Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Insect Mol Biol ; 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39440724

RESUMEN

Protein disulphide isomerase (PDI) possesses disulphide isomerase, oxidoreductase and molecular chaperone activities, and is involved in regulating various physiological processes. However, there are few studies on the function in insect diapause. In this study, we cloned one novel member PDI family (TMX3, thioredoxin-related transmembrane protein 3) in Arma chinensis. The AcTMX3 encodes 426 amino acids that contains a predicted N-terminal signal sequence, a thioredoxin-like domain with the CXXC active site and a potential transmembrane region, which are typical sequence features of TMX3. RT-qPCR results showed that AcTMX3 was mainly expressed in the head under non-diapause conditions, while AcTMX3 was highly expressed in the fat body (central metabolic organ) under diapause conditions. Moreover, temporal expression profile showed that compared with non-diapause conditions, diapause conditions significantly induced AcTMX3 expression, and the expression of AcTMX3 was enhanced at 15°C. Silencing AcTMX3 in A. chinensis significantly inhibited the expression of antioxidant genes (AcTrx2 and AcTrx-like), increased the content of H2O2 and ascorbate and reduced the survival rate of A. chinensis under diapause conditions. Our results suggested that AcTMX3 played an important role in the resistance of A. chinensis to oxidative stress under diapause conditions.

2.
Neuromolecular Med ; 26(1): 23, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861223

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative disease affecting motor neurons. Pathological forms of Tar-DNA binding protein-43 (TDP-43), involving its mislocalisation to the cytoplasm and the formation of misfolded inclusions, are present in almost all ALS cases (97%), and ~ 50% cases of the related condition, frontotemporal dementia (FTD), highlighting its importance in neurodegeneration. Previous studies have shown that endoplasmic reticulum protein 57 (ERp57), a member of the protein disulphide isomerase (PDI) family of redox chaperones, is protective against ALS-linked mutant superoxide dismutase (SOD1) in neuronal cells and transgenic SOD1G93A mouse models. However, it remains unclear whether ERp57 is protective against pathological TDP-43 in ALS. Here, we demonstrate that ERp57 is protective against key features of TDP-43 pathology in neuronal cells. ERp57 inhibited the mislocalisation of TDP-43M337V from the nucleus to the cytoplasm. In addition, ERp57 inhibited the number of inclusions formed by ALS-associated variant TDP-43M337V and reduced the size of these inclusions. ERp57 was also protective against ER stress and induction of apoptosis. Furthermore, ERp57 modulated the steady-state expression levels of TDP-43. This study therefore demonstrates a novel mechanism of action of ERp57 in ALS. It also implies that ERp57 may have potential as a novel therapeutic target to prevent the TDP-43 pathology associated with neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Cuerpos de Inclusión , Proteína Disulfuro Isomerasas , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/genética , Animales , Ratones , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Superóxido Dismutasa-1/genética , Mutación
3.
Biomolecules ; 13(5)2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37238717

RESUMEN

Oxidative stress participates at the baseline of different non-communicable pathologies such as cardiovascular diseases. Excessive formation of reactive oxygen species (ROS), above the signaling levels necessary for the correct function of organelles and cells, may contribute to the non-desired effects of oxidative stress. Platelets play a relevant role in arterial thrombosis, by aggregation triggered by different agonists, where excessive ROS formation induces mitochondrial dysfunction and stimulate platelet activation and aggregation. Platelet is both a source and a target of ROS, thus we aim to analyze both the platelet enzymes responsible for ROS generation and their involvement in intracellular signal transduction pathways. Among the proteins involved in these processes are Protein Disulphide Isomerase (PDI) and NADPH oxidase (NOX) isoforms. By using bioinformatic tools and information from available databases, a complete bioinformatic analysis of the role and interactions of PDI and NOX in platelets, as well as the signal transduction pathways involved in their effects was performed. We focused the study on analyzing whether these proteins collaborate to control platelet function. The data presented in the current manuscript support the role that PDI and NOX play on activation pathways necessary for platelet activation and aggregation, as well as on the platelet signaling imbalance produced by ROS production. Our data could be used to design specific enzyme inhibitors or a dual inhibition for these enzymes with an antiplatelet effect to design promising treatments for diseases involving platelet dysfunction.


Asunto(s)
NADPH Oxidasas , Proteína Disulfuro Isomerasas , Humanos , NADPH Oxidasas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Amigos , Transducción de Señal , Oxidación-Reducción
4.
EBioMedicine ; 87: 104379, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36463755

RESUMEN

BACKGROUND: Stress responses within the ß cell have been linked with both increased ß cell death and accelerated immune activation in type 1 diabetes (T1D). At present, information on the timing and scope of these responses as well as disease-related changes in islet ß cell protein expression during T1D development is lacking. METHODS: Data independent acquisition-mass spectrometry was performed on islets collected longitudinally from NOD mice and NOD-SCID mice rendered diabetic through T cell adoptive transfer. FINDINGS: In islets collected from female NOD mice at 10, 12, and 14 weeks of age, we found a time-restricted upregulation of proteins involved in stress mitigation and maintenance of ß cell function, followed by loss of expression of protective proteins that heralded diabetes onset. EIF2 signalling and the unfolded protein response, mTOR signalling, mitochondrial function, and oxidative phosphorylation were commonly modulated pathways in both NOD mice and NOD-SCID mice rendered acutely diabetic by T cell adoptive transfer. Protein disulphide isomerase A1 (PDIA1) was upregulated in NOD islets and pancreatic sections from human organ donors with autoantibody positivity or T1D. Moreover, PDIA1 plasma levels were increased in pre-diabetic NOD mice and in the serum of children with recent-onset T1D compared to non-diabetic controls. INTERPRETATION: We identified a core set of modulated pathways across distinct mouse models of T1D and identified PDIA1 as a potential human biomarker of ß cell stress in T1D. FUNDING: NIH (R01DK093954, DK127308, U01DK127786, UC4DK104166, R01DK060581, R01GM118470, and 5T32DK101001-09). VA Merit Award I01BX001733. JDRF (2-SRA-2019-834-S-B, 2-SRA-2018-493-A-B, 3-PDF-20016-199-A-N, 5-CDA-2022-1176-A-N, and 3-PDF-2017-385-A-N).


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Animales , Niño , Femenino , Humanos , Ratones , Biomarcadores/metabolismo , Islotes Pancreáticos/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Proteína Disulfuro Isomerasas/metabolismo , Proteómica , Células Secretoras de Insulina
5.
Biomolecules ; 12(9)2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36139010

RESUMEN

SARS-CoV-2 receptor-binding domain (RBD) is a major target for the development of diagnostics, vaccines and therapeutics directed against COVID-19. Important efforts have been dedicated to the rapid and efficient production of recombinant RBD proteins for clinical and diagnostic applications. One of the main challenges is the ongoing emergence of SARS-CoV-2 variants that carry mutations within the RBD, resulting in the constant need to design and optimise the production of new recombinant protein variants. We describe here the impact of naturally occurring RBD mutations on the secretion of a recombinant Fc-tagged RBD protein expressed in HEK 293 cells. We show that mutation E484K of the B.1.351 variant interferes with the proper disulphide bond formation and folding of the recombinant protein, resulting in its retention into the endoplasmic reticulum (ER) and reduced protein secretion. Accumulation of the recombinant B.1.351 RBD-Fc fusion protein in the ER correlated with the upregulation of endogenous ER chaperones, suggestive of the unfolded protein response (UPR). Overexpression of the chaperone and protein disulphide isomerase PDIA2 further impaired protein secretion by altering disulphide bond formation and increasing ER retention. This work contributes to a better understanding of the challenges faced in producing mutant RBD proteins and can assist in the design of optimisation protocols.


Asunto(s)
COVID-19 , Vacunas Virales , Disulfuros , Células HEK293 , Humanos , Mutación , Proteína Disulfuro Isomerasas/genética , Proteínas Recombinantes de Fusión/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
Cancer Cell Int ; 22(1): 218, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725466

RESUMEN

BACKGROUND: Protein disulphide isomerases (PDIs) play an important role in cancer progression. However, the relative contribution of the various isoforms of PDI in tumorigenesis is not clear. METHODS: The content of PDI isoforms in 22 cancer cells lines was investigated using LC-MS/MS-based proteomic analysis. The effects of PDIA1, PDIA3 and PDIA17 inhibition on the proliferation, migration and adhesion of MCF-7 and MDA-MB-231 cells, identified as high and low PDIA17 expressing cells, respectively, were assessed using novel aromatic N-sulphonamides of aziridine-2-carboxylic acid derivatives as PDI inhibitors. RESULTS: PDIA1 and PDIA3 were the most abundant in cancer cell lysates and were also detected extracellularly in breast cancer cells (MDA-MB-231 and MCF-7). Some cancer cell lines (e.g., MCF-7, HT-29) showed upregulated expression of PDIA17, whereas in others (e.g., MDA-MB-231, 67NR), PDIA17 was not detected. The simultaneous inhibition of PDIA1 and PDIA3 showed similar anti-proliferative effects in MCF-7 and MDA-MB-231 breast cancer cells. However, the inhibition of PDIA1 and PDIA17 in the MCF-7 cell line resulted in more effective anti-adhesive and anti-proliferative effects. CONCLUSIONS: PDIA1 and PDIA3 represent major isoforms of multiple cancer cells, and their non-selective inhibition displays significant anti-proliferative effects irrespective of whether or not PDIA17 is present. The more pronounced anti-adhesive effects of PDI inhibition in hormone-sensitive MCF-7 cells featured by higher levels of PDIs when compared to triple-negative MDA-MB-231 cells suggests that targeting extracellular PDIA1 and PDIA3 with or without additional PDIA17 inhibition may represent a strategy for personalized anti-adhesive, anti-metastatic therapy in cancers with high PDI expression.

7.
Insect Mol Biol ; 31(1): 10-23, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34453759

RESUMEN

Protein disulphide isomerase (PDI) plays an important role in a variety of physiological processes through its oxidoreductase activity and molecular chaperone activity. In this study, we cloned two PDI family members, AccPDIA1 and AccPDIA3, from Apis cerana cerana. AccPDIA1 and AccPDIA3 had typical sequence features of PDI family members and were constitutively expressed in A. cerana cerana. The expression levels of AccPDIA1 and AccPDIA3 were generally upregulated after treatment with a variety of environmental stress factors. Inhibition assays showed that E. coli expressing recombinant AccPDIA1 and AccPDIA3 proteins was more resistant to oxidative stress than control E. coli. In addition, silencing AccPDIA1 or AccPDIA3 in A. cerana cerana resulted in significant changes in the expression levels of several antioxidant-related genes as well as the enzymatic activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) and reduced the survival rate of A. cerana cerana under oxidative stress caused by high temperature. In conclusion, our results suggest that AccPDIA1 and AccPDIA3 may play important roles in the antioxidant activities of A. cerana cerana.


Asunto(s)
Antioxidantes , Oxidantes , Animales , Antioxidantes/metabolismo , Abejas/genética , Escherichia coli/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Estrés Oxidativo/genética , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Estrés Fisiológico/genética
8.
Biomed Pharmacother ; 143: 112110, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34474345

RESUMEN

The catalysis of disulphide (SS) bonds is the most important characteristic of protein disulphide isomerase (PDI) family. Catalysis occurs in the endoplasmic reticulum, which contains many proteins, most of which are secretory in nature and that have at least one s-s bond. Protein disulphide isomerase A3 (PDIA3) is a member of the PDI family that acts as a chaperone. PDIA3 is highly expressed in response to cellular stress, and also intercept the apoptotic cellular death related to endoplasmic reticulum (ER) stress, and protein misfolding. PDIA3 expression is elevated in almost 70% of cancers and its expression has been linked with overall low cell invasiveness, survival and metastasis. Viral diseases present a significant public health threat. The presence of PDIA3 on the cell surface helps different viruses to enter the cells and also helps in replication. Therefore, inhibitors of PDIA3 have great potential to interfere with viral infections. In this review, we summarize what is known about the basic structure, functions and role of PDIA3 in viral infections. The review will inspire studies of pathogenic mechanisms and drug targeting to counter viral diseases.


Asunto(s)
Proteína Disulfuro Isomerasas/metabolismo , Virosis/enzimología , Virosis/virología , Internalización del Virus , Replicación Viral , Virus/crecimiento & desarrollo , Animales , Antivirales/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Interacciones Huésped-Patógeno , Humanos , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Virosis/tratamiento farmacológico , Virus/patogenicidad
9.
Free Radic Biol Med ; 172: 668-674, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34252541

RESUMEN

BACKGROUND: We have previously described CxxCpep, a peptide with anti-platelet properties that inhibits peri/epicellular protein disulphide isomerase (pecPDI) by forming a mixed disulfide bond with Cys400 within the pecPDI active site. OBJECTIVES: Here we sought to determine if pecPDI targeted by CxxCpep is relevant to redox mechanisms downstream of the collagen receptor GPVI in platelets. METHODS AND RESULTS: Restriction of effects of CxxCpep to the platelet surface was confirmed by LC-MS/MS following cell fractionation. Platelet aggregation was measured in platelet-rich plasma (PRP) incubated with 30 µM CxxCpep or vehicle. CxxCpep inhibited collagen-induced platelet aggregation but exerted no effect in TRAP-6-stimulated platelets. PRP was incubated with DCFDA to measure oxidative burst upon platelet adhesion to collagen. Results showed that CxxCpep decreased oxidative burst in platelets adhered to immobilized collagen while the number of adherent cells was unaffected. Furthermore, flow cytometry studies using a FITC-maleimide showed that the GPVI agonist CRP stimulated an increase in free thiols on the platelet outer membrane, which was inhibited by CxxCpep. Finally, CxxCpep inhibited platelet mitochondrial respiration upon activation with collagen, but not with thrombin. CONCLUSIONS: Our data suggest that pecPDI is a potential modulator of GPVI-mediated redox regulation mechanisms and that CxxCpep can be further exploited as a template for new antiplatelet compounds.


Asunto(s)
Plaquetas , Proteína Disulfuro Isomerasas , Plaquetas/metabolismo , Cromatografía Liquida , Mitocondrias/metabolismo , Activación Plaquetaria , Agregación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Estallido Respiratorio , Espectrometría de Masas en Tándem
10.
Exp Cell Res ; 405(2): 112665, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34111473

RESUMEN

Various proteins in the endometrial epithelium are differentially expressed in the receptive phase and play a pivotal role in embryo implantation. The Protein Disulphide Isomerase (PDI) family contains 21 members that function as chaperone proteins through their redox activities. Although total PDIA1 protein expression was high in four common receptive (Ishikawa and RL95-2) and non-receptive (HEC1-B and AN3CA) endometrial epithelial cell lines, significantly higher membrane PDIA1 expression was found in non-receptive AN3CA cells. In Ishikawa cells, oestrogen up-regulated while progesterone down-regulated membrane PDIA1 expression. Moreover, mid-luteal phase hormone treatment down-regulated membrane PDIA1 expression. Furthermore, oestrogen at 10 nM reduced spheroid attachment on Ishikawa cells. Interestingly, inhibition of PDIA1 function by bacitracin or 16F16 increased the spheroid attachment rate onto non-receptive AN3CA cells. Over-expression of PDIA1 in receptive Ishikawa cells reduced the spheroid attachment rate and significantly down-regulated integrin ß3 levels, but not integrin αV and E-cadherin. Addition of reducing agent TCEP induced a sulphydryl-rich microenvironment and increased spheroid attachment onto AN3CA cells and human primary endometrial epithelial cells collected at LH+7/8 days. The luminal epithelial cells from human endometrial biopsies had higher PDIA1 protein expression in the proliferative phase than in the secretory phase. Our findings suggest oestrogen and progesterone regulate PDIA1 expression, resulting in the differential expressions of membrane PDIA1 protein to modulate endometrial receptivity. This suggests that membrane PDIA1 expression prior to embryo transfer could be used to predict endometrial receptivity and embryo implantation in women undergoing assisted reproduction treatment.


Asunto(s)
Implantación del Embrión/inmunología , Células Epiteliales/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Microambiente Tumoral/inmunología , Cadherinas/metabolismo , Adhesión Celular/fisiología , Línea Celular Tumoral , Implantación del Embrión/fisiología , Epitelio/metabolismo , Humanos , Esferoides Celulares/metabolismo
11.
Antioxidants (Basel) ; 10(3)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806982

RESUMEN

BACKGROUND: Protein disulphide isomerase (PDI) and NADPH oxidase 1 (Nox-1) regulate platelet function and reactive oxygen species (ROS) generation, suggesting potentially interdependent roles. Increased platelet reactivity and ROS production have been correlated with cardiometabolic disease risk factors. OBJECTIVES: To establish whether PDI and Nox-1 cooperate to control platelet function. METHODS: Immunofluorescence microscopy was utilised to determine expression and localisation of PDI and Nox-1. Platelet aggregation, fibrinogen binding, P-selectin exposure, spreading and calcium mobilization were measured as markers of platelet function. A cross-sectional population study (n = 136) was conducted to assess the relationship between platelet PDI and Nox-1 levels and cardiometabolic risk factors. RESULTS: PDI and Nox-1 co-localized upon activation induced by the collagen receptor GPVI. Co-inhibition of PDI and Nox-1 led to additive inhibition of GPVI-mediated platelet aggregation, activation and calcium flux. This was confirmed in murine Nox-1-/- platelets treated with PDI inhibitor bepristat, without affecting bleeding. PDI and Nox-1 together contributed to GPVI signalling that involved the phosphorylation of p38 MAPK, p47phox, PKC and Akt. Platelet PDI and Nox-1 levels were upregulated in obesity, with platelet Nox-1 also elevated in hypertensive individuals. CONCLUSIONS: We show that PDI and Nox-1 cooperate to control platelet function and are associated with cardiometabolic risk factors.

12.
J Cell Mol Med ; 25(7): 3437-3448, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33675119

RESUMEN

Hyperhomocysteinaemia (HHcy)-impaired endothelial dysfunction including endoplasmic reticulum (ER) stress plays a crucial role in atherogenesis. Hydrogen sulphide (H2 S), a metabolic production of Hcy and gasotransmitter, exhibits preventing cardiovascular damages induced by HHcy by reducing ER stress, but the underlying mechanism is unclear. Here, we made an atherosclerosis with HHcy mice model by ApoE knockout mice and feeding Pagien diet and drinking L-methionine water. H2 S donors NaHS and GYY4137 treatment lowered plaque area and ER stress in this model. Protein disulphide isomerase (PDI), a modulation protein folding key enzyme, was up-regulated in plaque and reduced by H2 S treatment. In cultured human aortic endothelial cells, Hcy dose and time dependently elevated PDI expression, but inhibited its activity, and which were rescued by H2 S. H2 S and its endogenous generation key enzyme-cystathionine γ lyase induced a new post-translational modification-sulfhydration of PDI. Sulfhydrated PDI enhanced its activity, and two cysteine-terminal CXXC domain of PDI was identified by site mutation. HHcy lowered PDI sulfhydration association ER stress, and H2 S rescued it but this effect was blocked by cysteine site mutation. Conclusively, we demonstrated that H2 S sulfhydrated PDI and enhanced its activity, reducing HHcy-induced endothelial ER stress to attenuate atherosclerosis development.


Asunto(s)
Aterosclerosis/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Hiperhomocisteinemia/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Células HEK293 , Homocisteína/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados para ApoE , Proteína Disulfuro Isomerasas/química , Regulación hacia Arriba
13.
Cancer Med ; 10(8): 2812-2825, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33742523

RESUMEN

The protein disulphide isomerase (PDI) gene family is a large, diverse group of enzymes recognised for their roles in disulphide bond formation within the endoplasmic reticulum (ER). PDI therefore plays an important role in ER proteostasis, however, it also shows involvement in ER stress, a characteristic recognised in multiple disease states, including cancer. While the exact mechanisms by which PDI contributes to tumorigenesis are still not fully understood, PDI exhibits clear involvement in the unfolded protein response (UPR) pathway. The UPR acts to alleviate ER stress through the activation of ER chaperones, such as PDI, which act to refold misfolded proteins, promoting cell survival. PDI also acts as an upstream regulator of the UPR pathway, through redox regulation of UPR stress receptors. This demonstrates the pro-protective roles of PDI and highlights PDI as a potential therapeutic target for cancer treatment. Recent research has explored the use of PDI inhibitors with PACMA 31 in particular, demonstrating promising anti-cancer effects in ovarian cancer. This review discusses the properties and functions of PDI family members and focuses on their potential as a therapeutic target for cancer treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Neoplasias/tratamiento farmacológico , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Animales , Humanos , Neoplasias/enzimología , Neoplasias/patología
14.
Clin Exp Pharmacol Physiol ; 48(1): 107-120, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32780517

RESUMEN

This study aimed to explore the cardioprotective effect of new synthesized coumarin (E)-4-hydroxy-N'-(1-(7-hydroxy-2-oxo-2H-chromen-3-yl) ethylidene) benzohydrazide denoted (Hyd.Cou) against myocardial infarction disorders. Male Wistar rats were divided into four groups; Control, isoproterenol (ISO), ISO + Acenocoumarol (Ac) and ISO + Hyd.Cou. Results showed that the ISO group exhibited serious alteration in EGC pattern, significant heart hypertrophy (+33%), haemodynamic disturbance and increase in plasma rate of CK-MB, LDH and troponin-T by 44, 53, and 170%, respectively, as compared to Control. Moreover, isoproterenol induced a rise in plasma angiotensin-converting enzyme activity (ACE) by 49%, dyslipidaemia, and increased thiobarbituric acid-reactive substances (TBARS) by 117% associated with decrease in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) by 46% and 58%, respectively in myocardium. Interestingly, the molecular docking calculation demonstrated strong interactions of Hyd.Cou with the receptors of the protein disulphide isomerase (PDI) which could highlight the antithrombotic effect. Moreover, Hyd.Cou improved plasma cardiac dysfunction biomarkers, mitigated the ventricle remodelling process and alleviated heart oxidative stress damage. Overall, Hyd.Cou prevented the heart from the remodelling process through inhibition of ACE activity and oxidative stress improvement.

15.
Eur J Pharmacol ; 892: 173749, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33245896

RESUMEN

Cellular stress and inflammation, establishing as disease pathology, have reached great heights in the last few decades. Stress conditions such as hyperglycemia, hyperlipidemia and lipoproteins are known to disturb proteostasis resulting in the accumulation of unfolded or misfolded proteins, alteration in calcium homeostasis culminating in unfolded protein response. Protein disulfide isomerase and endoplasmic reticulum oxidase-1 are the key players in protein folding. The protein folding process assisted by endoplasmic reticulum oxidase-1 results in the production of reactive oxygen species in the lumen of the endoplasmic reticulum. Production of reactive oxygen species beyond the quenching capacity of the antioxidant systems perturbs ER homeostasis. Endoplasmic reticulum stress also induces the production of cytokines leading to inflammatory responses. This has been proven to be the major causative factor for various pathophysiological states compared to other cellular triggers in diseases, which further manifests to increased oxidative stress, mitochondrial dysfunction, and altered inflammatory responses, deleterious to cellular physiology and homeostasis. Numerous studies have drawn correlations between the progression of several diseases in association with endoplasmic reticulum stress, redox protein folding, oxidative stress and inflammatory responses. This review aims to provide an insight into the role of protein disulfide isomerase and endoplasmic reticulum oxidase-1 in endoplasmic reticulum stress, unfolded protein response, mitochondrial dysfunction, and inflammatory responses, which exacerbate the progression of various diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/enzimología , Inflamación/enzimología , Mitocondrias/enzimología , Estrés Oxidativo , Oxidorreductasas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Oxidorreductasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Pliegue de Proteína , Transducción de Señal , Respuesta de Proteína Desplegada
16.
J Cell Mol Med ; 24(24): 14257-14269, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33128352

RESUMEN

Protein disulphide isomerase (PDI) promotes platelet activation and constitutes a novel antithrombotic target. In this study, we reported that a PDI-binding plant polyphenol, tannic acid (TA), inhibits PDI activity, platelet activation and thrombus formation. Molecular docking using plant polyphenols from dietary sources with cardiovascular benefits revealed TA as the most potent binding molecule with PDI active centre. Surface plasmon resonance demonstrated that TA bound PDI with high affinity. Using Di-eosin-glutathione disulphide fluorescence assay and PDI assay kit, we showed that TA inhibited PDI activity. In isolated platelets, TA inhibited platelet aggregation stimulated by either GPVI or ITAM pathway agonists. Flow cytometry showed that TA inhibited thrombin- or CRP-stimulated platelet activation, as reflected by reduced granule secretion and integrin activation. TA also reduced platelet spreading on immobilized fibrinogen and platelet adhesion under flow conditions. In a laser-induced vascular injury mouse model, intraperitoneal injection of TA significantly decreased the size of cremaster arteriole thrombi. No prolongation of mouse jugular vein and tail-bleeding time was observed after TA administration. Therefore, we identified TA from natural polyphenols as a novel inhibitor of PDI function. TA inhibits platelet activation and thrombus formation, suggesting it as a potential antithrombotic agent.


Asunto(s)
Inhibidores Enzimáticos/química , Fibrinolíticos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Agregación Plaquetaria/química , Proteína Disulfuro Isomerasas/química , Taninos/química , Animales , Inhibidores Enzimáticos/farmacología , Fibrinolíticos/farmacología , Masculino , Ratones , Conformación Molecular , Selectina-P/metabolismo , Activación Plaquetaria/efectos de los fármacos , Adhesividad Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Relación Estructura-Actividad , Taninos/farmacología
17.
Cancers (Basel) ; 12(10)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023153

RESUMEN

Cancer cell cross-talk with the host endothelium plays a crucial role in metastasis, but the underlying mechanisms are still not fully understood. We studied the involvement of protein disulphide isomerase A1 (PDIA1) in human breast cancer cell (MCF-7 and MDA-MB-231) adhesion and transendothelial migration. For comparison, the role of PDIA1 in proliferation, migration, cell cycle and apoptosis was also assessed. Pharmacological inhibitor, bepristat 2a and PDIA1 silencing were used to inhibit PDIA1. Inhibition of PDIA1 by bepristat 2a markedly decreased the adhesion of breast cancer cells to collagen type I, fibronectin and human lung microvascular endothelial cells. Transendothelial migration of breast cancer cells across the endothelial monolayer was also inhibited by bepristat 2a, an effect not associated with changes in ICAM-1 expression or changes in cellular bioenergetics. The silencing of PDIA1 produced less pronounced anti-adhesive effects. However, inhibiting extracellular free thiols by non-penetrating blocker p-chloromercuribenzene sulphonate substantially inhibited adhesion. Using a proteomic approach, we identified that ß1 and α2 integrins were the most abundant among all integrins in breast cancer cells as well as in lung microvascular endothelial cells, suggesting that integrins could represent a target for PDIA1. In conclusion, extracellular PDIA1 plays a major role in regulating the adhesion of cancer cells and their transendothelial migration, in addition to regulating cell cycle and caspase 3/7 activation by intracellular PDIA1. PDIA1-dependent regulation of cancer-endothelial cell interactions involves disulphide exchange and most likely integrin activation but is not mediated by the regulation of ICAM-1 expression or changes in cellular bioenergetics in breast cancer or endothelial cells.

18.
J Biochem ; 168(4): 393-405, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32458972

RESUMEN

Secretory and membrane proteins synthesized in the endoplasmic reticulum (ER) are folded with intramolecular disulphide bonds, viz. oxidative folding, catalysed by the protein disulphide isomerase (PDI) family proteins. Here, we identified a novel soybean PDI family protein, GmPDIL6. GmPDIL6 has a single thioredoxin-domain with a putative N-terminal signal peptide and an active centre (CKHC). Recombinant GmPDIL6 forms various oligomers binding iron. Oligomers with or without iron binding and monomers exhibited a dithiol oxidase activity level comparable to those of other soybean PDI family proteins. However, they displayed no disulphide reductase and extremely low oxidative refolding activity. Interestingly, GmPDIL6 was mainly expressed in the cotyledon during synthesis of seed storage proteins and GmPDIL6 mRNA was up-regulated under ER stress. GmPDIL6 may play a role in the formation of disulphide bonds in nascent proteins for oxidative folding in the ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glycine max/enzimología , Proteína Disulfuro Isomerasas/metabolismo , Tolueno/análogos & derivados , Secuencia de Aminoácidos , Clonación Molecular/métodos , Oxidación-Reducción , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Pliegue de Proteína , Homología de Secuencia , Tolueno/química , Tolueno/metabolismo
19.
J Cell Mol Med ; 24(10): 5888-5900, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32301283

RESUMEN

Increasing evidence from structural and functional studies has indicated that protein disulphide isomerase (PDI) has a critical role in the proliferation, survival and metastasis of several types of cancer. However, the molecular mechanisms through which PDI contributes to glioma remain unclear. Here, we aimed to investigate whether the differential expression of 17 PDI family members was closely related to the different clinicopathological features in gliomas from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas data sets. Additionally, four subgroups of gliomas (cluster 1/2/3/4) were identified based on consensus clustering of the PDI gene family. These findings not only demonstrated that a poorer prognosis, higher WHO grade, lower frequency of isocitrate dehydrogenase mutation and higher 1p/19q non-codeletion status were significantly correlated with cluster 4 compared with the other clusters, but also indicated that the malignant progression of glioma was closely correlated with the expression of PDI family members. Moreover, we also constructed an independent prognostic marker that can predict the clinicopathological features of gliomas. Overall, the results indicated that PDI family members may serve as possible diagnostic markers in gliomas.


Asunto(s)
Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/patología , Progresión de la Enfermedad , Glioma/enzimología , Glioma/patología , Proteína Disulfuro Isomerasas/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Análisis por Conglomerados , Bases de Datos de Proteínas , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Humanos , Modelos Biológicos , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Pronóstico , Proteína Disulfuro Isomerasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Riesgo , Resultado del Tratamiento
20.
Andrologia ; 52(3): e13530, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32026504

RESUMEN

The protein disulphide isomerase A1 (PDIA1) is an important chaperone involved in protein quality control and redox regulation. Also, the ability of PDIA1 to bind to oestrogens suggests that it may play a role in epididymal maturation and male fertility. The goals of this study were to (a) verify the possible interaction between 17ß-estradiol and equine PDIA1 using bioinformatics; (b) identify and quantify PDIA1 protein in equine cauda epididymis throughout peripuberty; and (c) determine whether the amounts of PDIA1 in equine seminal plasma and spermatozoa are associated with fertility. Using in silico analysis, we were able to predict the tertiary structure of equine PDIA1 and to demonstrate the interaction between 17ß-estradiol and the putative binding site in domains b and b'. Colts under 24 months of age had lower relative amounts of PDIA1 in cauda epididymal fluid in comparison with older males (p < .01). No difference was observed in seminal plasma PDIA1 between fertile and subfertile stallions. Our study demonstrates that PDIA1 expression in the epididymis increases during peripuberty. However, in the adult stallion, its quantity in seminal plasma is not associated with fertility.


Asunto(s)
Epidídimo/metabolismo , Caballos/fisiología , Proteína Disulfuro Isomerasas/metabolismo , Semen/metabolismo , Maduración Sexual/fisiología , Animales , Biología Computacional , Epidídimo/química , Estradiol/química , Estradiol/metabolismo , Fertilidad , Masculino , Simulación del Acoplamiento Molecular , Proteína Disulfuro Isomerasas/análisis , Proteína Disulfuro Isomerasas/ultraestructura , Estructura Terciaria de Proteína , Semen/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...