Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.490
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 941-952, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39128288

RESUMEN

Prodrug nanoassemblies combine the advantages of prodrug strategies and nanotechnology have been widely utilized for delivering antitumor drugs. These prodrugs typically comprise active drug modules, response modules, and modification modules. Among them, the modification modules play a critical factor in improving the self-assembly ability of the parent drug. However, the impact of the specific structure of the modification modules on prodrug self-assembly remains elusive. In this study, two gemcitabine (GEM) prodrugs are developed using 2-octyl-1-dodecanol (OD) as flexible modification modules and cholesterol (CLS) as rigid modification modules. Interestingly, the differences in the chemical structure of modification modules significantly affect the assembly performance, drug release, cytotoxicity, tumor accumulation, and antitumor efficacy of prodrug nanoassemblies. It is noteworthy that the prodrug nanoassemblies constructed with flexible modifying chains (OD) exhibit improved stability, faster drug release, and enhanced antitumor effects. Our findings elucidate the significant impact of modification modules on the construction of prodrug nanoassemblies.


Asunto(s)
Desoxicitidina , Liberación de Fármacos , Gemcitabina , Profármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacología , Profármacos/química , Profármacos/farmacología , Humanos , Animales , Ratones , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/química , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Nanopartículas/química , Proliferación Celular/efectos de los fármacos , Tamaño de la Partícula , Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/farmacología , Línea Celular Tumoral , Estructura Molecular , Propiedades de Superficie , Ratones Endogámicos BALB C
2.
Biomaterials ; 312: 122722, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39096841

RESUMEN

Ferroptosis, a recently identified form of cell death, holds promise for cancer therapy, but concerns persist regarding its uncontrolled actions and potential side effects. Here, we present a semiconducting polymer nanoprodrug (SPNpro) featuring an innovative ferroptosis prodrug (DHU-CBA7) to induce sono-activatable ferroptosis for tumor-specific therapy. DHU-CBA7 prodrug incorporate methylene blue, ferrocene and urea bond, which can selectively and specifically respond to singlet oxygen (1O2) to turn on ferroptosis action via rapidly cleaving the urea bonds. DHU-CBA7 prodrug and a semiconducting polymer are self-assembled with an amphiphilic polymer to construct SPNpro. Ultrasound irradiation of SPNpro leads to the production of 1O2 via sonodynamic therapy (SDT) of the semiconducting polymer, and the generated 1O2 activated DHU-CBA7 prodrug to achieve sono-activatable ferroptosis. Consequently, SPNpro combine SDT with the controlled ferroptosis to effectively cure 4T1 tumors covered by 2-cm tissue with a tumor inhibition efficacy as high as 100 %, and also completely restrain tumor metastases. This study introduces a novel sono-activatable prodrug strategy for regulating ferroptosis, allowing for precise cancer therapy.


Asunto(s)
Ferroptosis , Ratones Endogámicos BALB C , Polímeros , Profármacos , Semiconductores , Ferroptosis/efectos de los fármacos , Profármacos/farmacología , Profármacos/química , Profármacos/uso terapéutico , Animales , Polímeros/química , Femenino , Línea Celular Tumoral , Ratones , Terapia por Ultrasonido/métodos , Nanopartículas/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Oxígeno Singlete/metabolismo
3.
Biomed Pharmacother ; 180: 117543, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39405917

RESUMEN

Leukemia remains a fatal disease for most affected patients, and a simple and effective therapeutic strategy is urgently needed. Targeted delivery chemo-drugs to leukemia cells shows promise, but the diverse subtypes of leukemia make single-ligand nanomedicine often ineffective. Herein, a dual-aptamer decorated, reduction-responsive dimeric prodrug-based nanoparticle (NP), termed SXP-NPs, was developed using the two leukemia-specific aptamers Sgc8c and XQ-2d, a reduction-responsive podophyllotoxin (POD) dimeric prodrug, and DSPE-PEG2000. Because the receptors of XQ-2d (CD71) and Sgc8c (PTK7) are overexpressed in different subtypes of leukemia cells, SXP-NPs can broadly and selectively recognize these leukemia cells after intravenous administration, subsequently releasing POD in response to the intracellular high-reduction environment to kill the leukemia cells. In vitro experiments showed that these simple SXP-NPs can specifically bind to various leukemia cancer cells and kill them. In vivo experiments revealed that SXP-NPs can remarkably reduce spleen weight, decrease white blood cell counts, and extend overall survival in a preclinical leukemia animal model. The in vitro and in vivo validation demonstrated that SXP-NPs offer several advantages, including high drug-loading potential, broad-spectrum recognition of leukemia cells, reduced systemic toxicity, and enhanced therapeutic effects of the drug. Taken together, this study provides a simple and effective strategy for broad-spectrum leukemia therapy and highlights the clinical potential of SXP-NPs.

4.
J Pharm Sci ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368743

RESUMEN

With an increasing number of Biopharmaceutical Classification System (BCS) II/IV pipeline compounds, solubilizing and supersaturating formulation strategies are becoming prevalent. Beyond formulation and solid form strategies, prodrugs are also employed to overcome solubility-limited absorption of poorly water-soluble compounds. Prodrugs can potentially yield supersaturated systems upon conversion to the parent drug intraluminally and thus enhance absorption. However, supersaturation also increases the driving force for crystallization, resulting in low solution concentrations, which can potentially negate the advantage of prodrugs. In this work, two unique solubility-enhancing prodrugs, phosphate and glycine esters, were investigated for a rapidly crystallizing parent drug. Ex vivo absorption studies using rat tissue and in vivo studies in dogs were performed. Conversion rate of the phosphate prodrug to the parent was dependent on the milieu and increased ∼24-fold in the presence of intestinal contents as medium and tissue relative to neat buffer. In contrast, conversion of the glycine prodrug was minimal under any conditions tested, suggesting that the conversion occurs after absorption into the enterocytes. Phosphate prodrug showed a non-linear increase in parent drug absorptive flux across rat intestinal tissue with concentration when intestinal contents were used as donor media. This was attributed to rapid conversion and high supersaturation of the parent drug which subsequently resulted in crystallization at high doses in the donor chamber. Glycine prodrug did not undergo complete conversion at high doses and was absorbed unchanged on the basolateral side, indicating saturation of the converting enzymes in the enterocytes. The combined flux (parent drug and glycine) showed a linear increase with dose and crystallization was not observed. Under physiological conditions, glycine prodrug that is absorbed unchanged from the intestine can potentially undergo complete conversion in hepatocytes after absorption and make the parent drug systemically available. Thus, glycine prodrug provided overall higher absorption compared to phosphate prodrug. The observed flux levels for both the prodrugs were higher compared to the parent drug alone, highlighting an advantage to use of a prodrug strategy to improve absorption of such compounds. Oral dosing in a dog PK study revealed that the bioavailability using the phosphate prodrug was ∼50% whereas, it was ∼100% with glycine prodrug, supporting the in vitro observations.

5.
J Nanobiotechnology ; 22(1): 622, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39402673

RESUMEN

Altering the mechanisms of tumor cell death and overcoming the limitations of traditional chemotherapy is pivotal to contemporary tumor treatment. Inducing ferroptosis, while circumventing safety concerns associated with ferrous vectors, through nonferrous ferroptosis is a promising but underexplored frontier in cancer therapy. Histidine phosphatase (LHPP) has emerged as a novel therapeutic target in treating hepatocellular carcinoma (HCC), but the precise mechanism of LHPP against HCC remains unclear. Herein, we explore the effects of upregulating LHPP expression on ferroptosis and tumor immunogenicity induction by simply delivering a miRNA-363-5p inhibitor (miR-363-5pi) via a previously optimized gemcitabine-oleic acid (GOA) prodrug. Efficient miRNA encapsulation was achieved through hydrogen bonding at an optimized GOA/miRNA molar feed ratio of 250:1, affording spherical nanoparticles with a uniform hydrodynamic size of 147.1 nm and a negative potential of -21.5 mV. The mechanism of this LHPP-ferroptosis crosstalk is disclosed to be an inhibited phosphorylation of the PI3K/Akt pathway, leading to a remarkable tumor inhibition rate of 88.2% in nude mice bearing Bel-7402 tumor xenografts via a combination of LHPP-triggered nonferrous ferroptosis and GOA-induced chemotherapy. The biocompatibility of GOA/miR-363-5pi is strongly supported by their non-hematologic toxicity and insignificant organ damage. In addition, the tumor immunogenic activation potential of GOA/miR-363-5pi was finally explored. Overall, this study is the first work that elucidates the precise mechanism of LHPP for treating HCC via ferroptosis induction and achieves the transformation of chemotherapy and gene therapy into ferroptosis activation with tumor cell immunogenicity, which lays a new therapeutic foundation for the clinical treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Ratones Desnudos , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Ferroptosis/efectos de los fármacos , Humanos , Ratones , Línea Celular Tumoral , MicroARNs/metabolismo , MicroARNs/genética , Ratones Endogámicos BALB C , Nanopartículas/química , Profármacos/farmacología , Profármacos/química , Profármacos/uso terapéutico , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Desoxicitidina/química , Gemcitabina , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Transducción de Señal/efectos de los fármacos , Pirofosfatasa Inorgánica
6.
Front Pharmacol ; 15: 1441147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39364056

RESUMEN

Despite the extraordinary anti-tubercular activity of isoniazid (INH), the drug-induced hepatotoxicity and peripheral neuropathy pose a significant challenge to its wider clinical use. The primary cause of INH-induced hepatotoxicity is in vivo metabolism involving biotransformation on its terminal -NH2 group owing to its high nucleophilic nature. The human N-acetyltransferase-2 enzyme (NAT-2) exploits the reactivity of INH's terminal -NH2 functional group and inactivates it by transferring the acetyl group, which subsequently converts to toxic metabolites. This -NH2 group also tends to react with vital endogenous molecules such as pyridoxine, leading to their deficiency, a major cause of peripheral neuropathy. The elevation of liver functional markers is observed in 10%-20% of subjects on INH treatment. INH-induced risk of fatal hepatitis is about 0.05%-1%. The incidence of peripheral neuropathy is 2%-6.5%. In this review, we discuss the genesis and historical development of INH, and different reported mechanisms of action of INH. This is followed by a brief review of various clinical trials in chronological order, highlighting treatment-associated adverse events and their occurrence rates, including details such as geographical location, number of subjects, dosing concentration, and regimen used in these clinical studies. Further, we elaborated on various known metabolic transformations highlighting the involvement of the terminal -NH2 group of INH and corresponding host enzymes, the structure of different metabolites/conjugates, and their association with hepatotoxicity or neuritis. Post this deliberation, we propose a hydrolysable chemical derivatives-based approach as a way forward to restrict this metabolism.

7.
Adv Healthc Mater ; : e2401936, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39380387

RESUMEN

Many patients cannot tolerate low-dose weekly methotrexate (MTX) therapy for inflammatory arthritis treatment due to life-threatening toxicity. Although biologics offer a target-specific therapy, it raises the risk of serious infections and even cancer due to immune system suppression. We introduce an anti-inflammatory arthritis MTX ester prodrug using a long-circulating biocompatible polymeric macromolecule: folic acid (FA) functionalized hyperbranched polyglycerol (HPG). In vitro the drug MTX is incrementally released through pH and enzymatic degradation over 2 weeks. The role of matrix metalloproteinases (MMPs) in site-specific prodrug activation was verified using synovial fluid (SF) of 26 rheumatology patients and 4 healthy controls. Elevated levels of specific MMPs-markers of joint inflammation-positively correlated with enhanced prodrug release explained by acid-catalyzed hydrolysis of esters by proteases. Intravenously administered 111In-radiolabeled prodrug confirmed by SPECT/CT imaging that it accumulated preferentially in inflamed joints while reducing off-target side-effects in a mouse model of rheumatoid arthritis (RA). Added FA as a targeting vector prolonged prodrug action; prodrug with 4x less MTX applied every 2 weeks was as effective as weekly MTX therapy. The preclinical results suggest a prodrug-based strategy for the treatment of inflammatory joint diseases, with potential for other chronic inflammatory diseases and cancer.

8.
Photochem Photobiol ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384406

RESUMEN

Photodynamic therapy (PDT) effectively kills cancer cells and initiates immune responses that promote anticancer effects locally and systemically. Primarily developed for local and regional cancers, the potential of PDT for systemic antitumor effects [in situ photo-vaccination (ISPV)] remains underexplored. This study investigates: (1) the comparative effectiveness of paclitaxel (PTX) prodrug [Pc-(L-PTX)2] for PDT and site-specific PTX effects versus its pseudo-prodrug [Pc-(NCL-PTX)2] for PDT combined with checkpoint inhibitors; (2) mechanisms driving systemic antitumor effects; and (3) the prophylactic impact on preventing cancer recurrence. A bilateral tumor model was established in BALB/c mice through subcutaneous injection of CT26 cells. Mice received the PTX prodrug (0.5 µmole kg-1, i.v.), and tumors were treated with a 690-nm laser (75 mW cm-2 for 30 min, drug-light interval 0.5 h, light does 135 J cm-1), followed by anti-CTLA-4 (100 µg dose-1, i.p.) on days 1, 4, and 7. Notable enhancement in both local and systemic antitumor effectiveness was observed with [Pc-(L-PTX)2] compared to [Pc-(NCL-PTX)2] with checkpoint inhibitor. Immune cell depletion and immunohistochemistry confirmed neutrophils and CD8+ T cells are effectors for systemic antitumor effects. Treatment-induced immune memory resisted newly rechallenged CT26, showcasing prophylactic benefits. ISPV with a PTX prodrug and anti-CTLA-4 is a promising approach for treating metastatic cancers and preventing recurrence.

9.
J Colloid Interface Sci ; 679(Pt A): 214-223, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39362146

RESUMEN

Sonodynamic therapy is a promising, noninvasive, and precise tumor treatment that leverages sonosensitizers to generate cytotoxic reactive oxygen species during ultrasound stimulation. Gallic acid (GA), a natural polyphenol, possesses certain anti-tumor properties, but exhibits significant toxicity toward normal cells, limiting its application in cancer treatment. To overcome this issue, we synthesized a bismuth-gallic acid (BGA), coordinated metal-organic framework (MOF) nano-prodrug. Upon encountering glutathione (GSH), BGA gradually dissociated and depleted GSH, releasing GA, which had anti-tumor effects. As an MOF with semiconductor properties, BGA primarily produced superoxide anion radical upon ultrasound excitation. After the release of GA, GA generated superoxide anion radical and further produced high toxic singlet oxygen under ultrasound stimulation, while further oxidizing and consuming GSH, enhancing sonocatalytic performance. Additionally, the released GA induced cell cycle arrest, ultimately leading to apoptosis. Our results revealed that BGA, as a GSH-activated, metal-polyphenol MOF nano-prodrug, showed potential for use in breast tumor sonodynamic therapy, providing a novel strategy for precise tumor treatment.

10.
Recent Adv Drug Deliv Formul ; 18(4): 227-246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39356096

RESUMEN

Protein and peptide-based drugs have greater therapeutic efficacy and potential application and lower toxicity compared to chemical entities in long-term use within optimum concentration as they are easily biodegradable due to biological origin. While oral administration is preferable, most of these substances are currently administered intravenously or subcutaneously. This is primarily due to the breakdown and poor absorption in the GI tract. Hence, ongoing research is focused on investigating absorption enhancers, enzyme inhibitors, carrier systems, and stability enhancers as potential strategies to facilitate the oral administration of proteins and peptides. Investigations have been directed towards advancing novel technologies to address gastrointestinal (GI) barriers associated with protein and peptide medications. The current review intensifies formulation and stability approaches for oral protein & peptide drug delivery systems with all significant parameters intended for patient safety. Notably, certain innovative technologies have been patented and are currently undergoing clinical trials or have already been introduced into the market. All the approaches stated for the administration of protein and peptide drugs are critically discussed, having their current status, future directions, and recent patents published in the last decades.


Asunto(s)
Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Patentes como Asunto , Péptidos , Proteínas , Humanos , Péptidos/administración & dosificación , Administración Oral , Sistemas de Liberación de Medicamentos/métodos , Proteínas/administración & dosificación , Proteínas/farmacocinética , Animales
11.
Bioorg Med Chem Lett ; 113: 129980, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39362474

RESUMEN

Autophagy is a conserved self-digestion process, which governs regulated degradation of cellular components. Autophagy is upregulated upon energy shortage sensed by AMP-dependent protein kinase (AMPK). Autophagy activators might be contemplated as therapies for metabolic neurodegenerative diseases and obesity, as well as cancer, considering tumor-suppressive functions of autophagy. Among them, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr), a nucleoside precursor of the active phosphorylated AMP analog, is the most commonly used pharmacological modulator of AMPK activity, despite its multiple reported "off-target" effects. Here, we assessed the autophagy/mitophagy activation ability of a small set of (2'-deoxy)adenosine derivatives and analogs using a fluorescent reporter assay and immunoblotting analysis. The first two leader compounds, 7,8-dihydro-8-oxo-2'-deoxyadenosine and -adenosine, are nucleoside forms of major oxidative DNA and RNA lesions. The third, a derivative of inactive N6-methyladenosine with a metabolizable phosphate-masking group, exhibited the highest activity in the series. These compounds primarily contributed to the activation of AMPK and outperformed AICAr; however, retaining the activity in knockout cell lines for AMPK (ΔAMPK) and its upstream regulator SIRT1 (ΔSIRT1) suggests that AMPK is not a main cellular target. Overall, we confirmed the prospects of searching for autophagy activators among (2'-deoxy)adenosine derivatives and demonstrated the applicability of the phosphate-masking strategy for increasing their efficacy.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Homólogo de la Proteína 1 Relacionada con la Autofagia , Autofagia , Humanos , Adenosina/química , Adenosina/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Aminoimidazol Carboxamida/química , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Desoxiadenosinas/farmacología , Desoxiadenosinas/química , Relación Dosis-Respuesta a Droga , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Estructura Molecular , Relación Estructura-Actividad
12.
Med Oncol ; 41(12): 299, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39443414

RESUMEN

Paclitaxel (PTX), an antimitotic drug from the taxanes group, prevents the proliferation of breast cancer cells through mitosis arrest and activation by a cascade of signaling pathways that lead to apoptosis. Mitochondria is one of the important signaling routes for inducing apoptosis. For mitochondria targeting, triphenylphosphonium (TPP) with a delocalized charge and hydrophobic nature was utilized as a moiety to facilitate penetration through a phospholipid membrane of mitochondria. PTX-TPP was synthesized via pH-sensitive ester bond between hydroxyl groups of PTX and carboxylic acid of (4-carboxybutyl) TPP. Then PTX-TPP prodrug encapsulated in alginate nanoparticles, which were self-assembled by the ionotropic complexation technique for enhancement of mitochondrial apoptosis in breast cancer cells. The loading of PTX-TPP conjugation in self-assembled alginate nanoparticles was 16.5% and the particle size of nanoparticles was 123 nm with zeta potential around - 25.8 Mv. The in vitro cytotoxicity and IC50 of PTX-TPP nanoparticles in the growth of MCF7 cancer cell increased 6.3-fold higher than free PTX. The early apoptotic cells and the late apoptotic/necrotic cells for PTX-TPP nanoparticles were 11.6 and 3.9-fold higher than free PTX. This study indicated this mitochondrial-targeted self-assembled nanoparticles can inhibit the tumor cell growth of breast cancer.


Asunto(s)
Alginatos , Apoptosis , Mitocondrias , Nanopartículas , Compuestos Organofosforados , Paclitaxel , Humanos , Paclitaxel/farmacología , Paclitaxel/química , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nanopartículas/química , Alginatos/química , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Células MCF-7 , Femenino , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología
13.
ACS Nano ; 18(41): 28104-28114, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39373015

RESUMEN

The nanozyme with NADPH oxidase (NOX)-like activity can promote the consumption of NADPH and the generation of free radicals. In consideration of that the upregulation of glucose-6-phosphate dehydrogenase (G6PD) would accelerate the compensation production of NADPH, for inhibition of G6PD activity, our designed bioorthogonal nanozyme can in situ catalyze pro-DHEA to produce G6PD inhibitor and dehydroepiandrosterone (DHEA) drugs to inhibit G6PD activity. Therefore, the well-defined platform can disrupt NADPH homeostasis, leading to the collapse of the antioxidant defense system in the tumor cells. The enzyme-like activity of PdCuFe is further enhanced when irradiated by NIR-II light. The destruction of NADPH homeostasis can promote ferroptosis and, in turn, facilitate mild photothermal therapy. Our design can realize NADPH depletion and greatly improve the therapeutic effect through metabolic regulation, which may provide inspiration for the design of bioorthogonal catalysis.


Asunto(s)
Ferroptosis , Glucosafosfato Deshidrogenasa , Terapia Fototérmica , Ferroptosis/efectos de los fármacos , Humanos , Glucosafosfato Deshidrogenasa/metabolismo , NADP/metabolismo , NADP/química , Animales , Ratones , Deshidroepiandrosterona/metabolismo , Deshidroepiandrosterona/química , Deshidroepiandrosterona/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas/química , Nanopartículas/metabolismo
14.
Theranostics ; 14(14): 5413-5428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39310094

RESUMEN

Rationale: Oral chemotherapy has been emerging as a hopeful therapeutic regimen for the treatment of various cancers because of its high safety and convenience, lower costs, and high patient compliance. Despite the current advancements in nanoparticle-mediated drug delivery, numerous anticancer drugs susceptible to the hostile gastrointestinal (GI) environment exhibit poor permeability across the intestinal epithelium, rendering them ineffective in providing therapeutic benefits. In this paper, we focus on harnessing milk-derived extracellular vesicles (mEVs) for gut-to-tumor oral drug delivery by leveraging their high bioavailability. Methods: The tumor-activated prodrug (a cathepsin B-specific cleavable FRRG peptide and doxorubicin, FDX) is used as a model drug and is complexed with mEVs, resulting in FDX@mEVs. To verify stability in the GI tract, prolonged intestinal retention, and enhanced trans-epithelial transport via neonatal Fc receptor (FcRn)-mediated transcytosis, intestinal transport evaluation is conducted using in vitro intestinal barrier model and mouse model. Results: FDX@mEVs form a stable nanostructure with an average diameter of 131.1 ± 70.5 nm and complexation processes do not affect the inherent properties of FDX. Orally administered FDX@mEVs show significantly improved bioavailability compared to uncomplexed FDX via FcRn-mediated transcytosis of mEVs resulting in increased tumor accumulation of FDX in tumor-bearing mouse model. Conclusions: After oral administration of FDX@mEVs, it is observed that remarkable antitumor efficacy in colon tumor-bearing mice without adverse effects, such as body weight loss, liver/kidney dysfunction, and cardiotoxicity.


Asunto(s)
Doxorrubicina , Vesículas Extracelulares , Profármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Doxorrubicina/farmacocinética , Animales , Profármacos/administración & dosificación , Profármacos/farmacología , Ratones , Vesículas Extracelulares/metabolismo , Administración Oral , Humanos , Leche/química , Sistemas de Liberación de Medicamentos/métodos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Disponibilidad Biológica , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Nanopartículas/química
15.
FEBS J ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288205

RESUMEN

Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, acts as a cofactor in many metabolic processes. In humans, PLP is produced in the reactions catalysed by pyridox(am)ine 5'-phosphate oxidase (PNPO) and pyridoxal kinase (PDXK). Both PNPO and PDXK are involved in cancer progression of many tumours. The silencing of PNPO and PDXK encoding genes determines a strong reduction in tumour size and neoplastic cell invasiveness in models of acute myeloid leukaemia (in the case of PDXK) and ovarian and breast cancer (in the case of PNPO). In the present work, we demonstrate that pyridoxilidenerhodanine 5'-phosphate (PLP-R), a PLP analogue that has been tested by other authors on malignant cell lines reporting a reduction in proliferation, inhibits PNPO in vitro following a mixed competitive and allosteric mechanism. We also show that the unphosphorylated precursor of this inhibitor (PL-R), which has more favourable pharmacokinetic properties according to our predictions, is phosphorylated by PDXK and therefore transformed into PLP-R. On this ground, we propose the prototype of a novel prodrug-drug system as a useful starting point for the development of new, potential, antineoplastic agents.

16.
Acta Pharm Sin B ; 14(8): 3680-3696, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39220877

RESUMEN

Inefficient drug penetration hurdled by the stroma in the tumor tissue leads to a diminished therapeutic effect for drugs and a reduced infiltration level of immune cells. Herein, we constructed a PEGylated dendritic epirubicin (Epi) prodrug (Epi-P4D) to regulate the metabolism of cancer-associated fibroblasts (CAFs), thus enhancing Epi penetration into both multicellular tumor spheroids (MTSs) and tumor tissues in mouse colon cancer (CT26), mouse breast cancer (4T1) and human breast cancer (MDA-MB-231) models. Enhanced cytotoxicity against CT26 MTSs and remarkable antitumor efficacy of Epi-P4D were ascribed to reduced fibronectin, α-SMA, and collagen secretion. Besides, thinning of the tumor tissue stroma and efficient eradication of tumor cells promoted the immunogenic cell death effect for dendritic cell (DC) maturation and subsequent immune activation, including elevating the CD4+ T cell population, reducing CD4+ and CD8+ T cell hyperactivation and exhaustion, and amplifying the natural killer (NK) cell proportion and effectively activating them. As a result, this dendritic nanomedicine thinned the stroma of tumor tissues to enhance drug penetration and facilitate immune cell infiltration for elevated antitumor efficacy.

17.
Cells ; 13(18)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39329707

RESUMEN

Intramedullary spinal cord glioblastoma (ISCG) is lethal due to lack of effective treatment. We previously established a rat C6-ISCG model and the antitumor effect of F3.CD-TK, an hNSC line expressing CD and TK, via producing cytocidal 5FU and GCV-TP. However, the neurotherapeutic potential of this hNSC approach has remained uninvestigated. Here for the first time, cultured F3.CD-TK cells were found to have a markedly higher oncolytic effect, which was GJIC-dependent, and BDNF expression but less VEGF secretion than F3.CD. In Rowett athymic rats, F3.CD-TK (1.5 × 106 cells/10 µL × 2), injected near C6-ISCG (G55 seeding 7 days earlier: 10 K/each) and followed by q.d. (×5/each repeat; i.p.) of 5FC (500 mg/kg/5 mL/day) and GCV (25 mg/kg/1 mL/day), robustly mitigated cardiorespiratory, locomotor, and sensory deficits to improve neurofunction and overall survival compared to animals receiving either F3.CD or F3.CD-TK+F3.CD debris formula. The F3.CD-TK regimen exerted greater tumor penetration and neural inflammation/immune modulation, reshaped C6-ISCG topology to increase the tumor's surface area/volume ratio to spare/repair host axons (e.g., vGlut1+ neurites), and had higher post-prodrug donor self-clearance. The multimodal data and mechanistic leads from this proof-of-principle study suggest that the overall stronger anti-ISCG benefit of our hNSC-based GDEPT is derived from its concurrent oncolytic and neurotherapeutic effects.


Asunto(s)
Ingeniería Genética , Glioblastoma , Neoplasias de la Médula Espinal , Animales , Glioblastoma/terapia , Glioblastoma/patología , Glioblastoma/genética , Neoplasias de la Médula Espinal/terapia , Neoplasias de la Médula Espinal/genética , Neoplasias de la Médula Espinal/patología , Ratas , Humanos , Modelos Animales de Enfermedad , Línea Celular Tumoral , Ratas Desnudas
18.
ACS Appl Mater Interfaces ; 16(38): 50459-50473, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39258403

RESUMEN

Insufficient drug accumulation in tumors severely limits the antitumor efficiency of hyaluronic acid (HA) nanomedicine in solid tumors due to superficial penetration depth, low cell uptake, and nonspecific drug release. Hence, we constructed a dual NO prodrug (alkynyl-JSK) and doxorubicin prodrug (cis-DOX)-conjugated HA nanoparticle (HA-DOX-JSK NPs), which achieved cascade-boosted drug delivery efficiency based on a relay strategy of NO-mediated deep tumor penetration─HA target CD44 tumor cell uptake─tumor microenvironment (TME)-responsive drug release. The nanoparticle demonstrated sustained and locoregionally GSH/GST-triggered NO release and GSH/pH-responsive DOX release in the tumor. The released NO first mediated collagen degradation, causing deep tumor penetration of nanoparticles in the dense extracellular matrix. Immediately, HA was relayed to enhance CD44-targeted tumor cell uptake, and then, the nanoparticles were finally triggered by specific TME to release DOX and NO in the deep tumor. Relying on the relayed delivery strategy, a significant improvement of DOX accumulation in tumors was realized. Moreover, NO depleted GSH-induced intracellular reactive oxygen species, enhancing DOX chemotherapy. Based on this strategy, the tumor inhibition rate in breast cancer was up to 87.8% in vivo. The relay drug-delivery HA system would greatly cascade-boost drug accumulation in deep tumors for efficient solid tumor therapy.


Asunto(s)
Doxorrubicina , Ácido Hialurónico , Nanopartículas , Estrés Oxidativo , Profármacos , Ácido Hialurónico/química , Doxorrubicina/química , Doxorrubicina/farmacología , Profármacos/química , Profármacos/farmacología , Estrés Oxidativo/efectos de los fármacos , Humanos , Animales , Nanopartículas/química , Ratones , Femenino , Liberación de Fármacos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Hialuranos/metabolismo , Microambiente Tumoral/efectos de los fármacos , Ratones Endogámicos BALB C , Antineoplásicos/química , Antineoplásicos/farmacología , Ratones Desnudos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología
19.
ACS Appl Mater Interfaces ; 16(38): 50229-50237, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39264898

RESUMEN

Targeted delivery systems combined with the stimuli-responsive release of drug molecules hold noteworthy promise for precision medicine, enabling treatments with enhanced effectiveness and reduced adverse effects. An ideal drug delivery platform with versatile targeting moieties, the capability of combinational payloads, and simple preparation is highly desirable. Herein, we developed pH-sensitive fluorescent self-assembled complexes (SACs) of a galactose-functionalized G-quadruplex (G4) and a coumarin carboxamidine derivative as a targeted delivery platform through the nanoprecipitation method. These SACs selectively targeted hepatocellular carcinoma (HepG2) cells in fluorescence imaging after a short incubation and exerted specific anticancer effects in an appropriate dose range. Co-delivery of 1 µM prodrug floxuridine oligomers and 16 µg/mL SACs (minimal hemolytic effect) significantly reduced the cytotoxicity of the nucleoside anticancer drug on normal cells (NIH/3T3), kept up to 70% alive after 72-h incubation, and improved anticancer efficacy compared to SACs alone. This strategy can be extended to ratiometric multidrug delivery through self-assembly for targeted combinational therapy.


Asunto(s)
G-Cuádruplex , Humanos , G-Cuádruplex/efectos de los fármacos , Células Hep G2 , Ratones , Animales , Células 3T3 NIH , Colorantes Fluorescentes/química , Antineoplásicos/química , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Floxuridina/química , Floxuridina/farmacología , Galactosa/química , Cumarinas/química , Cumarinas/farmacología
20.
Mol Pharm ; 21(10): 4995-5004, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39224912

RESUMEN

Psoriasis is a chronic immune-mediated inflammatory skin disease, affecting ∼ 3% of the US population. Although multiple new systemic therapies have been introduced for the treatment of psoriatic skin disease, topical and intralesional glucocorticoids (GCs) continue to be used as effective psoriasis therapies. Their clinical utility, however, has been hampered by significant adverse effects, including skin atrophy and pigmentation as well as elevated blood glucose levels and hypertension. To mitigate these limitations, we have developed a N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based thermoresponsive dexamethasone (Dex) prodrug (ProGel-Dex) and assessed its therapeutic efficacy and safety in an imiquimod (IMQ)-induced psoriasis-like (PL) mouse model. ProGel-Dex was intradermally administered once at three dosing levels: 0.5, 1.0, and 2.0 mg/kg/day Dex equivalent at the beginning of the study. PL mice were also treated with daily topical saline or Dex, which were used as control groups. Treatment of PL mice with ProGel-Dex dosed at 0.5 mg/kg/day resulted in a significant reduction in scaling and erythema. Improvement in gross pathology scores, skin histological scores, and serum cytokine levels was also observed. Interestingly, for mice treated with ProGel-Dex at 1.0 and 2.0 mg/kg/day Dex equivalent, only improvement in skin erythema was observed. GC-associated side effects, such as elevation of serum alanine aminotransferase (ALT) and amylase levels and body weight loss, were not observed in mice treated with ProGel-Dex at 0.5 and 1.0 mg/kg/day Dex equivalent. Collectively, these results demonstrate the efficacy and improved safety of ProGel-Dex in treating psoriatic skin lesions when compared to topical Dex treatment, supporting its translational potential for clinical management of lesional skin psoriasis.


Asunto(s)
Dexametasona , Modelos Animales de Enfermedad , Imiquimod , Profármacos , Psoriasis , Animales , Imiquimod/efectos adversos , Imiquimod/administración & dosificación , Imiquimod/toxicidad , Psoriasis/tratamiento farmacológico , Psoriasis/inducido químicamente , Dexametasona/administración & dosificación , Dexametasona/efectos adversos , Ratones , Profármacos/administración & dosificación , Profármacos/efectos adversos , Femenino , Polímeros/química , Piel/efectos de los fármacos , Piel/patología , Dermatitis/tratamiento farmacológico , Dermatitis/etiología , Acrilamidas/química , Acrilamidas/administración & dosificación , Acrilamidas/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...