancer, after smoking. Previous studies focused on the impact of exposure to high concentrations of bladder carcinogenic chemicals in the textile dyeing industry on the elevation of bladder cancer biomarkers. This study aimed to evaluate bladder carcinogenic air pollutants in a textile dyeing factory and investigate its role and the role of serum 25-hydroxyvitamin D (25-OH vit. D) on cancer bladder biomarkers in exposed workers. METHODS: A cross-sectional study was conducted. Particulate and vapor forms of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) were monitored in the printing, dyeing, and preparing sections of a textile factory. Bladder tumor antigen (BTA), nuclear matrix protein 22 (NMP-22), and 25-OH vit. D were estimated in all the exposed workers (147 exposed workers) and in workers not occupationally exposed to chemicals (130 unexposed workers). RESULTS: Aromatic bladder carcinogenic compounds were either in low concentrations or not detected in the air samples of working areas. BTA and NMP-22 of exposed workers were not significantly different from the unexposed. However, 25-OH vit. D was significantly lower in the exposed than unexposed workers. There was a significant inverse correlation between 25-OH vit. D and duration of exposure in exposed workers. CONCLUSION: The mean levels of PAHs and VOCs were within the safe standard levels in the working areas. The non-significant difference in BTA and NMP-22 between the exposed and unexposed groups suggests the presence of occupational exposures to safe levels of bladder carcinogenic aromatics, while the significantly lower 25-OH vit. D levels among the exposed than the unexposed groups could suggest the potential association of 25-OH vit. D with occupational exposures to low levels of PAHs and VOCs, and this association was found to be inversely correlated with the duration of exposures. Accordingly, more specific predictor tests must be applied for early diagnosis of bladder cancer among the exposed workers.

19.
Int J Environ Health Res ; : 1-12, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39295235

RESUMEN

Coke oven emissions (COEs) contain a variety of polycyclic aromatic hydrocarbons (PAHs), which can cause damage to the human cardiovascular system. In addition, myocardial mitochondria are susceptible to damage in hypertensive patients. However, it is not clear whether genetic variation, in single nucleotide polymorphisms (SNPs) in PINK1 affects COEs exposure-induced abnormal blood pressure. We surveyed and tested 518 workers exposed to COEs and statistically analyzed them with SPSS 21.0 software. SBP was greater in the high-exposure group than in the low-exposure group. Generalized linear model analysis showed that the interaction of PINK1 rs3738136 (GA+AA) and COEs had an effect on SBP [ß(95%CI) = -6.537(-12.072, -1.002), p = 0.021] and DBP [ß(95%CI) = -4.811(-8.567, -1.056), p = 0.012]. This study is the first to identify the role of PINK1 rs3738136 in COE- induced abnormal blood pressure, and to prove that the abnormal blood pressure of workers is the result of environmental and genetic factors.

20.
J Hazard Mater ; 479: 135652, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39226687

RESUMEN

Limited data exist on the interactions between nanoplastics (NPs) and co-contaminants under diverse environmental conditions. Herein, a factorial composite toxicity analysis approach (FCTA) was developed to analyze the time-dependent composite effects of NPs (0 ∼ 60 mg/L), copper (Cu, 0.2 ∼ 6 mg/L) and phenanthrene (PHE, 0.001 ∼ 1 mg/L) on microalgae under diverse pH (6.7 ∼ 9.1), dissolved organic matter (DOM, 1.5 ∼ 25.1 mg/L), salinity (1 ∼ 417 mg/L) and temperature (23 ∼ 33 °C) within the Canadian prairie context. The toxic mechanism was revealed by multiple toxic endpoints. The combined toxicity of NPs, Cu and PHE within prairie aquatic ecosystems was assessed by the developed FCTA-multivariate regression model. Contrary to individual effects, NPs exhibited a promotional effect on microalgae growth under complex environmental conditions. Although Cu and PHE were more hazardous, NPs mitigated their single toxicity. Environmental conditions and exposure times significantly influenced the main effects and interactions of NPs, Cu and PHE. The synergistic effect of NPs*Cu and NPs*PHE on microalgae growth became antagonistic with increased pH or DOM. Microalgae in the Souris River, Saskatchewan, were projected to suffer the most toxic effects. Our findings have significant implications for the risk management of NPs.


Asunto(s)
Cobre , Fenantrenos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Cobre/toxicidad , Canadá , Fenantrenos/toxicidad , Microalgas/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Pradera , Ecosistema , Concentración de Iones de Hidrógeno , Microplásticos/toxicidad , Temperatura , Salinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...