Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
1.
Genet Med ; : 101231, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39132680

RESUMEN

PURPOSE: Pediatric cholestasis is the phenotypic expression of clinically and genetically heterogeneous disorders of bile acid synthesis and flow. Although a growing number of monogenic causes of pediatric cholestasis have been identified, the majority of cases remain undiagnosed molecularly. METHODS: In a cohort of 299 pediatric participants (279 families) with intrahepatic cholestasis, we performed exome sequencing as a first-tier diagnostic test. RESULTS: A likely causal variant was identified in 135 families (48.56%). These comprise 135 families that harbor variants spanning 37 genes with established or tentative links to cholestasis. In addition, we propose a novel candidate gene (PSKH1) (HGNC:9529) in 4 families. PSKH1 was particularly compelling because of strong linkage in three consanguineous families who shared a novel hepatorenal ciliopathy phenotype. Two of the four families shared a founder homozygous variant while the third had a different homozygous variant in PSKH1. PSKH1 encodes a putative protein serine kinase of unknown function. Patient fibroblasts displayed abnormal cilia that are long and show abnormal transport. A homozygous Pskh1 mutant mouse faithfully recapitulated the human phenotype and displayed abnormally long cilia. The phenotype could be rationalized by the loss of catalytic activity observed for each recombinant PSKH1 variant using in vitro kinase assays. CONCLUSION: Our results support the use of genomics in the workup of pediatric cholestasis and reveal PSKH1-related hepatorenal ciliopathy as a novel candidate monogenic form.

3.
Cell Mol Neurobiol ; 44(1): 48, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822888

RESUMEN

C3-positive reactive astrocytes play a neurotoxic role in various neurodegenerative diseases. However, the mechanisms controlling C3-positive reactive astrocyte induction are largely unknown. We found that the length of the primary cilium, a cellular organelle that receives extracellular signals was increased in C3-positive reactive astrocytes, and the loss or shortening of primary cilium decreased the count of C3-positive reactive astrocytes. Pharmacological experiments suggested that Ca2+ signalling may synergistically promote C3 expression in reactive astrocytes. Conditional knockout (cKO) mice that specifically inhibit primary cilium formation in astrocytes upon drug stimulation exhibited a reduction in the proportions of C3-positive reactive astrocytes and apoptotic cells in the brain even after the injection of lipopolysaccharide (LPS). Additionally, the novel object recognition (NOR) score observed in the cKO mice was higher than that observed in the neuroinflammation model mice. These results suggest that the primary cilium in astrocytes positively regulates C3 expression. We propose that regulating astrocyte-specific primary cilium signalling may be a novel strategy for the suppression of neuroinflammation.


Asunto(s)
Astrocitos , Cilios , Ratones Noqueados , Animales , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Cilios/metabolismo , Cilios/efectos de los fármacos , Ratones , Complemento C3/metabolismo , Ratones Endogámicos C57BL , Lipopolisacáridos/farmacología , Apoptosis/efectos de los fármacos
4.
Front Cell Neurosci ; 18: 1379976, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860265

RESUMEN

The cilium, a pivotal organelle crucial for cell signaling and proper cell function, relies on meticulous macromolecular transport from the cytoplasm for its formation and maintenance. While the intraflagellar transport (IFT) pathway has traditionally been the focus of extensive study concerning ciliogenesis and ciliary maintenance, recent research highlights a complementary and alternative mechanism-vesicle-assisted transport (VAT) in cytoplasm to cilium trafficking. Despite its potential significance, the VAT pathway remains largely uncharacterized. This review explores recent studies providing evidence for the dynamics of vesicle-related diffusion and transport within the live primary cilium, employing high-speed super-resolution light microscopy. Additionally, we analyze the spatial distribution of vesicles in the cilium, mainly relying on electron microscopy data. By scrutinizing the VAT pathways that facilitate cargo transport into the cilium, with a specific emphasis on recent advancements and imaging data, our objective is to synthesize a comprehensive model of ciliary transport through the integration of IFT-VAT mechanisms.

6.
FEBS J ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825736

RESUMEN

Centriolar satellites are ubiquitous membrane-less organelles that play critical roles in numerous cellular and organismal processes. They were initially discovered through electron microscopy as cytoplasmic granules surrounding centrosomes in vertebrate cells. These structures remained enigmatic until the identification of pericentriolar material 1 protein (PCM1) as their molecular marker, which has enabled their in-depth characterization. Recently, centriolar satellites have come into the spotlight due to their links to developmental and neurodegenerative disorders. This review presents a comprehensive summary of the major advances in centriolar satellite biology, with a focus on studies that investigated their biology associated with the essential scaffolding protein PCM1. We begin by exploring the molecular, cellular, and biochemical properties of centriolar satellites, laying the groundwork for a deeper understanding of their functions and mechanisms at both cellular and organismal levels. We then examine the implications of their dysregulation in various diseases, particularly highlighting their emerging roles in neurodegenerative and developmental disorders, as revealed by organismal models of PCM1. We conclude by discussing the current state of knowledge and posing questions about the adaptable nature of these organelles, thereby setting the stage for future research.

7.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167256, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782303

RESUMEN

The primary cilium, hereafter cilium, is an antenna-like organelle that modulates intracellular responses, including autophagy, a lysosomal degradation process essential for cell homeostasis. Dysfunction of the cilium is associated with impairment of autophagy and diseases known as "ciliopathies". The discovery of autophagy-related proteins at the base of the cilium suggests its potential role in coordinating autophagy initiation in response to physiopathological stimuli. One of these proteins, beclin-1 (BECN1), it which is necessary for autophagosome biogenesis. Additionally, polycystin-2 (PKD2), a calcium channel enriched at the cilium, is required and sufficient to induce autophagy in renal and cancer cells. We previously demonstrated that PKD2 and BECN1 form a protein complex at the endoplasmic reticulum in non-ciliated cells, where it initiates autophagy, but whether this protein complex is present at the cilium remains unknown. Anorexigenic pro-opiomelanocortin (POMC) neurons are ciliated cells that require autophagy to maintain intracellular homeostasis. POMC neurons are sensitive to metabolic changes, modulating signaling pathways crucial for controlling food intake. Exposure to the saturated fatty acid palmitic acid (PA) reduces ciliogenesis and inhibits autophagy in these cells. Here, we show that PKD2 and BECN1 form a protein complex in N43/5 cells, an in vitro model of POMC neurons, and that both PKD2 and BECN1 locate at the cilium. In addition, our data show that the cilium is required for PKD2-BECN1 protein complex formation and that PA disrupts the PKD2-BECN1 complex, suppressing autophagy. Our findings provide new insights into the mechanisms by which the cilium controls autophagy in hypothalamic neuronal cells.


Asunto(s)
Autofagia , Beclina-1 , Cilios , Hipotálamo , Neuronas , Canales Catiónicos TRPP , Animales , Ratones , Beclina-1/metabolismo , Cilios/metabolismo , Hipotálamo/metabolismo , Hipotálamo/citología , Neuronas/metabolismo , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética
8.
Cell Rep ; 43(5): 114164, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678559

RESUMEN

Opioid receptors are therapeutically important G protein-coupled receptors (GPCRs) with diverse neuromodulatory effects. The functional consequences of opioid receptor activation are known to depend on receptor location in the plasma membrane, but mechanisms mediating selective localization of receptors to any particular membrane domain remain elusive. Here, we demonstrate the targeting of the mu opioid receptor (MOR) to the primary cilium, a discrete microdomain of the somatic plasma membrane, both in vivo and in cultured cells. We further show that ciliary targeting is specific to MORs, requires a 17-residue sequence unique to the MOR cytoplasmic tail, and additionally requires the Tubby-like protein 3 (TULP3) ciliary adaptor protein. Our results reveal the potential for opioid receptors to undergo selective localization to the primary cilium. We propose that ciliary targeting is mediated through an elaboration of the recycling pathway, directed by a specific C-terminal recycling sequence in cis and requiring TULP3 in trans.


Asunto(s)
Cilios , Receptores Opioides mu , Receptores Opioides mu/metabolismo , Cilios/metabolismo , Animales , Ratones , Humanos , Células HEK293 , Transporte de Proteínas
9.
Transl Oncol ; 45: 101956, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640786

RESUMEN

Tumor Treating Fields (TTFields) extend the survival of glioblastoma (GBM) patients by interfering with a broad range of tumor cellular processes. Among these, TTFields disrupt primary cilia stability on GBM cells. Here we asked if concomitant treatment of TTFields with other agents that interfere with GBM ciliogenesis further suppress GBM cell proliferation in vitro. Aurora kinase A (AURKA) promotes both cilia disassembly and GBM growth. Inhibitors of AURKA, such as Alisertib, inhibit cilia disassembly and increase ciliary frequency in various cell types. However, we found that Alisertib treatment significantly reduced GBM cilia frequency in gliomaspheres across multiple patient derived cell lines, and in patient biopsies treated ex vivo. This effect appeared glioma cell-specific as it did not reduce normal neuronal or glial cilia frequencies. Alisertib-mediated depletion of glioma cilia appears specific to AURKA and not AURKB inhibition, and attributable in part to autophagy pathway activation. Treatment of two different GBM patient-derived cell lines with TTFields and Alisertib resulted in a significant reduction in cell proliferation compared to either treatment alone. However, this effect was not cilia-dependent as the combined treatment reduced proliferation in cilia-depleted cell lines lacking, ARL13B, or U87MG cells which are naturally devoid of ARL13B+ cilia. Thus, Alisertib-mediated effects on glioma cilia may be a useful biomarker of drug efficacy within tumor tissue. Considering Alisertib can cross the blood brain barrier and inhibit intracranial growth, our data warrant future studies to explore whether concomitant Alisertib and TTFields exposure prolongs survival of brain tumor-bearing animals in vivo.

10.
Front Physiol ; 15: 1396473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562619

RESUMEN

[This corrects the article DOI: 10.3389/fphys.2022.894518.].

11.
Cell Tissue Res ; 396(2): 255-267, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38502237

RESUMEN

Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.


Asunto(s)
Anomalías Múltiples , Diferenciación Celular , Cerebelo , Cerebelo/anomalías , Anomalías del Ojo , Células Madre Pluripotentes Inducidas , Enfermedades Renales Quísticas , Neuronas , Retina , Retina/anomalías , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Cerebelo/patología , Cerebelo/metabolismo , Neuronas/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Retina/metabolismo , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Enfermedades Renales Quísticas/metabolismo , Masculino , Femenino , Mutación/genética , Cilios/metabolismo
12.
Res Sq ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38464172

RESUMEN

The primary cilium, a 1-3 µm long hair-like structure protruding from the surface of almost all cells in the vertebrate body, is critical for neuronal development and also functions in the adult. As the migratory neural crest settles into dorsal root ganglia (DRG) sensory neurons elaborate a single primary cilium at their soma that is maintained into adult stages. While it is not known if primary cilia are expressed in nociceptors, or their potential function in the mature DRG neuron, recent studies have shown a role for Hedgehog, whose signaling demonstrates a dependence on primary cilia, in nociceptor sensitization. Here we report the expression of primary cilia in rat and mouse nociceptors, where they modulate mechanical nociceptive threshold, and contribute to inflammatory and neuropathic pain. When siRNA targeting Ift88, a primary cilium-specific intraflagellar transport (IFT) protein required for ciliary integrity, was administered by intrathecal injection, in the rat, it resulted in loss of Ift88 mRNA in DRG, and primary cilia in neuronal cell bodies, which was associated with an increase in mechanical nociceptive threshold, and abrogation of hyperalgesia induced by the pronociceptive inflammatory mediator, prostaglandin E2, and painful peripheral neuropathy induced by a neurotoxic chemotherapy drug, paclitaxel. To provide further support for the role of the primary cilium in nociceptor function we also administered siRNA for another IFT protein, Ift52. Ift52 siRNA results in loss of Ift52 in DRG and abrogates paclitaxel-induced painful peripheral neuropathy. Attenuation of Hedgehog-induced hyperalgesia by Ift88 knockdown supports a role for the primary cilium in the hyperalgesia induced by Hedgehog, and attenuation of paclitaxel chemotherapy-induced neuropathy (CIPN) by cyclopamine, which attenuates Hedgehog signaling, suggests a role of Hedgehog in CIPN. Our findings support a role of nociceptor primary cilia in the control of mechanical nociceptive threshold and in inflammatory and neuropathic pain, the latter, at least in part, Hedgehog dependent.

13.
Development ; 151(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38546045

RESUMEN

The primary cilium decorates most eukaryotic cells and regulates tissue morphogenesis and maintenance. Structural or functional defects of primary cilium result in ciliopathies, congenital human disorders affecting multiple organs. Pathogenic variants in the ciliogenesis and planar cell polarity effectors (CPLANE) genes FUZZY, INTU and WDPCP disturb ciliogenesis, causing severe ciliopathies in humans and mice. Here, we show that the loss of Fuzzy in mice results in defects of primary cilia, accompanied by increased RhoA activity and excessive actin polymerization at the basal body. We discovered that, mechanistically, Fuzzy interacts with and recruits the negative actin regulator ARHGAP35 (also known as p190A RhoGAP) to the basal body. We identified genetic interactions between the two genes and found that a mutant ArhGAP35 allele increases the severity of phenotypic defects observed in Fuzzy-/- mice. Based on our findings, we propose that Fuzzy regulates ciliogenesis by recruiting ARHGAP35 to the basal body, where the latter likely restricts actin polymerization and modifies the actin network. Our study identifies a mechanism whereby CPLANE proteins control both actin polymerization and primary cilium formation.


Asunto(s)
Actinas , Ciliopatías , Proteínas Activadoras de GTPasa , Ratones , Humanos , Animales , Actinas/metabolismo , Cilios/metabolismo , Polimerizacion
14.
Cells ; 13(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474342

RESUMEN

The pericellular matrix (PCM) is a specialized extracellular matrix that surrounds cells. Interactions with the PCM enable the cells to sense and respond to mechanical signals, triggering a proper adaptive response. Collagen VI is a component of muscle and tendon PCM. Mutations in collagen VI genes cause a distinctive group of inherited skeletal muscle diseases, and Ullrich congenital muscular dystrophy (UCMD) is the most severe form. In addition to muscle weakness, UCMD patients show structural and functional changes of the tendon PCM. In this study, we investigated whether PCM alterations due to collagen VI mutations affect the response of tendon fibroblasts to mechanical stimulation. By taking advantage of human tendon cultures obtained from unaffected donors and from UCMD patients, we analyzed the morphological and functional properties of cellular mechanosensors. We found that the length of the primary cilia of UCMD cells was longer than that of controls. Unlike controls, in UCMD cells, both cilia prevalence and length were not recovered after mechanical stimulation. Accordingly, under the same experimental conditions, the activation of the Hedgehog signaling pathway, which is related to cilia activity, was impaired in UCMD cells. Finally, UCMD tendon cells exposed to mechanical stimuli showed altered focal adhesions, as well as impaired activation of Akt, ERK1/2, p38MAPK, and mechanoresponsive genes downstream of YAP. By exploring the response to mechanical stimulation, for the first time, our findings uncover novel unreported mechanistic aspects of the physiopathology of UCMD-derived tendon fibroblasts and point at a role for collagen VI in the modulation of mechanotransduction in tendons.


Asunto(s)
Colágeno Tipo VI , Mecanotransducción Celular , Distrofias Musculares , Esclerosis , Humanos , Colágeno Tipo VI/genética , Proteínas Hedgehog/metabolismo , Tendones/metabolismo , Fibroblastos/metabolismo
15.
Autophagy ; 20(6): 1465-1466, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38362917

RESUMEN

Shear stress induced by urinary flow stimulates macroautophagy (hereafter referred to as autophagy) in kidney proximal tubule epithelial cells. Autophagy and selective degradation of lipid droplets by lipophagy contribute to tubule homeostasis by the production of ATP and control of epithelial cell size. Autophagy/lipophagy is controlled by a signaling cascade emanating from the primary cilium, localized at the apical side of epithelial cells. Downstream of the primary cilium, AMPK controls mitochondrial biogenesis on the one hand and autophagy/lipophagy on the other hand, which together increase fatty acid production that fuels oxidative phosphorylation to increase energy production. Recently, we reported that the co-transcriptional factors YAP1 and WWTR1/TAZ act downstream of AMPK to control autophagy. In fact, YAP1 and the transcription factor TEAD control the expression of RUBCN/rubicon. Under shear stress, YAP1 is excluded from the nucleus in a SIRT1-dependent manner to favor autophagic flux by downregulating the expression of RUBCN. When simulating in vitro a pathological urinary flow in murine proximal tubule kidney epithelial cells, we observe the nuclear retention of YAP1 and, consequently, high expression of RUBCN and inhibition of autophagic flux. Importantly, these findings were confirmed in biopsies of patients suffering from diabetic nephropathy, a major cause of chronic kidney disease.


Asunto(s)
Autofagia , Túbulos Renales Proximales , Factores de Transcripción , Autofagia/fisiología , Túbulos Renales Proximales/metabolismo , Animales , Humanos , Factores de Transcripción/metabolismo , Ratones , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Epiteliales/metabolismo
16.
J Cell Physiol ; 239(5): e31215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308657

RESUMEN

Primary cilia are distributed extensively within the corneal epithelium and endothelium. However, the presence of cilia in the corneal stroma and the dynamic changes and roles of endothelial and stromal cilia in corneal homeostasis remain largely unknown. Here, we present compelling evidence for the presence of primary cilia in the corneal stroma, both in vivo and in vitro. We also demonstrate dynamic changes of both endothelial and stromal cilia during corneal development. In addition, our data show that cryoinjury triggers dramatic cilium formation in the corneal endothelium and stroma. Furthermore, depletion of cilia in mutant mice lacking intraflagellar transport protein 88 compromises the corneal endothelial capacity to establish the effective tissue barrier, leading to an upregulation of α-smooth muscle actin within the corneal stroma in response to cryoinjury. These observations underscore the essential involvement of corneal endothelial and stromal cilia in maintaining corneal homeostasis and provide an innovative strategy for the treatment of corneal injuries and diseases.


Asunto(s)
Cilios , Sustancia Propia , Endotelio Corneal , Homeostasis , Animales , Ratones , Actinas/metabolismo , Cilios/metabolismo , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Lesiones de la Cornea/terapia , Sustancia Propia/citología , Sustancia Propia/crecimiento & desarrollo , Sustancia Propia/metabolismo , Endotelio Corneal/citología , Endotelio Corneal/crecimiento & desarrollo , Endotelio Corneal/metabolismo , Homeostasis/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Supresoras de Tumor/genética , Ciliopatías/metabolismo , Ciliopatías/patología , Ciliopatías/terapia
17.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(2): 261-268, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38413234

RESUMEN

Recent studies have shown that the formation of the primary cilium is associated with a specific cellular organelle known as the midbody remnant (MBR), which is a point-like organelle formed by shedding of the midbody at the end of mitosis. MBRs move along the cell surface close to the center body and regulate it to form primary cilia at the top of the centriole. Primary cilia can act as an organelle to inhibit tumorigenesis, and it is lost in a variety of tumors. Studies have shown that the accumulation of MBRs in tumor cells affects ciliogenesis; in addition, both MBRs and primary cilia are degraded in tumor cells through the autophagy pathway, and MBRs can also transfer tumor signaling pathway factors to primary cilia affecting tumorigenesis. In this article, the basic structure and the formation process of MBR and primary cilia are reviewed and the mechanism of MBRs regulating ciliogenesis is elaborated. The significance of MBR-mediated ciliogenesis in tumorigenesis and its potential as a target for cancer treatment are discussed.


Asunto(s)
Cilios , Neoplasias , Cilios/fisiología , Cilios/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Autofagia/fisiología , Carcinogénesis , Centriolos/metabolismo , Centriolos/fisiología , Transducción de Señal , Orgánulos/metabolismo , Mitosis , Animales
18.
Diabetologia ; 67(5): 773-782, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38353726

RESUMEN

Primary cilia are rod-like sensory organelles that protrude from the surface of most mammalian cells, including the cells of the islet, and mounting evidence supports important roles of these structures in the regulation of beta cell function and insulin secretion. The sensory abilities of the cilium arise from local receptor activation that is coupled to intrinsic signal transduction, and ciliary signals can propagate into the cell and influence cell function. Here, we review recent advances and studies that provide insights into intra-islet cues that trigger primary cilia signalling; how second messenger signals are generated and propagated within cilia; and how ciliary signalling affects beta cell function. We also discuss the potential involvement of primary cilia and ciliary signalling in the development and progression of type 2 diabetes, identify gaps in our current understanding of islet cell cilia function and provide suggestions on how to further our understanding of this intriguing structure.


Asunto(s)
Cilios , Diabetes Mellitus Tipo 2 , Animales , Humanos , Cilios/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal/fisiología , Mamíferos/metabolismo
19.
Dev Dyn ; 253(3): 312-332, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37776236

RESUMEN

INTRODUCTION: Primary cilia play pivotal roles in the patterning and morphogenesis of a wide variety of organs during mammalian development. Here we examined murine foregut septation in the cobblestone mutant, a hypomorphic allele of the gene encoding the intraflagellar transport protein IFT88, a protein essential for normal cilia function. RESULTS: We reveal a crucial role for primary cilia in foregut division, since their dramatic decrease in cilia in both the foregut endoderm and mesenchyme of mutant embryos resulted in a proximal tracheoesophageal septation defects and in the formation of distal tracheo(broncho)esophageal fistulae similar to the most common congenital tracheoesophageal malformations in humans. Interestingly, the dorsoventral patterning determining the dorsal digestive and the ventral respiratory endoderm remained intact, whereas Hedgehog signaling was aberrantly activated. CONCLUSIONS: Our results demonstrate the cobblestone mutant to represent one of the very few mouse models that display both correct endodermal dorsoventral specification but defective compartmentalization of the proximal foregut. It stands exemplary for a tracheoesophageal ciliopathy, offering the possibility to elucidate the molecular mechanisms how primary cilia orchestrate the septation process. The plethora of malformations observed in the cobblestone embryo allow for a deeper insight into a putative link between primary cilia and human VATER/VACTERL syndromes.


Asunto(s)
Ciliopatías , Proteínas Hedgehog , Humanos , Animales , Ratones , Proteínas Hedgehog/genética , Cilios , Alelos , Modelos Animales de Enfermedad , Mamíferos
20.
FEBS Lett ; 598(1): 17-31, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37777819

RESUMEN

Macroautophagy is a lysosomal degradative pathway for intracellular macromolecules, protein aggregates, and organelles. The formation of the autophagosome, a double membrane-bound structure that sequesters cargoes before their delivery to the lysosome, is regulated by several stimuli in multicellular organisms. Pioneering studies in rat liver showed the importance of amino acids, insulin, and glucagon in controlling macroautophagy. Thereafter, many studies have deciphered the signaling pathways downstream of these biochemical stimuli to control autophagosome formation. Two signaling hubs have emerged: the kinase mTOR, in a complex at the surface of lysosomes which is sensitive to nutrients and hormones; and AMPK, which is sensitive to the cellular energetic status. Besides nutritional, hormonal, and energetic fluctuations, many organs have to respond to mechanical forces (compression, stretching, and shear stress). Recent studies have shown the importance of mechanotransduction in controlling macroautophagy. This regulation engages cell surface sensors, such as the primary cilium, in order to translate mechanical stimuli into biological responses.


Asunto(s)
Autofagia , Macroautofagia , Autofagia/fisiología , Mecanotransducción Celular , Autofagosomas/metabolismo , Fagocitosis , Lisosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...