RESUMEN
Plastic deformation of low/high density polyethylene (LDPE/HDPE) was analyzed in this work using positron annihilation lifetime spectroscopy (PALS). It was shown that in undeformed LDPE, both the mean ortho-positronium lifetime (τ3) and its dispersion (σ3), corresponding to the average size and size distribution of the free-volume pores of the amorphous component, respectively, were clearly higher than in HDPE. This effect was induced by a lower and less uniform molecular packing of the amorphous regions in LDPE. During the deformation of LDPE, an increase in the τ3 value was observed within the local strains of 0-0.25. This effect was mainly stimulated by a positive relative increase in interlamellar distances due to the deformation of lamellar crystals oriented perpendicular (increased by 31.8%) and parallel (decreased by 10.1%) to the deformation directions. At the same time, the dimension of free-volume pores became more uniform, which was manifested by a decrease in the σ3 value. No significant effect of temperature or strain rate on the τ3 and σ3 values was observed during LDPE deformation. In turn, in the case of HDPE, with an increase in the strain rate/or a decrease in temperature, an intensification of the cavitation phenomenon could be observed with a simultaneous decrease in the τ3 value. This effect was caused by the lack of annihilation of ortho-positonium (o-Ps) along the longer axis of the highly anisotropic/ellipsoidal cavities. Therefore, this dimension was not detectable by the PALS technique. At the same time, the increase in the dimension of the shorter axis of the cavities was effectively limited by the thickness of amorphous layers. As the strain rate increased or the temperature decreased, the σ3 value during HDPE deformation increased. This change was correlated with the initiation and intensification of the cavitation phenomenon. Based on the mechanical response of samples with a similar yield stress, it was also proven that the susceptibility of the amorphous regions of LDPE to the formation of cavities is lower than in the case of amorphous component of HDPE.
RESUMEN
This work reports the effects of free volume on curcumin release in various polymer-based composite films. Curcumin-reinforced biocomposite films were fabricated with natural biopolymers (carrageenan and chitosan) and bioplastics (poly(lactide) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT)) via the solvent casting method. The curcumin release test was performed using an aqueous medium, and it was found that it was released the fastest in the carrageenan film, followed by the chitosan, PLA, and PBAT films, presumably owing to the dissimilarity of the polymer matrix. The free volume of the polymer films was determined using positron annihilation lifetime spectroscopy (PALS) to understand the release phenomena of curcumin. The free volume fraction was varied and reliant on the type of polymer, with the highest in the PBAT-based film followed by the PLA-, chitosan-, and carrageenan-based films. The free volume method helps analyze the release of bioactive compounds in a polymer matrix and may help to achieve a better understanding of the release of bioactive compounds.
RESUMEN
Bone is a hierarchical material primarily composed of collagen, water, and mineral that is organized into discrete molecular, nano-, micro-, and macroscale structural components. In contrast to the structural knowledge of the collagen and mineral domains, the nanoscale porosity of bone is poorly understood. In this study, we introduce a well-established pore characterization technique, positron annihilation lifetime spectroscopy (PALS), to probe the nanoscale size and distribution of each component domain by analyzing pore sizes inherent to hydrated bone together with pores generated by successive removal of water and then organic matrix (including collagen and noncollagenous proteins) from samples of cortical bovine femur. Combining the PALS results with simulated pore size distribution (PSD) results from collagen molecule and microfibril structure, we identify pores with diameter of 0.6 nm that suggest porosity within the collagen molecule regardless of the presence of mineral and water. We find that water occupies three larger domain size regions with nominal mean diameters of 1.1, 1.9, and 4.0 nm-spaces that are hypothesized to associate with intercollagen molecular spaces, terminal segments (d-spacing) within collagen microfibrils, and interface spacing between collagen and mineral structure, respectively. Subsequent removal of the organic matrix determines a structural pore size of 5-6 nm for deproteinized bone-suggesting the average spacing between mineral lamella. An independent method to deduce the average mineral spacing from specific surface area (SSA) measurements of the deproteinized sample is presented and compared with the PALS results. Together, the combined PALS and SSA results set a range on the mean mineral lamella thickness of 4-8 nm.
Asunto(s)
Huesos , Electrones , Animales , Huesos/diagnóstico por imagen , Bovinos , Colágeno , Porosidad , Análisis EspectralRESUMEN
The production of polymer microfibres and nanofibres using rotary jet spinning as platforms for drug delivery and tissue engineering applications has been explored. The aligned orientation of fibres and consequent improvement in the mechanical properties of the scaffold are essential in several pharmaceutical and biomedical applications, where elastic materials with high tensile resistance are required. This study aimed to develop high-speed rotary jet devices to fabricate polyvinylpyrrolidone-based homopolymer and copolymer rotary-spun fibres and establish a correlation between the operational parameters of the devices and the morphology and microstructure of the fabricated fibres. Preconstruction modelling was carried out using computer-aided design through parametric 3D body modelling of the rotary device components by assigning appropriate dimensions and tolerances, as well as material parameters. Finite-element modelling was used to analyse the mechanical stress of the designed spinnerets. The obtained fibre mats were subjected to a detailed morphological analysis using optical and scanning electron microscopy, while the microstructural changes in the fibre samples, based on the free volume changes, were analysed by positron annihilation lifetime spectroscopy. The results indicate that the compact design and the controllability of the operational parameters enabled the formation of continuous aligned-oriented homogeneous fibres of variable diameters depending on the type of forming fibre polymer for further processing to formulate pharmaceutical drug delivery systems.
Asunto(s)
Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Laboratorios , Polímeros , Ingeniería de TejidosRESUMEN
Fenofibrate-loaded electrospun microfibrous sheets were prepared in an attempt to enhance the dissolution of the poorly soluble antihyperlipidemic agent and to improve its bioavailability. Physicochemical changes that appeared during the electrospinning process were monitored using a wide array of solid-state characterization techniques, including attenuated total reflectance Fourier-transformed infrared spectroscopy and positron annihilation lifetime spectroscopy, while fiber morphology was monitored via scanning electron microscopy. Dissolution studies carried out both in 0.025 M sodium dodecyl sulfate and in water revealed an immediate release of the active agent, with an approximately 40-fold release rate enhancement in water when compared to the micronized active agent. The dramatic increase in dissolution was attributed partially to the amorphous form of the originally crystalline active agent and the rapid disintegration of the electrospun microfibrous sheet due to its high surface area and porosity. The obtained results could pave the way for a formulation of the frequently used antihyperlipidemic agent with increased bioavailability.
RESUMEN
An analysis of the defects in the vicinity of the selectorâ»root connection plane occurring during the creation of single-crystalline turbine blades made of CMSX-6 Ni-based superalloy was performed. X-ray diffraction topography, scanning electron microscopy, and positron annihilation lifetime spectroscopy were used. Comparing the area of undisturbed axial growth of dendrites to the area of lateral growth concluded that the low-angle boundaries-like (LAB-like) defects were created in the root as a result of unsteady-state lateral growth of some secondary dendrite arms in layers of the root located directly at the selectorâ»root connection plane. Additional macroscopic low-angle boundaries (LABs) with higher misorientation angles were created as a result of concave curvatures of liquidus isotherm in platform-like regions near selectorâ»root connections. Two kinds of vacancy-type defects, mono-vacancies and vacancy clusters, were determined in relation to the LABs and LAB-like defects. Only mono-vacancies appeared in the areas of undisturbed axial growth. Reasons for the creation of macroscopic LABs and LAB-like defects, and their relationships with vacancy-type defects were discussed.
RESUMEN
Papaverine hydrochloride loaded gels, films and electrospun fibers were prepared for buccal drug delivery with the aim of improving the oral bioavailability of the crystalline drug, which can be achieved by the increased solubility and by the circumvention of the intensive first pass metabolism. The water soluble hydroxypropyl cellulose (HPC) was chosen as a mucoadhesive polymer. In order to improve the electrospinnability of HPC, the similarly mucoadhesive poly(vinyl alcohol) (PVA) was used. Since the drying of gels is of decisive role in either the formation of drug-loaded cast films or electrospun fibers, a real time ortho-positronium (o-Ps) tracking of gels was applied in order to obtain information about the supramolecular changes of the drying-induced gel-film transition. An anomalous increase of o-Ps lifetime value in the gel-film transition region was observed which refers to the remaining intramolecularly bound water in the drug-loaded polymeric gel matrix. The latter could provide information about the characteristics of polymer-water interactions in the phase transition, consequently the storage stability of the formulated solid system.
Asunto(s)
Celulosa/análogos & derivados , Sistemas de Liberación de Medicamentos , Nanofibras/química , Papaverina/química , Alcohol Polivinílico/química , Celulosa/química , Geles , Espectroscopía de Resonancia MagnéticaRESUMEN
This study presents the preparation of molecularly imprinted matrices by using radiation-induced grafting technique onto polyethylene/polypropylene (PE/PP) non-woven fabrics. Atrazine imprinted polymers were grafted onto PE/PP non-woven fabrics through the use of methacrylic acid (MAA) and ethylene glycol dimethylacrylate (EGDMA) as the functional monomer and crosslinking agent, respectively. Grafted MIPs were characterized by attenuated total reflectance Fourier transform infra-red spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), elemental analysis, scanning electron microscopy (SEM), and positron annihilation lifetime spectroscopy (PALS). The average diameter of free volume holes was determined as 0.612 nm which correlates very well with the size of template molecule atrazine, 0.512 nm. Binding behaviors were investigated against various factors, such as concentration of template molecule, pH, and contact time. Furthermore, the specific selectivity of grafted MIP on non-woven fabric was studied by using other common triazine compounds, such as simazine and metribuzine which show structural similarities to atrazine. The specific binding values for atrazine, simazine, and metribuzine were determined as 40%, 2.5%, and 1.5%, respectively.
Asunto(s)
Atrazina/química , Polietilenos/química , Polipropilenos/química , Textiles , Adsorción , Concentración de Iones de Hidrógeno , Metacrilatos/química , Impresión Molecular , Polimerizacion , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Nebivolol-loaded electrospun nanofibrous sheets were prepared for the dissolution enhancement of the active with the aim of improving its oral bioavailability. Physicochemical characterization of nanofibers including differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy were carried out in order to track the physicochemical changes related to the electrospinning process. The obtained results unanimously indicated the amorphous transition of nebivolol as a result of electrospinning, furthermore supramolecular ordering of chains of polyvinyl alcohol matrix could be revealed by positron annihilation lifetime spectroscopy. The crystalline-amorphous conversion of the active, along with the increased specific surface area of the nanofibers enabled rapid and complete dissolution. More than twice amount of active released from the fibrous sheets than from the commercial tablets. In contrast to the control tablets, the dissolution was complete and was not influenced by the pH of the applied media.
Asunto(s)
Nanofibras/química , Nebivolol/química , Administración Oral , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría/métodos , Concentración de Iones de Hidrógeno , Alcohol Polivinílico/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Comprimidos/químicaRESUMEN
The curing of coatings of two types of siloxane containing materials, silica gel and silsesquioxane, at a modest temperature (<280â) was studied with in situ heating Fourier transform infrared spectroscopy (FT-IR) in combination with perturbation correlation moving window (PCMW) and two-dimensional correlation spectroscopy (2D-COS) analyses. The result revealed detailed structural evolution of these two different gels. When the silica gel was heated, (Si-O)6 rings appeared from the random Si-O-Si network formed after sol gel reaction, followed by condensation of silanol groups. Upon further heating, the existing (Si-O)4 rings were broken down and converted into (Si-O)6 structures, and finally isolated silanols appeared. The transition from (Si-O)4 rings to (Si-O)6 rings was observed by IR and further confirmed with positron annihilation lifetime spectroscopy (PALS). In comparison, during the curing of hybrid silsesquioxane, the condensation of silanols happens immediately upon heating without the rearrangement of Si-O-Si network. Afterwards, the fraction of (Si-O)6 ring structure increased. (Si-O)4 structures exhibited higher stability in hybrid silsesquioxanes. In addition, the amount of silanols in silsesquioxane continued to reduce without the generation of isolated silanol in the end. The different curing behavior of silsesquioxanes from silica gel originates from the organic groups in silsesquioxanes, which lowers the cross-linking density and reduces the rigidity of siloxane network.
RESUMEN
Solvent cast and freeze dried films, containing the water-soluble vitamin B12 as model drug were prepared from two polymers, sodium alginate (SA), and Carbopol 71G (CP). The proportion of the CP was changed in the films. The microstructural characterization of various samples was carried out by positron annihilation lifetime spectroscopy (PALS). The drug release kinetics of untreated and stored samples was evaluated by the conventionally applied semi-empirical power law. Correlation was found between the changes of the characteristic parameters of the drug release and the ortho-positronium (o-Ps) lifetime values of polymer samples. The results indicated that the increase of CP concentration, the freeze-drying process and the storage at 75% R.H. decreased the rate of drug release. The PALS method enabled the distinction between the micro- and macrostructural factors influencing the drug release profile of polymer films.
Asunto(s)
Análisis Espectral/métodos , Vitamina B 12/química , Acrilatos/química , Administración Bucal , Alginatos/química , Formas de Dosificación , Liofilización/métodos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Cinética , Polímeros/química , Solventes/química , Agua/químicaRESUMEN
Poly(vinylpyrrolidone)/poly(vinylpyrrolidone-vinylacetate)/iodine nanofibers of different polymer ratios were successfully prepared by a high-speed rotary spinning technique. The obtained fiber mats were subjected to detailed morphological analysis using an optical and scanning electron microscope (SEM), while the supramolecular structure of the samples was analyzed by positron annihilation lifetime spectroscopy (PALS). The maximum dissolved iodine of the fiber samples was determined, and microbiological assay was carried out to test their effect on the bacterial growth. SEM images showed that the polymer fibers were linear, homogenous, and contained no beads. The PALS results, both the o-positronium (o-Ps) lifetime values and distributions, revealed the changes of the free volume holes of fibers as a function of their composition and the presence of iodine. The micro- and macrostructural characterisation of polymer fiber mats enabled the selection of the required composition from the point of their applicability as a wound dressing.
Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Nanofibras/química , Polímeros/química , Povidona Yodada/química , Povidona Yodada/farmacología , Bacterias/efectos de los fármacos , Polímeros/farmacología , Análisis Espectral/métodos , Tecnología Farmacéutica/métodosRESUMEN
Polymer (XAD7HP)/Ti4+ nanocomposites were prepared through the swelling of polymer in titanium (IV) ethoxide as a titanium dioxide precursor. The nanocomposite beads exhibit relatively high porosity different than the porosity of the initial polymer. Thermal treatment of composite particles up to 200 °C in vacuum causes the change of their internal structure. At higher temperature, the components of composite become more tightly packed. Calcination at 600 °C and total removal of polymer produce spherically shaped TiO2 condensed phase as determined by XRD. Thermally treated composites show the substantial change of pore dimensions within micro- and mesopores. The presence of micropores and their transformation during thermal processing was studied successfully by positron annihilation lifetime spectroscopy (PALS). The results derived from PALS experiment were compared with those obtaining from low-temperature nitrogen adsorption data.