Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1315468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38313432

RESUMEN

Ascites and pleural effusion are recognized complications of pancreatic cancer. These diseases are accompanied by ascites and pleural effusion, and drug treatment is limited by high costs, long hospital stays, and failure rates. Immunotherapy may offer new option, but in most patients with late stages of cancer, immune cells may lose the ability to recognize tumor cells, how to activate their immune cells is a major problem, sodium glucosidate (SSG) is injected into ascites as a protein tyrosine phosphatase inhibitor to wake up immune cells and prepare for immunotherapy. We used single-cell RNA sequencing (scRNA-seq) to investigate whether and how SSG injected into ascites of pancreatic cancer elicits an immune response. Our study showed that the process of SSG fusion treatment of ascites and pleural effusion, the interaction between TandNK cells, MPs cells, monocytes and neutrophils was induced, and large numbers of genes were expressed, resulting in upregulation of immune response, which also approved that SSG is not only used as a protein tyrosine phosphatase inhibitor, but also it works as a protein tyrosine phosphatase inhibitor. It can also be used to regulate immune cell function, recruiting immune cells to the right place with the help of PD-1 or PD-L1 to fight cancer cells in ascites and pleural effusions in cancer patients.


Asunto(s)
Neoplasias Pancreáticas , Derrame Pleural , Humanos , Gluconato de Sodio Antimonio/farmacología , Ascitis , Neoplasias Pancreáticas/terapia , Proteínas Tirosina Fosfatasas , Inhibidores Enzimáticos , Inmunoterapia/efectos adversos
2.
Mar Drugs ; 20(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35049933

RESUMEN

Puniceusines A-N (1-14), 14 new isoquinoline alkaloids, were isolated from the extracts of a deep-sea-derived fungus, Aspergillus puniceus SCSIO z021. Their structures were elucidated by spectroscopic analyses. The absolute configuration of 9 was determined by ECD calculations, and the structures of 6 and 12 were further confirmed by a single-crystal X-ray diffraction analysis. Compounds 3-5 and 8-13 unprecedentedly contained an isoquinolinyl, a polysubstituted benzyl or a pyronyl at position C-7 of isoquinoline nucleus. Compounds 3 and 4 showed selective inhibitory activity against protein tyrosine phosphatase CD45 with IC50 values of 8.4 and 5.6 µM, respectively, 4 also had a moderate cytotoxicity towards human lung adenocarcinoma cell line H1975 with an IC50 value of 11.0 µM, and 14, which contained an active center, -C=N+, exhibited antibacterial activity. An analysis of the relationship between the structures, enzyme inhibitory activity and cytotoxicity of 1-14 revealed that the substituents at C-7 of the isoquinoline nucleus could greatly affect their bioactivity.


Asunto(s)
Alcaloides/farmacología , Antibacterianos/farmacología , Antineoplásicos/farmacología , Aspergillus , Isoquinolinas/farmacología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Alcaloides/química , Animales , Antibacterianos/química , Antineoplásicos/química , Organismos Acuáticos , Línea Celular Tumoral/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Isoquinolinas/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
3.
Antibiotics (Basel) ; 10(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34827248

RESUMEN

The activity profile of a protein tyrosine phosphatase (PTP) inhibitor and redox thiol oxidant, nitropropenyl benzodioxole (NPBD), was investigated across a broad range of bacterial species. In vitro assays assessed inhibitory and lethal activity patterns, the induction of drug variants on long term exposure, the inhibitory interactions of NPBD with antibiotics, and the effect of plasma proteins and redox thiols on activity. A literature review indicates the complexity of PTP and redox signaling and suggests likely metabolic targets. NPBD was broadly bactericidal to pathogens of the skin, respiratory, urogenital and intestinal tracts. It was effective against antibiotic resistant strains and slowly replicating and dormant cells. NPBD did not induce resistant or drug-tolerant phenotypes and showed low cross reactivity with antibiotics in synergy assays. Binding to plasma proteins indicated lowered in-vitro bioavailability and reduction of bactericidal activity in the presence of thiols confirmed the contribution of thiol oxidation and oxidative stress to lethality. This report presents a broad evaluation of the antibacterial effect of PTP inhibition and redox thiol oxidation, illustrates the functional diversity of bacterial PTPs and redox thiols, and supports their consideration as novel targets for antimicrobial drug development. NPBD is a dual mechanism agent with an activity profile which supports consideration of tyrosine phosphatases and bacterial antioxidant systems as promising targets for drug development.

4.
Antioxidants (Basel) ; 9(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266280

RESUMEN

The catechins derived from green tea possess antioxidant activity and may have a potentially anticancer effect. PTP1B is tyrosine phosphatase that is oxidative stress regulated and is involved with prooncogenic pathways leading to the formation of a.o. breast cancer. Here, we present the effect of selected green tea catechins on enzymatic activity of PTP1B phosphatase and viability of MCF-7 breast cancer cells. We showed also the computational analysis of the most effective catechin binding with a PTP1B molecule. We observed that epigallocatechin, epigallocatechin gallate, epicatechin, and epicatechin gallate may decrease enzymatic activity of PTP1B phosphatase and viability of MCF-7 cells. Conclusions: From the tested compounds, epigallocatechin and epigallocatechin gallate were the most effective inhibitors of the MCF-7 cell viability. Moreover, epigallocatechin was also the strongest inhibitor of PTP1B activity. Computational analysis allows us also to conclude that epigallocatechin is able to interact and bind to PTP1B. Our results suggest also the most predicted binding site to epigallocatechin binding to PTP1B.

5.
Phytochemistry ; 170: 112224, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31812919

RESUMEN

Six undescribed azaphilones, deflectins C1-C3, deflectins D1-D2, and deflectin E, along with five known azaphilones were obtained from a solid culture of the wild fungus Aspergillus deflectus NCC0415. Their structures were determined by HRESIMS, NMR and ECD analyses, together with the GIAO 13C NMR calculation method. All compounds displayed strong or moderate inhibitory activity against protein tyrosine phosphatases SHP2 and PTP1B. Structure-activity relationship analysis of these azaphilones suggested that the length of the ketone aliphatic side chain would affect their SHP2 and PTP1B inhibitory activity. In addition, the presence of a Δ8(12) double bond on γ-lactone ring and the presence of CH3-2' in fatty chains may increase their inhibitory activity.


Asunto(s)
Aspergillus/química , Benzopiranos/farmacología , Inhibidores Enzimáticos/farmacología , Fitoquímicos/farmacología , Pigmentos Biológicos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Benzopiranos/química , Benzopiranos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Pigmentos Biológicos/química , Pigmentos Biológicos/aislamiento & purificación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Relación Estructura-Actividad
6.
Bioorg Med Chem Lett ; 27(15): 3558-3564, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28579122

RESUMEN

A series of novel methyl 4-(4-amidoaryl)-3-methoxythiophene-2-carboxylate derivatives were designed against the active site of protein tyrosine phosphatise 1B (PTP1B) enzyme using MOE.2008.10. These molecules are also subjected for in silico toxicity prediction studies and considering their corresponding drug scores, it implied that, the molecules are promising as anticancer agents. The designed compounds were synthesized by using suitable methods and characterized. They were subjected to inhibitory activity against PTP1B and in vitro anticancer activity by MTT assay. Most of the tested compounds showed potent inhibitory activity against PTP1B, among the compounds tested, compound 5b exhibited the highest activity (IC50=5.25µM) and remarkable cytotoxic activity at 0.09µM of IC50 against the MCF-7 cell line. In addition to this, compound 5c also showed potential anticancer activity at 2.22µM of IC50 against MCF-7 and 0.72µM against HepG2 cell lines as well as PTP1B inhibitory activity at IC50 of 6.37µM.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Tiofenos/química , Tiofenos/farmacología , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Diseño de Fármacos , Células Hep G2 , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Relación Estructura-Actividad
7.
Biochem Biophys Res Commun ; 483(1): 58-63, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28065855

RESUMEN

Dengue virus is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. High rates of dengue virus replication and virion production are related to disease severity. To identify anti-DENV compounds, we performed cell-based ELISA testing to detect the level of DENV E protein expression. Among a total of 83 inhibitors, eight were identified as inhibitors with antiviral activity. Epidermal growth factor receptor inhibitor II (EGFR/ErbB-2/ErbB-4 inhibitor II) and protein tyrosine phosphatase inhibitor IV (PTP inhibitor IV) significantly inhibited dengue virus production and demonstrated low toxicity in hepatocyte cell lines. Our results suggest the efficacy of tyrosine kinase/phosphatase inhibitors in decreasing dengue virus production in HepG2 cells.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Virus del Dengue/fisiología , Evaluación Preclínica de Medicamentos , Receptores ErbB/antagonistas & inhibidores , Células Hep G2 , Humanos , ARN Viral/biosíntesis , Receptor ErbB-4/antagonistas & inhibidores , Proteínas Virales/biosíntesis , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología
8.
Oncotarget ; 6(21): 18364-73, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26286963

RESUMEN

YopH is a bacterial protein tyrosine phosphatase, which is essential for the viability and pathogenic virulence of the plague-causing Yersinia sp. bacteria. Inactivation of YopH activity would lead to the loss of bacterial pathogenicity. We have studied the inhibitory properties of aurintricarboxylic acid (ATA) against YopH phosphatase and found that at nanomolar concentrations ATA reversibly decreases the activity of YopH. Computational docking studies indicated that in all binding poses ATA binds in the YopH active site. Molecular dynamics simulations showed that in the predicted binding pose, ATA binds to the essential Cys403 and Arg409 residues in the active site and has a stronger binding affinity than the natural substrate (pTyr). The cyclic voltammetry experiments suggest that ATA reacts remarkably strongly with molecular oxygen. Additionally, the electrochemical reduction of ATA in the presence of a negative potential from -2.0 to 2.5 V generates a current signal, which is observed for hydrogen peroxide. Here we showed that ATA indicates a unique mechanism of YopH inactivation due to a redox process. We proposed that the potent inhibitory properties of ATA are a result of its strong binding in the YopH active site and in situ generation of hydrogen peroxide near catalytic cysteine residue.


Asunto(s)
Ácido Aurintricarboxílico/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Tirosina Fosfatasas/química , Factores de Virulencia/química , Algoritmos , Ácido Aurintricarboxílico/metabolismo , Ácido Aurintricarboxílico/farmacología , Proteínas de la Membrana Bacteriana Externa/antagonistas & inhibidores , Proteínas de la Membrana Bacteriana Externa/metabolismo , Humanos , Cinética , Conformación Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Oxidación-Reducción , Peste/microbiología , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Virulencia , Factores de Virulencia/antagonistas & inhibidores , Factores de Virulencia/metabolismo , Yersinia pestis/metabolismo , Yersinia pestis/patogenicidad , Yersinia pestis/fisiología
9.
Chembiochem ; 14(13): 1640-7, 2013 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-23956195

RESUMEN

Assay design is an important variable that influences the outcome of an inhibitor screen. Here, we have investigated the hypothesis that protein tyrosine phosphatase inhibitors with improved biological activity could be identified from a screen by using a biologically relevant peptide substrate, rather than traditional phosphotyrosine mimetic substrates. A 2000-member library of drugs and drug-like compounds was screened for inhibitors of lymphoid tyrosine phosphatase (LYP) by using both a peptide substrate (Ac-ARLIEDNE-pCAP-TAREG-NH2, peptide 1) and a small-molecule phosphotyrosine mimetic substrate (difluoromethyl umbelliferyl phosphate, DiFMUP). The results demonstrate that compounds that inhibited enzyme activity on the peptide substrate had greater biological activity than compounds that only inhibited enzyme activity on DiFMUP. Finally, epigallocatechin-3,5-digallate was identified as the most potent inhibitor of lymphoid tyrosine phosphatase activity to date, with an IC50 of 50 nM and significant activity in T-cells. Molecular docking simulations provided a first model for binding of this potent inhibitor to LYP; this will constitute the platform for ongoing lead optimization efforts.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/farmacología , Péptidos/farmacología , Fosfotirosina/farmacología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Células Cultivadas , Inhibidores Enzimáticos/química , Humanos , Concentración 50 Inhibidora , Células Jurkat , Modelos Moleculares , Estructura Molecular , Péptidos/análisis , Péptidos/química , Fosfotirosina/análogos & derivados , Fosfotirosina/química , Proteínas Tirosina Fosfatasas/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...