RESUMEN
A molecular-imprinted polymer (MIP) gel with high effective recognition of amphenicol antibiotics was synthesized for the first time based on layered double hydroxide (LDH) as the support and initiator, and functionalized ß-cyclodextrin (ß-CD) as the functional monomer. The synergistic effect of molecular imprinting recognition and ß-CD host-guest affinity enabled MIP gel to exhibit excellent selectivity (imprinted factors: 3.9-9.4) and high adsorption capacity (28.9-75.4 mg g-1) for amphenicol antibiotics. Different adsorption isotherms and kinetics models were followed, suggesting heterogeneous single-layer recognition and chemical adsorption. After 5 cycles of adsorption and desorption, the adsorption capacity of MIP gel retained above 83.6 %, demonstrating favorable reproducibility and stability. Under optimal conditions, the method validation showed a satisfactory limit of detection (5-10 µg L-1), good correlation (r2 > 0.9967), and respectable recovery (82.6-105.3 %). The MIP gel was applied to extract amphenicol antibiotics from food matrices, achieving recoveries in the range of 78.3-104.5 %. Importantly, the recognition mechanism was studied in detail using density functional theory. Therefore, the established method demonstrates high sensitivity and can be applied as a new tactic for detecting amphenicol antibiotics in food matrices.
Asunto(s)
Antibacterianos , Contaminación de Alimentos , Impresión Molecular , Polímeros Impresos Molecularmente , Adsorción , Polímeros Impresos Molecularmente/química , Antibacterianos/química , Antibacterianos/análisis , Contaminación de Alimentos/análisis , Geles/química , Extracción en Fase Sólida , Cinética , beta-Ciclodextrinas/química , Límite de Detección , Cloranfenicol/química , Cloranfenicol/análisisRESUMEN
The solid phase extraction of Au, Ir, Pd, Pt, and Rh on a polymer gel modified with ionic liquid containing methylimidazolium groups (MIA-PG) has been investigated. The positively charged surface of the sorbent is highly suitable for the sorption of stable chlorido complexes of the studied analytes, while the retention of base metals Cu, Fe, Ni, Zn, and Mn is negligible. Optimization experiments performed showed that, at 0.05 M HCl, the degree of sorption of Au, Ir, Pd, and Pt is above 95%, and only for Rh, the maximum degree is 65%; complete elution is achieved in the mixture of thiourea in HCl. The results obtained from the equilibrium adsorption studies are fitted in various adsorption models, such as Langmuir and Freundlich, and the model parameters have been evaluated. The kinetics analysis indicated that the adsorption of Au, Ir, Pd, Pt, and Rh onto the sorbent follows the pseudo-second-order model. Intraparticle diffusion and ion exchange reactions were the rate-limiting steps. Analytical procedures were developed for Pd, Pt, and Rh determination in road dust and soil and for Au determination in copper ore and copper concentrate. The procedures are validated by the analysis of certified reference materials. Analytical figures of merit confirmed their applicability in routine laboratory practice.
RESUMEN
BACKGROUND: Comprehensive quality assurance (QA) for a seamless workflow of high-dose-rate brachytherapy, from imaging to planning and irradiation, is uncommon, and QA of the source dwell position is performed in one- or two-dimensions. Gel dosimetry using magnetic resonance imaging (MRI) is effective in verifying the three-dimensional distribution of doses for image-guided brachytherapy (IGBT). However, MRI scanners are not readily accessible, and MRI scanning is time-consuming. Nevertheless, X-ray computed tomography (XCT) is available for IGBT planning. PURPOSE: In this study, we designed and developed an efficient method for QA for a seamless workflow of IGBT with a new commercially available XCT-based polymer gel dosimeter. METHODS: To enable direct insertion of brachytherapy applicators, the gelatinizing agent of the dosimeter was modified. A cylindrical polyvinyl chloride jar was filled with the modified gel dosimeter, which was subsequently used to determine the reproducibility of source dwell positions, detectability of source positional errors from intentionally introduced catheter length offsets, effect of looped source transfer tubes on the average displacement, extent of inter-observer variation, and gel robustness following multiple needle-insertions. Three ProGuide sharp needles were inserted into the jar. The dwell time at each point was determined to identify the irradiated volume with a diameter of approximately 10 mm on XCT images. All the times were the same. The plan was delivered using an afterloader with an Ir-192 radioactive source, and the irradiated gel dosimeter was scanned using an XCT scanner. The subtracted images were generated from pre- and post-irradiated images. Volumes with incremented Hounsfield units were manually identified and contoured. The centroid of the volume was defined as the measured source dwell position. Subsequently, planned source dwell positions were extracted from the DICOM file of the plan. Finally, the source dwell positions in plan and irradiated gel were compared in three axes. RESULTS: The hardness of the dosimeter was 1250% greater than that of the previously reported gel dosimeter. Source dwell positions were visually identified in the XCT image. Testing of CT acquisition, planning, irradiation, and analysis was completed in approximately 1 h. In the reproducibility test of source dwell positions, created by inserting three needles (each with three source dwell positions), the average displacements of the source positions from the first source dwell position were within 0.5 mm in all three directions. In the detectability test, displacements were less than 1 mm in the x-y plane but greater than 1 mm in the z-axis, which was the source path direction. When errors of 1-3 mm were intentionally introduced, the measured displacement was within 0.7 mm of the median (range: 0.21-1.65 mm) of intentional errors. When the transfer tube was looped, the source dwell position displaced by approximately 1 mm. After 20 needle-insertions, the source dwell position displacement was within 1 mm. The maximum inter-observer variation of contouring was 0.57 mm. CONCLUSIONS: The XCT-based gel dosimeter enabled verification of three-dimensional source dwell positions for a seamless workflow of IGBT with high precision and efficiency.
RESUMEN
Polyvinyl alcohol (PVA) is a beneficial polymer capable of forming hydrogels helpful in a wide range of applications. Hydrogels based on cross-linking of PVA with borax, and able to incorporate with a decontaminating agent have been used in the decontamination of 99Mo from contaminated surfaces. Aluminum hydroxide has been introduced in the formulations of PVA-borax, to increase the gel efficiency for 99Mo decontamination from surfaces. The formulations were investigated with glass, stainless steel, and wood as examples of different surfaces. When the hydrogel is sprayed on different surfaces, it forms rapidly and adheres well. Moreover, the hydrogel was shown to efficiently decontaminate surfaces contaminated with 99Mo by a maximum value of decontamination factor (D.F) for glass, stainless steel, and wood to be 43.5, 31.3, and 19.6 respectively.
RESUMEN
PURPOSE: To evaluate the feasibility of an open-source, semi-automated, and reproducible vertex placement tool to improve the efficiency of lattice radiotherapy (LRT) planning. We used polymer gel dosimetry with a Cone Beam CT (CBCT) readout to commission this LRT technique. MATERIAL AND METHODS: We generated a volumetric modulated arc therapy (VMAT)-based LRT plan on a 2 L NIPAM polymer gel dosimeter using our Eclipse Acuros version 15.6 AcurosXB beam model, and also recalculated the plan with a pre-clinical Acuros v18.0 dose calculation algorithm with the enhanced leaf modelling (ELM). With the assistance of the MAAS-SFRThelper software, a lattice vertex diameter of 1.5 cm and center-to-center spacing of 3 cm were used to place the spheres in a hexagonal, closed packed structure. The verification plan included four gantry arcs with 15°, 345°, 75°, 105° collimator angles. The spheres were prescribed 20 Gy to 50% of their combined volume. The 6 MV Flattening Filter Free beam energy was used to deliver the verification plan. The dosimetric accuracy of the LRT delivery was evaluated with 1D dose profiles, 2D isodose maps, and a 3D global gamma analysis. RESULTS: Qualitative comparisons between the 1D dose profiles of the Eclipse plan and measured gel showed good consistency at the prescription dose mark. The average diameter measured 13.3 ± 0.2 mm (gel for v15.6), 12.6 mm (v15.6 plan), 13.1 ± 0.2 mm (gel for v18.0), and 12.3 mm (v18.0 plan). 3D gamma analysis showed that all gamma pass percent were > 95% except at 1% and 2% at the 1 mm distance to agreement criteria. CONCLUSION: This study presents a novel application of gel dosimetry in verifying the dosimetric accuracy of LRT, achieving excellent 3D gamma results. The treatment planning was facilitated by publicly available software that automatically placed the vertices for consistency and efficiency.
RESUMEN
This study aims to evaluate the optical response dependence of the PAKAG polymer gel dosimeter on photon energy and dose rate. The produced gel dosimeters were irradiated using a Varian CL 21EX medical linear accelerator with delivered doses of 0, 2, 4, 6, 8, and 10 Gy. To examine the response dependence on the delivered dose rate, dose rates of 50, 100, 200, and 350 cGy min-1were investigated. Additionally, two incident beam qualities of 6 and 18 MV were examined to study the response dependence on the incident beam energy. The irradiated polymer gel dosimeters were readout using a UV-vis spectrophotometer in the 300 to 800 nm scan range. The results reveal that a wide variation in dose rate (50-350 cGy.min-1) influences the absorbance-dose response and the sensitivity of PAKAG gel. However, smaller variations did not show a significant effect on the response. Furthermore, the response changed insignificantly with beam quality for investigated energies. It was concluded that the optical reading response of the PAKAG polymer gel dosimeter is satisfactorily independent of external parameters, including dose rate and incident beam quality.
Asunto(s)
Geles , Polímeros , Dosímetros de Radiación , Polímeros/química , Geles/química , Radiometría/métodos , Radiometría/instrumentación , Fotones , Aceleradores de Partículas/instrumentación , Humanos , Relación Dosis-Respuesta en la Radiación , Diseño de EquipoRESUMEN
Objective.To develop and benchmark a novel 3D dose verification technique consisting of polymer gel dosimetry (PGD) with cone-beam-CT (CBCT) readout through a two-institution study. The technique has potential for wide and robust applicability through reliance on CBCT readout.Approach. Three treatment plans (3-field, TG119-C-shape spine, 4-target SRS) were created by two independent institutions (Institutions A and B). A Varian Truebeam linear accelerator was used to deliver the plans to NIPAM polymer gel dosimeters produced at both institutions using an identical approach. For readout, a slow CBCT scan mode was used to acquire pre- and post-irradiation images of the gel (1 mm slice thickness). Independent gel analysis tools were used to process the PGD images (A: VistaAce software, B: in-house MATLAB code). Comparing planned and measured doses, the analysis involved a combination of 1D line profiles, 2D contour plots, and 3D global gamma maps (criteria ranging between 2%1 mm and 5%2 mm, with a 10% dose threshold).Main results. For all gamma criteria tested, the 3D gamma pass rates were all above 90% for 3-field and 88% for the SRS plan. For the C-shape spine plan, we benchmarked our 2% 2 mm result against previously published work using film analysis (93.4%). For 2%2 mm, 99.4% (Institution A data), and 89.7% (Institution B data) were obtained based on VistaAce software analysis, 83.7% (Institution A data), and 82.9% (Institution B data) based on MATLAB.Significance. The benchmark data demonstrate that when two institutions follow the same rigorous procedures gamma passing rates up to 99%, for 2%2 mm criteria can be achieved for substantively different treatment plans. The use of different software and calibration techniques may have contributed to the variation in the 3D gamma results. By sharing the data across institutions, we observe the gamma passing rate is more consistent within each pipeline, indicating the need for standardized analysis methods.
Asunto(s)
Tomografía Computarizada de Haz Cónico , Aceleradores de Partículas , Radiometría , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada de Haz Cónico/métodos , Radiometría/métodos , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Imagenología Tridimensional/métodos , Polímeros/químicaRESUMEN
Ionizing radiation covers a broad spectrum of applications. Since radioactive/radiation pollution is directly related to radiation risk, radiation levels should be strictly controlled. Different detection methods can be applied for radiation registration and monitoring. In this paper, radiation-induced variations in the optical properties of silver-enriched PVA-based hydrogel films with and without azo dye (Toluidine blue O, TBO, and Methyl red, MR) additives were investigated, and the feasibility of these free-standing films to serve as radiation detectors/exposure indicators was assessed. AgNO3 admixed with PVA gel was used as a source for the radiation-induced synthesis of silver nanoparticles (AgNPs) in irradiated gel films. Three types of sensors were prepared: silver-enriched PVA films containing a small amount of glycerol (AgPVAGly); silver-enriched PVA films with toluidine blue adducts (AgPVAGlyTBO); and silver-enriched PVA films with methyl red additives (AgPVAGlyMR). The selection of TBO and MR was based on their sensitivity to irradiation. The irradiation of the samples was performed in TrueBeam2.1 (VARIAN) using 6 MeV photons. Different doses up to 10 Gy were delivered to the films. The sensitivity of the films was assessed by analyzing the characteristic UV-Vis absorbance peaks on the same day as irradiation and 7, 30, 45, 90, and 180 days after irradiation. It was found that the addition of azo dyes led to an enhanced radiation sensitivity of the AgNPs containing films (0.6 Gy-1 for AgPVAGlyTBO and 0.4 Gy-1 for AgPVAGlyMR) irradiated with <2 Gy doses, indicating their applicability as low-dose exposure indicators. The irradiated films were less sensitive to higher doses. Almost no dose fading was detected between the 7th and 45th day after irradiation. Based on the obtained results, competing AgNP formation and color-bleaching effects in the AgPVAGly films with dye additives are discussed.
RESUMEN
It is difficult to plug the fracture water channeling of a fractured low-permeability reservoir during water flooding by using the conventional acrylamide polymer gel due to its weak mechanical properties. For this problem, micron graphite powder is added to enhance the comprehensive properties of the acrylamide polymer gel, which can improve the plugging effect of fracture water channeling. The chemical principle of this process is that the hydroxyl and carboxyl groups of the layered micron graphite powder can undergo physicochemical interactions with the amide groups of the polyacrylamide molecule chain. As a rigid structure, the graphite powder can support the flexible skeleton of the original polyacrylamide molecule chain. Through the synergy of the rigid and flexible structures, the viscoelasticity, thermal stability, tensile performance, and plugging ability of the new-type gel can be significantly enhanced. Compared with a single acrylamide gel, after adding 3000 mg/L of micrometer-sized graphite powder, the elastic modulus, the viscous modulus, the phase transition temperature, the breakthrough pressure gradient, the elongation at break, and the tensile stress of the acrylamide gel are all greatly improved. After adding the graphite powder to the polyacrylamide gel, the fracture water channeling can be effectively plugged. The characteristics of the networked water flow channel are obvious during the injected water break through the gel in the fracture. The breakthrough pressure of water flooding is high. The experimental results are an attempt to develop a new gel material for the water plugging of a fractured low-permeability reservoir.
RESUMEN
In order to improve the plugging performance of high-temperature and high-salt oil reservoir plugging agents, this paper utilizes a copolymer composed of acrylamide and 2-acrylamide-2-methylpropanesulfonic acid (AM/AMPS) as the polymer, polyethyleneimine as the cross-linking agent, and nylon fiber as the stabilizer to develop a high-temperature- and high-salt-resistant gel system. This study analyzed and evaluated the temperature resistance, salt resistance and blocking performance of the gel system. The evaluation results show that the gel-forming strength of this gel system can reach an H level, and it has good thermal stability at the high temperature of 130 °C. At the high salinity of 240,720 mg/L, the syneresis rate remains below 2.5%, and the gel-forming time is greater than 15 h; the higher the temperature, the shorter the gelling time. The results of our sand-filled pipe-plugging experiment show that the gel system can adapt to sand-filled pipes with different levels of permeability, and reaching a plugging rate of 94%.
RESUMEN
Multistep pH-peak-focusing liquid chromatography with a column packed with a hydrophilic polymer gel (a cross-linked hydroxylated methacrylic polymer gel) was developed for separation of rare earth metal ions. Metal ions in a sample solution introduced to the column are chromatographically extracted into the stationary gel phase at the top of the column equilibrated with a basic solution used as the first mobile phase containing acetylacetone and 1,10-phenanthroline by synergistic extraction effect. After the sample solution is introduced, the mobile phases are delivered into the column by stepwise gradient elution in order of decreasing pH. Each metal ion is concentrated at a pH border formed between the zones of different pH in the column and moves toward the outlet of the column with the pH border. Mutual separation of La(III), Ce(III), Nd(III), Eu(III), Y(III), Tb(III), and Yb(III) was achieved by the present method for an 1-mL sample injection with the column of which the inner volume is 11.8 mL. The multistep pH-peak-focusing liquid chromatography with a hydrophilic polymer gel column developed in this study has great potential as a useful method for the separation of rare earth metal ions on a preparatory scale.
Asunto(s)
Metales de Tierras Raras , Polímeros , Cromatografía Liquida , Metales , Iones , Concentración de Iones de HidrógenoRESUMEN
Modern radiotherapy delivers highly conformal dose distributions to irregularly shaped target volumes while sparing the surrounding normal tissue. Due to the complex planning and delivery techniques, dose verification and validation of the whole treatment workflow by end-to-end tests became much more important and polymer gel dosimeters are one of the few possibilities to capture the delivered dose distribution in 3D. The basic principles and formulations of gel dosimetry and its evaluation methods are described and the available studies validating device-specific geometrical parameters as well as the dose delivery by advanced radiotherapy techniques, such as 3D-CRT/IMRT and stereotactic radiosurgery treatments, the treatment of moving targets, online-adaptive magnetic resonance-guided radiotherapy as well as proton and ion beam treatments, are reviewed. The present status and limitations as well as future challenges of polymer gel dosimetry for the validation of complex radiotherapy techniques are discussed.
Asunto(s)
Polímeros , Radioterapia Conformacional , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Radioterapia Conformacional/métodos , Radiometría/métodosRESUMEN
Deep wells and ultra-deep wells often encounter cracks, karst caves, and other developed strata, which can lead to leakage during drilling. Conventional bridge slurry plugging technology is prone to leaking due to the poor plugging effect of the plugging agent. The gel plugging agent possesses characteristics of flexible plugging and adaptive matching of formation leakage channels. It can fill cracks or caves and enhance the pressure-bearing capacity of the formation. A controllable crosslinking plugging agent based on low-molecular-weight polyacrylamide was studied. Polyacrylamide with different molecular weights is synthesized from acrylamide and an initiator. A crosslinking time-controllable polymer is synthesized from low-molecular-weight polyacrylamide by adding crosslinking agent and retarder. The low-molecular-weight polyacrylamide plugging agent has low viscosity before gelation and good fluidity in the wellbore. After being configured on the ground, it is transported by pipeline and sent underground to reach the thickening condition. The gel solution rapidly solidifies, and its strength improves after high-temperature crosslinking. The synthesis conditions of the polymer were as follows: a monomer concentration of 9%, initiator 3.5%, synthesis temperature of 65 °C, and hydrogen peroxide initiator. The optimal formula of the gel plugging agent is as follows: a polymer concentration of 6%, a crosslinking agent concentration of 1%, and a retarder concentration of 8%. The generated polymer molecular structure contains amide groups. This crosslinking time-controllable plugging agent based on low-molecular-weight polyacrylamide has stable rheology, and its temperature resistance can reach 150 °C. At 150 °C, the gelation time can be controlled by adjusting the concentration of retarder, and the longest can reach 4 h. The plugging efficiency of the gel plugging agent is more than 95%. With the increase in seam width, the pressure of the gel plugging agent gradually decreases.
RESUMEN
A new ionic liquid modified polymer gel containing methylimidazolium groups (poly(MIA)) is proposed as a sorbent for the separation and enrichment of trace inorganic and organic arsenic species in surface waters. The poly(MIA) was synthesized by chemical modification of polymeric precursor using post-polymerization modification of poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate). The composition, structure, morphology, and surface properties of the prepared particles were characterized using elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption-desorption measurements. Optimization experiments showed that at pH 8, monomethylarsonic acid (MMAs), dimethylarsinic acid (DMAs), and As(V) were completely retained on the poly(MIA), while the sorption of As(III) was insignificant. The desorption experiments revealed that due to the weaker binding of organic arsenic species, selective elution with 1 mol/L acetic acid for MMAs + DMAs, followed by elution with 2 mol/L hydrochloric acid for As(V), ensured their quantitative separation. The adsorption kinetic and mechanism were defined. The analytical procedure for As(III), As(V), MMAs, and DMAs determination in surface waters was developed and validated through the analysis of certified reference material.
RESUMEN
Research into functional gels and chemicals and their applications represents a cutting-edge international field of study. For example, investigating how they can be applied in oil and gas drilling (and extraction engineering) and developing novel functional chemical materials for the oil field could provide innovative solutions and technological methods for oil and gas drilling and extraction operations. Through a literature analysis, this paper presents a review of the current research status and application scenarios of different types of functional gels and chemicals, both domestically and internationally. The classification and preparation principles of various functional materials are systematically outlined and the current applications of functional gels and chemicals in oil and gas drilling and extraction engineering are introduced. These applications include drilling and plugging, enhanced oil recovery, water plugging, and profile control. The formation mechanisms and application scenarios of different types of gels and chemicals are also analyzed and summarized, with a discussion of their prospects in oil and gas drilling and extraction engineering. We broaden the scope of functional gels and chemicals by exploring new application fields and promoting the development of different types of gels and chemicals in a more intelligent direction.
RESUMEN
OBJECTIVE: It seems that dose rate (DR) and photon beam energy (PBE) may influence the sensitivity and response of polymer gel dosimeters. In the current project, the sensitivity and response dependence of optimized PASSAG gel dosimeter (OPGD) on DR and PBE were assessed. MATERIALS AND METHODS: We fabricated the OPGD and the gel samples were irradiated with various DRs and PBEs. Then, the sensitivity and response (R2) of OPGD were obtained by MRI at various doses and post-irradiation times. RESULTS: Our analysis showed that the sensitivity and response of OPGD are not affected by the evaluated DRs and PBEs. It was also found that the dose resolution values of OPGD ranged from 9 to 33 cGy and 12 to 34 cGy for the evaluated DRs and PBEs, respectively. Additionally, the data demonstrated that the sensitivity and response dependence of OPGD on DR and PBE do not vary over various times after the irradiation. CONCLUSIONS: The findings of this research project revealed that the sensitivity and response dependence of OPGD are independent of DR and PBE.
Asunto(s)
Geles , Imagen por Resonancia Magnética , Fotones , Dosímetros de Radiación , Imagen por Resonancia Magnética/métodos , Geles/química , Polímeros/química , Radiometría/métodos , Radiometría/instrumentaciónRESUMEN
Herein, a coordination polymer gel is proposed for the determination of As(III) in real samples through multispectroscopic techniques viz. spectrophotometry, spectrofluorimetry, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Taguchi L32 (46 21) design and adaptive neuro fuzzy inference system (ANFIS) optimized the controllable factors affecting the extraction yielding an experimental S/N ratio of 39.94 dB. The fluorescence quenching (KSV = 2.63 × 106 L mol-1) was static with photoelectron transfer being the main mechanism confirmed by the density functional theory calculations. The limits of detection (LODs), limits of quantification (LOQs) and linear ranges were 0.038 µg L-1, 0.13 µg L-1 and 1.67-116.67 µg L-1, 0.40 µg L-1, 1.21 µg L-1 and 1.67-33.33 µg L-1, 1.07 µg L-1, 3.24 µg L-1 and 3.32-35.37 µg L-1 for the developed enrichment coupled ICP-AES, spectrophotometry and fluorescence sensing methods. Among these methods, the enrichment - ICP-AES method has the lowest LOD, LOQ and the widest linear range followed by the enrichment - spectrophotometry and fluorescene sensing methods. Spectrofluorimetry offers high sensitivity, selectivity, and possible real time monitoring, spectrophotometry provides a cost-effective and versatile option, while ICP-AES manifests multi-element analysis with high sensitivity and low interference. The developed methods were validated and employed for the successful determination of trace As(III) in real samples. The employment of these methods enhances the overall analytical capability for a wide range of sample types and concentrations.
Asunto(s)
Oligoelementos , Espectrofotometría Atómica/métodos , Oligoelementos/análisis , Agua , Espectrometría de Fluorescencia , Límite de DetecciónRESUMEN
With the gradual deepening of the exploration and development of deep and ultra-deep oil and gas resources, the problem of lost circulation in drilling operations is becoming more and more complex. From field experience, conventional plugging materials cannot fully meet the technical requirements of plugging operations in drilling engineering. In this study, a high-temperature- and salt-resistant polymer HDZ-A was synthesized. A high-temperature and delayed crosslinking polymer gel plugging agent can be prepared by adding a certain concentration of a crosslinking agent and a retarder. In this paper, the optimum synthesis conditions of the HDZ-A were determined with orthogonal experiments using viscoelasticity and viscosity as evaluation criteria for newly developed polymers. The molecular structure, temperature resistance, and relative molecular mass of HDZ-A were determined using infrared spectroscopy, nuclear magnetic resonance spectroscopy, and gel permeation chromatography. In addition, the optimal formula of the gel plugging agent was determined using gel strength as the evaluation standard. The results show that the newly developed gel plugging agent has stable performance after high-temperature crosslinking, and can resist high temperatures of 160 °C during formation. Under conditions of 160 °C, the gelation time can reach 4.5 h, and the plugging efficiency can reach more than 97%. Finally, the field test of the newly developed high-temperature-resistant delayed crosslinking polymer gel plugging agent was carried out in the direct exploration well KT-14X in the Ordos Basin. The field test showed that the plugging effect of the HDZ-A gel plugging agent was remarkable.
RESUMEN
In the extracorporeal shock wave lithotripsy for infants, we used a medical polymer gel pad to assist ultrasonic positioning, so that the ultrasonic probe could be far away from the shock wave energy field. Although not affecting the ultrasonic positioning and monitoring effect, we discussed the protective effect of this method on the ultrasonic probe. A retrospective analysis was made on 21 infants (0-3 years old) who received ESWL in our hospital from June 2021 to February 2023. After the stones were accurately located by B-ultrasound before surgery, a 4 * 5 * 10 cm medical polymer gel pad was placed between the skin and the ultrasonic probe to keep the ultrasonic probe away from the shock wave energy field. The B-ultrasonic wave source locked the target stone through the gel pad, and the lithotripter Dornier Compact Delta II was used for lithotripsy. The extracorporeal shock wave lithotripsy was completed under the whole process of B-ultrasonic monitoring. All patients completed the surgery under ultrasound monitoring, and there were no abnormalities in the ultrasound probe during the surgery. The average stone size was 0.60 ± 0.21 cm, the surgical time was 39.8 ± 13.8 min, and the total energy of lithotripsy was 7.41 ± 4.35 J. There were no obvious complications in all patients after the surgery. After 2 weeks of ultrasound examination, the success rate of lithotripsy in 21 patients reached 85.7%. We believe that the use of the gel pad increases the distance between the ultrasonic probe and the skin, leaving the probe away from the shock wave energy field, avoiding the damage of the shock wave source to the ultrasonic probe, and does not affect the monitoring effect of ultrasound on stones and the success rate of lithotripsy, which is worthy of further promotion in the field of children's urinary stones.
Asunto(s)
Litotricia , Cálculos Urinarios , Urolitiasis , Niño , Humanos , Lactante , Recién Nacido , Preescolar , Estudios Retrospectivos , Litotricia/efectos adversos , PolímerosRESUMEN
In this article, the specific features of competitive ionic and molecular transport in nanocomposite systems based on network membranes synthesized by radical polymerization of polyethylene glycol diacrylate in the presence of LiBF4, 1-ethyl-3-methylimidazolium tetrafluoroborate, ethylene carbonate (EC), and TiO2 nanopowder (d~21 nm) were studied for 1H, 7Li, 11B, 13C, and 19F nuclei using NMR. The membranes obtained were studied through electrochemical impedance, IR-Fourier spectroscopy, DSC, and TGA. The ionic conductivity of the membranes was up to 4.8 m Scm-1 at room temperature. The operating temperature range was from -40 to 100 °C. Two types of molecular and ionic transport (fast and slow) have been detected by pulsed field gradient NMR. From quantum chemical modeling, it follows that the difficulty of lithium transport is due to the strong chemisorption of BF4- anions with counterions on the surface of TiO2 nanoparticles. The theoretical conclusion about the need to increase the proportion of EC in order to reduce the influence of this effect was confirmed by an experimental study of a system with 4 moles of EC. It has been shown that this approach leads to an increase in lithium conductivity in an ionic liquid medium, which is important for the development of thermostable nanocomposite electrolytes for Li//LiFePO4 batteries with a base of lithium salts and aprotonic imidasolium ionic liquid.