Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 470
Filtrar
1.
J Plant Physiol ; 303: 154334, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39288631

RESUMEN

In vitro plant embryogenesis and microcallus formation are systems which are required for plant regeneration, a process during which cell reprogramming and proliferation are critical. These systems offer many advantages in breeding programmes, such as doubled-haploid production, clonal propagation of selected genotypes, and recovery of successfully gene-edited or transformed plants. However, the low proportion of reprogrammed cells in many plant species makes these processes highly inefficient. Here we report a new strategy to improve in vitro plant cell reprogramming using small molecule inhibitors of mammalian leucine rich repeat kinase 2 (LRRK2), which are used in pharmaceutical applications for cell reprogramming, but never used in plants before. LRRK2 inhibitors increased in vitro embryo production in three different systems and species, microspore embryogenesis of oilseed rape and barley, and somatic embryogenesis in cork oak. These inhibitors also promoted plant cell reprogramming and proliferation in Arabidopsis protoplast cultures. The benzothiazole derivative JZ1.24, a representative compound of the tested molecules, modified the expression of the brassinosteroid (BR)-related genes BIN2, CPD, and BAS1, correlating with an activation of BR signaling. Additionally, the LRRK2 inhibitor JZ1.24 induced the expression of the embryogenesis marker gene SERK1-like. The results suggest that the use of small molecules from the pharmaceutical field could be extended to promote in vitro reprogramming of plant cells towards embryogenesis or microcallus formation in a wider range of plant species and in vitro systems. This technological innovation would help to develop new strategies to improve the efficiency of in vitro plant regeneration, a major bottleneck in plant breeding.

2.
Curr Protoc ; 4(9): e70008, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39264225

RESUMEN

Protoplast sorting and purification methods are powerful tools enabling the enrichment of cellular subpopulations for basic and applied studies in plant sciences. Fluorescence-activated protoplast sorting (FAPS) is an efficient method to isolate specific protoplast populations based on innate features (size and autofluorescence) or expression of fluorescent proteins. FAPS-based methods have recently been deployed in single-cell purification for single-cell RNA sequencing-based transcriptional profiling studies. Protoplast sorting methods integrated with the ability to culture and recover whole plants add value to functional genomics and gene editing applications. Enriching cells expressing nucleases linked to fluorescent proteins can maximize knockout or knockin editing efficiencies and minimize toxic and off-target effects. Here, we report the protocol for protoplast preparation, sterile cell sorting, culture, and downstream regeneration of plants from canola protoplasts. This protocol can be successfully applied to all totipotent protoplast methods that can regenerate into whole plants. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Preparation of transfected canola protoplasts for sorting Basic Protocol 2: Fluorescence-activated protoplast sorting Basic Protocol 3: Bead culture of sorted protoplasts and recovery of plantlets.


Asunto(s)
Brassica napus , Citometría de Flujo , Protoplastos , Regeneración , Protoplastos/metabolismo , Brassica napus/genética , Brassica napus/citología , Brassica napus/metabolismo , Citometría de Flujo/métodos
3.
Microorganisms ; 12(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39203368

RESUMEN

The economical and efficient commercial production of second-generation bioethanol requires fermentation microorganisms capable of entirely and rapidly utilizing all sugars in lignocellulosic hydrolysates. In this study, we developed a recombinant Saccharomyces cerevisiae strain, BLH510, through protoplast fusion and metabolic engineering to enhance its ability to co-ferment glucose, xylose, cellobiose, and xylooligosaccharides while tolerating various inhibitors commonly found in lignocellulosic hydrolysates. The parental strains, LF1 and BLN26, were selected for their superior glucose/xylose co-fermentation capabilities and inhibitor tolerance, respectively. The fusion strain BLH510 demonstrated efficient utilization of mixed sugars and high ethanol yield under oxygen-limited conditions. Under low inoculum conditions, strain BLH510 could completely consume all four kinds of sugars in the medium within 84 h. The fermentation produced 33.96 g/L ethanol, achieving 84.3% of the theoretical ethanol yield. Despite the challenging presence of mixed inhibitors, BLH510 successfully metabolized all four sugars above after 120 h of fermentation, producing approximately 30 g/L ethanol and reaching 83% of the theoretical yield. Also, strain BLH510 exhibited increased intracellular trehalose content, particularly under conditions with mixed inhibitors, where the intracellular trehalose reached 239.3 mg/g yeast biomass. This elevated trehalose content contributes to the enhanced stress tolerance of BLH510. The study also optimized conditions for protoplast preparation and fusion, balancing high preparation efficiency and satisfactory regeneration efficiency. The results indicate that BLH510 is a promising candidate for industrial second-generation bioethanol production from lignocellulosic biomass, offering improved performance under challenging fermentation conditions. Our work demonstrates the potential of combining protoplast fusion and metabolic engineering to develop superior S. cerevisiae strains for lignocellulosic bioethanol production. This approach can also be extended to develop robust microbial platforms for producing a wide array of lignocellulosic biomass-based biochemicals.

4.
aBIOTECH ; 5(2): 151-168, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974867

RESUMEN

The CRISPR-Cas genome editing tools are revolutionizing agriculture and basic biology with their simplicity and precision ability to modify target genomic loci. Software-predicted guide RNAs (gRNAs) often fail to induce efficient cleavage at target loci. Many target loci are inaccessible due to complex chromatin structure. Currently, there is no suitable tool available to predict the architecture of genomic target sites and their accessibility. Hence, significant time and resources are spent on performing editing experiments with inefficient guides. Although in vitro-cleavage assay could provide a rough assessment of gRNA efficiency, it largely excludes the interference of native genomic context. Transient in-vivo testing gives a proper assessment of the cleavage ability of editing reagents in a native genomic context. Here, we developed a modified protocol that offers highly efficient protoplast isolation from rice, Arabidopsis, and chickpea, using a sucrose gradient, transfection using PEG (polyethylene glycol), and validation of single guide RNAs (sgRNAs) cleavage efficiency of CRISPR-Cas9. We have optimized various parameters for PEG-mediated protoplast transfection and achieved high transfection efficiency using our protocol in both monocots and dicots. We introduced plasmid vectors containing Cas9 and sgRNAs targeting genes in rice, Arabidopsis, and chickpea protoplasts. Using dual sgRNAs, our CRISPR-deletion strategy offers straightforward detection of genome editing success by simple agarose gel electrophoresis. Sanger sequencing of PCR products confirmed the editing efficiency of specific sgRNAs. Notably, we demonstrated that isolated protoplasts can be stored for up to 24/48 h with little loss of viability, allowing a pause between isolation and transfection. This high-efficiency protocol for protoplast isolation and transfection enables rapid (less than 7 days) validation of sgRNA cleavage efficiency before proceeding with stable transformation. The isolation and transfection method can also be utilized for rapid validation of editing strategies, evaluating diverse editing reagents, regenerating plants from transfected protoplasts, gene expression studies, protein localization and functional analysis, and other applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00139-7.

5.
Plants (Basel) ; 13(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38999594

RESUMEN

Botrytis cinerea is a necrotrophic fungus that causes considerable economic losses in commercial crops. Fungi of the genus Botrytis exhibit great morphological and genetic variability, ranging from non-sporogenic and non-infective isolates to highly virulent sporogenic ones. There is growing interest in the different isolates in terms of their methodological applications aimed at gaining a deeper understanding of the biology of these fungal species for more efficient control of the infections they cause. This article describes an improvement in the protoplast production protocol from non-sporogenic isolates, resulting in viable protoplasts with regenerating capacity. The method improvements consist of a two-day incubation period with mycelium plugs and orbital shaking. Special mention is made of our preference for the VinoTaste Pro enzyme in the KC buffer as a replacement for Glucanex, as it enhances the efficacy of protoplast isolation in B459 and B371 isolates. The methodology described here has proven to be very useful for biotechnological applications such as genetic transformations mediated by the CRISPR/Cas9 tool.

6.
Front Microbiol ; 15: 1333793, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993492

RESUMEN

Cordyceps chanhua is a well-known edible and medicinal mushroom with a long history of use in China, and it contains a variety of secondary metabolites with interesting bioactive ingredients. However, recent researches have mainly focused on cultivation conditions, secondary metabolite compositions and pharmacological activities of C. chanhua, the lack of an efficient and stable genetic transformation system has largely limited further research on the relationship between secondary metabolites and biosynthetic gene clusters in C. chanhua. In this study, single-factor experiments were used to compare the effects of different osmotic stabilizers, enzyme concentrations and enzyme digestion times on protoplast yield, and we found that the highest yield of 5.53 × 108 protoplasts/mL was obtained with 0.7 M mannitol, 6 mg/mL snail enzyme and 4 h of enzyme digestion time, and the regeneration rate of protoplasts was up to approximately 30% using 0.7 M mannitol as an osmotic stabilizer. On this basis, a PEG-mediated genetic transformation system of C. chanhua was successfully established for the first time, which lays the foundation for further genetic transformation of C. chanhua.

7.
BMC Plant Biol ; 24(1): 527, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858674

RESUMEN

BACKGROUND: Angelica Gigas (Purple parsnip) is an important medicinal plant that is cultivated and utilized in Korea, Japan, and China. It contains bioactive substances especially coumarins with anti-inflammatory, anti-platelet aggregation, anti-cancer, anti-diabetic, antimicrobial, anti-obesity, anti-oxidant, immunomodulatory, and neuroprotective properties. This medicinal crop can be genetically improved, and the metabolites can be obtained by embryonic stem cells. In this context, we established the protoplast-to-plant regeneration methodology in Angelica gigas. RESULTS: In the present investigation, we isolated the protoplast from the embryogenic callus by applying methods that we have developed earlier and established protoplast cultures using Murashige and Skoog (MS) liquid medium and by embedding the protoplast in thin alginate layer (TAL) methods. We supplemented the culture medium with growth regulators namely 2,4-dichlorophenoxyaceticacid (2,4-D, 0, 0.75, 1.5 mg L- 1), kinetin (KN, 0, 0.5, and 1.0 mg L- 1) and phytosulfokine (PSK, 0, 50, 100 nM) to induce protoplast division, microcolony formation, and embryogenic callus regeneration. We applied central composite design (CCD) and response surface methodology (RSM) for the optimization of 2,4-D, KN, and PSK levels during protoplast division, micro-callus formation, and induction of embryogenic callus stages. The results revealed that 0.04 mg L- 1 2,4-D + 0.5 mg L- 1 KN + 2 nM PSK, 0.5 mg L- 1 2,4-D + 0.9 mg L- 1 KN and 90 nM PSK, and 1.5 mg L- 1 2,4-D and 1 mg L- 1 KN were optimum for protoplast division, micro-callus formation and induction embryogenic callus. MS basal semi-solid medium without growth regulators was good for the development of embryos and plant regeneration. CONCLUSIONS: This study demonstrated successful protoplast culture, protoplast division, micro-callus formation, induction embryogenic callus, somatic embryogenesis, and plant regeneration in A. gigas. The methodologies developed here are quite useful for the genetic improvement of this important medicinal plant.


Asunto(s)
Angelica , Reguladores del Crecimiento de las Plantas , Técnicas de Embriogénesis Somática de Plantas , Protoplastos , Angelica/embriología , Reguladores del Crecimiento de las Plantas/farmacología , Técnicas de Embriogénesis Somática de Plantas/métodos , Protoplastos/efectos de los fármacos , División Celular/efectos de los fármacos
8.
Plant Methods ; 20(1): 67, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725058

RESUMEN

BACKGROUND: With the accumulating omics data, an efficient and time-saving transient assay to express target genes is desired. Mesophyll protoplasts, maintaining most stress-physiological responses and cellular activities as intact plants, offer an alternative transient assay to study target genes' effects on heat and oxidative stress responses. RESULTS: In this study, a perennial ryegrass (Lolium perenne L.) mesophyll protoplast-based assay was established to effectively over- or down-regulate target genes. The relative expression levels of the target genes could be quantified using RT-qPCR, and the effects of heat and H2O2-induced oxidative stress on protoplasts' viability could be quantitatively measured. The practicality of the assay was demonstrated by identifying the potential thermos-sensor genes LpTT3.1/LpTT3.2 in ryegrass that over-expressing these genes significantly altered protoplasts' viability rates after heat stress. CONCLUSION: This protoplast-based rapid stress regulatory gene identification assay was briefed as 'PRIDA' that will complement the stable genetic transformation studies to rapidly identify candidate stress-regulatory genes in perennial ryegrass and other grass species.

9.
Protoplasma ; 261(5): 1073-1092, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38702562

RESUMEN

Phytophthora cinnamomi is an oomycete plant pathogen with a host range of almost 5000 plant species worldwide and therefore poses a serious threat to biodiversity. Omics technology has provided significant progress in our understanding of oomycete biology, however, transformation studies of Phytophthora for gene functionalisation are still in their infancy. Only a limited number of Phytophthora species have been successfully transformed and gene edited to elucidate the role of particular genes. There is a need to escalate our efforts to understand molecular processes, gene regulation and infection mechanisms of the pathogen to enable us to develop new disease management strategies. The primary obstacle hindering the advancement of transformation studies in Phytophthora is their challenging and unique nature, coupled with our limited comprehension of why they remain such an intractable system to work with. In this study, we have identified some of the key factors associated with the recalcitrant nature of P. cinnamomi. We have incorporated fluorescence microscopy and flow cytometry along with the organelle-specific dyes, fluorescein diacetate, Hoechst 33342 and MitoTracker™ Red CMXRos, to assess P. cinnamomi-derived protoplast populations. This approach has also provided valuable insights into the broader cell biology of Phytophthora. Furthermore, we have optimized the crucial steps that allow transformation of P. cinnamomi and have generated transformed isolates that express a cyan fluorescent protein, with a transformation efficiency of 19.5%. We therefore provide a platform for these methodologies to be applied for the transformation of other Phytophthora species and pave the way for future gene functionalisation studies.


Asunto(s)
Phytophthora , Protoplastos , Phytophthora/patogenicidad , Phytophthora/fisiología , Orgánulos/metabolismo , Transformación Genética , Enfermedades de las Plantas/microbiología
10.
J Cell Sci ; 137(20)2024 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-38738286

RESUMEN

Plant protoplasts provide starting material for of inducing pluripotent cell masses that are competent for tissue regeneration in vitro, analogous to animal induced pluripotent stem cells (iPSCs). Dedifferentiation is associated with large-scale chromatin reorganisation and massive transcriptome reprogramming, characterised by stochastic gene expression. How this cellular variability reflects on chromatin organisation in individual cells and what factors influence chromatin transitions during culturing are largely unknown. Here, we used high-throughput imaging and a custom supervised image analysis protocol extracting over 100 chromatin features of cultured protoplasts. The analysis revealed rapid, multiscale dynamics of chromatin patterns with a trajectory that strongly depended on nutrient availability. Decreased abundance in H1 (linker histones) is hallmark of chromatin transitions. We measured a high heterogeneity of chromatin patterns indicating intrinsic entropy as a hallmark of the initial cultures. We further measured an entropy decline over time, and an antagonistic influence by external and intrinsic factors, such as phytohormones and epigenetic modifiers, respectively. Collectively, our study benchmarks an approach to understand the variability and evolution of chromatin patterns underlying plant cell reprogramming in vitro.


Asunto(s)
Cromatina , Entropía , Células Madre Pluripotentes Inducidas , Cromatina/metabolismo , Cromatina/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Protoplastos/metabolismo , Reprogramación Celular/genética , Histonas/metabolismo , Histonas/genética , Células Vegetales/metabolismo , Epigénesis Genética
11.
J Sep Sci ; 47(9-10): e2400120, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772720

RESUMEN

Current techniques identifying herbal medicine species require marker labeling or lack systematical accuracy (expert authentication). There is an emerging interest in developing an accurate and label-free tool for herbal medicine authentication. Here, a high-resolution microfluidic-based method is developed for identifying herbal species by protoplast subpopulations. Moso bamboo and henon bamboo are used as a model to be differentiated based on protoplast. Their biophysical properties factors are characterized to be 7.09 (± 0.39) × 108 V/m2 and 6.54 (± 0.26) × 108 V/m2, respectively. Their biophysical distributions could be distinguished by the Cramér-von Mises criterion with a 94.60% confidence level. The subpopulations of each were compared with conventional flow cytometry indicating the existence of subpopulations and the differences between the two species. The subsets divided by a biophysical factor of 8.05(± 0.51) × 108 V/m2 suggest good consistency with flow cytometry. The work demonstrated the possibility of microfluidics manipulation on protoplast for medication safety use taking advantage of dielectrophoresis. The device is promising in developing a reliable and accurate way of identifying herbal species with difficulties in authentication.


Asunto(s)
Hojas de la Planta , Protoplastos , Análisis de la Célula Individual , Protoplastos/citología , Hojas de la Planta/química , Citometría de Flujo , Técnicas Analíticas Microfluídicas/instrumentación , Microfluídica/instrumentación
12.
Front Biosci (Landmark Ed) ; 29(5): 187, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38812327

RESUMEN

BACKGROUND: Eucommia ulmoides Oliver is a unique high-quality natural rubber tree species and rare medicinal tree species in China. The rapid characterization of E. ulmoides gene function has been severely hampered by the limitations of genetic transformation methods and breeding cycles. The polyethylene glycol (PEG)-mediated protoplast transformation system is a multifunctional and rapid tool for the analysis of functional genes in vivo, but it has not been established in E. ulmoides. METHODS: In this study, a large number of highly active protoplasts were isolated from the stems of E. ulmoides seedlings by enzymatic digestion, and green fluorescent protein expression was facilitated using a PEG-mediated method. RESULTS: Optimal enzymatic digestion occurred when the enzyme was digested for 10 h in an enzymatic solution containing 2.5% Cellulase R-10 (w/v), 0.6% Macerozyme R-10 (w/v), 2.5% pectinase (w/v), 0.5% hemicellulase (w/v), and 0.6 mol/L mannitol. The active protoplast yield under this condition was 1.13 × 106 protoplasts/g fresh weight, and the protoplast activity was as high as 94.84%. CONCLUSIONS: This study established the first protoplasm isolation and transient transformation system in hard rubber wood, which lays the foundation for subsequent functional studies of E. ulmoides genes to achieve high-throughput analysis, and provides a reference for future gene function studies of medicinal and woody plants.


Asunto(s)
Eucommiaceae , Protoplastos , Transfección , Protoplastos/metabolismo , Eucommiaceae/genética , Eucommiaceae/metabolismo , Transfección/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Polietilenglicoles
13.
Plant J ; 119(1): 404-412, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38646817

RESUMEN

The main bottleneck in the application of biotechnological breeding methods to woody species is due to the in vitro regeneration recalcitrance shown by several genotypes. On the other side, woody species, especially grapevine (Vitis vinifera L.), use most of the pesticides and other expensive inputs in agriculture, making the development of efficient approaches of genetic improvement absolutely urgent. Genome editing is an extremely promising technique particularly for wine grape genotypes, as it allows to modify the desired gene in a single step, preserving all the quality traits selected and appreciated in elite varieties. A genome editing and regeneration protocol for the production of transgene-free grapevine plants, exploiting the lipofectamine-mediated direct delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to target the phytoene desaturase gene, is reported. We focused on Nebbiolo (V. vinifera), an extremely in vitro recalcitrant wine genotype used to produce outstanding wines, such as Barolo and Barbaresco. The use of the PEG-mediated editing method available in literature and employed for highly embryogenic grapevine genotypes did not allow the proper embryo development in the recalcitrant Nebbiolo. Lipofectamines, on the contrary, did not have a negative impact on protoplast viability and plant regeneration, leading to the obtainment of fully developed edited plants after about 5 months from the transfection. Our work represents one of the first examples of lipofectamine use for delivering editing reagents in plant protoplasts. The important result achieved for the wine grape genotype breeding could be extended to other important wine grape varieties and recalcitrant woody species.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genotipo , Lípidos , Protoplastos , Vitis , Vitis/genética , Edición Génica/métodos , Protoplastos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Vino , Genoma de Planta/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-38593404

RESUMEN

The cell plasma membrane is a two-dimensional, fluid mosaic material composed of lipids and proteins that create a semipermeable barrier defining the cell from its environment. Compared with soluble proteins, the methodologies for the structural and functional characterization of membrane proteins are challenging. An emerging tool for studies of membrane proteins in mammalian systems is a "plasma membrane on a chip," also known as a supported lipid bilayer. Here, we create the "plant-membrane-on-a-chip,″ a supported bilayer made from the plant plasma membranes of Arabidopsis thaliana, Nicotiana benthamiana, or Zea mays. Membrane vesicles from protoplasts containing transgenic membrane proteins and their native lipids were incorporated into supported membranes in a defined orientation. Membrane vesicles fuse and orient systematically, where the cytoplasmic side of the membrane proteins faces the chip surface and constituents maintain mobility within the membrane plane. We use plant-membrane-on-a-chip to perform fluorescent imaging to examine protein-protein interactions and determine the protein subunit stoichiometry of FLOTILLINs. We report here that like the mammalian FLOTILLINs, FLOTILLINs expressed in Arabidopsis form a tetrameric complex in the plasma membrane. This plant-membrane-on-a-chip approach opens avenues to studies of membrane properties of plants, transport phenomena, biophysical processes, and protein-protein and protein-lipid interactions in a convenient, cell-free platform.

15.
Methods Mol Biol ; 2787: 305-313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656499

RESUMEN

Bimolecular fluorescence complementation (BiFC) is a powerful tool for studying protein-protein interactions in living cells. By fusing interacting proteins to fluorescent protein fragments, BiFC allows visualization of spatial localization patterns of protein complexes. This method has been adapted to a variety of expression systems in different organisms and is widely used to study protein interactions in plant cells. The Agrobacterium-mediated transient expression protocol for BiFC assays in Nicotiana benthamiana (N. benthamiana) leaf cells is widely used, but in this chapter, a method for BiFC assay using Arabidopsis thaliana protoplasts is presented.


Asunto(s)
Arabidopsis , Hojas de la Planta , Protoplastos , Arabidopsis/metabolismo , Arabidopsis/genética , Protoplastos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Mapeo de Interacción de Proteínas/métodos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Microscopía Fluorescente/métodos , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Nicotiana/metabolismo , Nicotiana/genética , Unión Proteica , Agrobacterium/genética , Agrobacterium/metabolismo
16.
Front Microbiol ; 15: 1330079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562472

RESUMEN

Cellobiose dehydrogenase (CDH) is one of the cellulase auxiliary proteins, which is widely used in the field of biomass degradation. However, how to efficiently and cheaply apply it in industrial production still needs further research. Aspergillus niger C112 is a significant producer of cellulase and has a relatively complete lignocellulose degradation system, but its CDH activity was only 3.92 U. To obtain a recombinant strain of A. niger C112 with high cellulases activity, the CDH from the readily available white-rot fungus Grifola frondose had been heterologously expressed in A. niger C112, under the control of the gpdA promoter. After cultivation in the medium with alkali-pretreated poplar fiber as substrate, the enzyme activity of recombinant CDH reached 36.63 U/L. Compared with the original A. niger C112, the recombinant A. niger transformed with Grifola frondosa CDH showed stronger lignocellulase activity, the activities of cellulases, ß-1, 4-glucosidase and manganese peroxidase increased by 28.57, 35.07 and 121.69%, respectively. The result showed that the expression of the gcdh gene in A. niger C112 could improve the activity of some lignocellulose degrading enzymes. This work provides a theoretical basis for the further application of gcdh gene in improving biomass conversion efficiency.

17.
Microb Cell Fact ; 23(1): 73, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431598

RESUMEN

BACKGROUND: Lignocellulosic biomass provides a great starting point for the production of energy, chemicals, and fuels. The major component of lignocellulosic biomass is cellulose, the employment of highly effective enzymatic cocktails, which can be produced by a variety of microorganisms including species of the genus Aspergillus, is necessary for its utilization in a more productive manner. In this regard, molecular biology techniques should be utilized to promote the economics of enzyme production, whereas strategies like protoplast fusion could be employed to improve the efficacy of the hydrolytic process. RESULTS: The current study focuses on cellulase production in Aspergillus species using intrageneric protoplast fusion, statistical optimization of growth parameters, and determination of antioxidant activity of fermentation hydrolysate. Protoplast fusion was conducted between A. flavus X A. terreus (PFFT), A. nidulans X A. tamarii (PFNT) and A. oryzae X A. tubingensis (PFOT), and the resultant fusant PFNT revealed higher activity level compared with the other fusants. Thus, this study aimed to optimize lignocellulosic wastes-based medium for cellulase production by Aspergillus spp. fusant (PFNT) and studying the antioxidant effect of fermentation hydrolysate. The experimental strategy Plackett-Burman (PBD) was used to assess how culture conditions affected cellulase output, the best level of the three major variables namely, SCB, pH, and incubation temperature were then determined using Box-Behnken design (BBD). Consequently, by utilizing an optimized medium instead of a basal medium, cellulase activity increased from 3.11 U/ml to 7.689 U/ml CMCase. The following medium composition was thought to be ideal based on this optimization: sugarcane bagasse (SCB), 6.82 gm; wheat bran (WB), 4; Moisture, 80%; pH, 4; inoculum size, (3 × 106 spores/ml); and incubation Temp. 31.8 °C for 4 days and the fermentation hydrolysate has 28.13% scavenging activities. CONCLUSION: The results obtained in this study demonstrated the significant activity of the selected fusant and the higher sugar yield from cellulose hydrolysis over its parental strains, suggesting the possibility of enhancing cellulase activity by protoplast fusion using an experimental strategy and the fermentation hydrolysate showed antioxidant activity.


Asunto(s)
Celulasa , Celulasas , Saccharum , Celulosa/metabolismo , Protoplastos/metabolismo , Antioxidantes , Saccharum/metabolismo , Aspergillus/metabolismo , Fermentación , Celulasa/química , Hidrólisis
18.
Plants (Basel) ; 13(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38337891

RESUMEN

Terrestrial algae are a group of photosynthetic organisms that can survive in extreme conditions. pH is one of the most important factors influencing the distribution of algae in both aquatic and terrestrial ecosystems. The impact of different pH levels on the cell volume and other morphological characteristics of authentic and reference strains of Chlorella vulgaris, Bracteacoccus minor, Pseudoccomyxa simplex, Chlorococcum infusionum, and Vischeria magna were studied. Chlorella vulgaris, Pseudoccomyxa simplex, and Vischeria magna were the most resistant species, retaining their morphology in the range of pH 4-11.5 and pH 3.5-11, respectively. The change in pH towards acidic and alkaline levels caused an increase in the volume of Pseudoccomixa simplex and Vischeria magna cells, according to a polynomial regression model. The volume of Chlorella vulgaris cells increased from a low to high pH according to a linear regression model. Changes in pH levels did not have a significant impact on the volume of Bracteacoccus minor and Chlorococcum infusionum cells. Low and high levels of pH caused an increase in oil-containing substances in Vischeria magna and Bracteacoccus minor cells. Our study revealed a high resistance of the studied species to extreme pH levels, which allows for us to recommend these strains for broader use in biotechnology and conservation studies of natural populations.

19.
Biol Methods Protoc ; 9(1): bpae008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414647

RESUMEN

Protoplast regeneration has become a key platform for genetic and genome engineering. However, we lack reliable and reproducible methods for efficient protoplast regeneration for tomato (Solanum lycopersicum) cultivars. Here, we optimized cell and tissue culture methods for protoplast isolation, microcallus proliferation, shoot regeneration, and plantlet establishment of the tomato cultivar Micro-Tom. A thin layer of alginate was applied to protoplasts isolated from third to fourth true leaves and cultured at an optimal density of 1 × 105 protoplasts/ml. We determined the optimal culture media for protoplast proliferation, callus formation, de novo shoot regeneration, and root regeneration. Regenerated plantlets exhibited morphologically normal growth and sexual reproduction. The entire regeneration process, from protoplasts to flowering plants, was accomplished within 5 months. The optimized protoplast regeneration platform enables biotechnological applications, such as genome engineering, as well as basic research on plant regeneration in Solanaceae species.

20.
Methods Mol Biol ; 2772: 391-405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38411831

RESUMEN

Transient gene expression in plant protoplasts facilitates the analysis of hybrid genes in a fast and reproducible manner. The technique is particularly powerful when studying basic conserved biochemical processes including de novo protein synthesis, modification, assembly, transport, and turnover. Unlike individual plants, protoplast suspensions can be divided into almost identical aliquots, allowing the analysis of independent variables with uncertainties restricted to minor pipetting errors/variations. Using the examples of protein secretion and ER retention, we describe the most advanced working practice of routinely preparing, electroporating, and analyzing Nicotiana benthamiana protoplasts. A single batch of electroporation-competent protoplasts permits up to 30 individual transfections. This is ideal to assess the influence of independent variables, such as point mutations, deletions or fusions, or the influence of a co-expressed effector gene in dose-response studies.


Asunto(s)
Nicotiana , Protoplastos , Nicotiana/genética , Transporte Biológico , Transporte de Proteínas , Electroporación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...