Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Neurooncol Adv ; 5(1): vdad031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37114245

RESUMEN

Background: Laser interstitial thermal therapy (LITT) in the setting of post-SRS radiation necrosis (RN) for patients with brain metastases has growing evidence for efficacy. However, questions remain regarding hospitalization, local control, symptom control, and concurrent use of therapies. Methods: Demographics, intraprocedural data, safety, Karnofsky performance status (KPS), and survival data were prospectively collected and then analyzed on patients who consented between 2016-2020 and who were undergoing LITT for biopsy-proven RN at one of 14 US centers. Data were monitored for accuracy. Statistical analysis included individual variable summaries, multivariable Fine and Gray analysis, and Kaplan-Meier estimated survival. Results: Ninety patients met the inclusion criteria. Four patients underwent 2 ablations on the same day. Median hospitalization time was 32.5 hours. The median time to corticosteroid cessation after LITT was 13.0 days (0.0, 1229.0) and cumulative incidence of lesional progression was 19% at 1 year. Median post-procedure overall survival was 2.55 years [1.66, infinity] and 77.1% at one year as estimated by KaplanMeier. Median KPS remained at 80 through 2-year follow-up. Seizure prevalence was 12% within 1-month post-LITT and 7.9% at 3 months; down from 34.4% within 60-day prior to procedure. Conclusions: LITT for RN was not only again found to be safe with low patient morbidity but was also a highly effective treatment for RN for both local control and symptom management (including seizures). In addition to averting expected neurological death, LITT facilitates ongoing systemic therapy (in particular immunotherapy) by enabling the rapid cessation of steroids, thereby facilitating maximal possible survival for these patients.

3.
Front Oncol ; 12: 920393, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912214

RESUMEN

Introduction: There is a cumulative risk of 20-40% of developing brain metastases (BM) in solid cancers. Stereotactic radiotherapy (SRT) enables the application of high focal doses of radiation to a volume and is often used for BM treatment. However, SRT can cause adverse radiation effects (ARE), such as radiation necrosis, which sometimes cause irreversible damage to the brain. It is therefore of clinical interest to identify patients at a high risk of developing ARE. We hypothesized that models trained with radiomics features, deep learning (DL) features, and patient characteristics or their combination can predict ARE risk in patients with BM before SRT. Methods: Gadolinium-enhanced T1-weighted MRIs and characteristics from patients treated with SRT for BM were collected for a training and testing cohort (N = 1,404) and a validation cohort (N = 237) from a separate institute. From each lesion in the training set, radiomics features were extracted and used to train an extreme gradient boosting (XGBoost) model. A DL model was trained on the same cohort to make a separate prediction and to extract the last layer of features. Different models using XGBoost were built using only radiomics features, DL features, and patient characteristics or a combination of them. Evaluation was performed using the area under the curve (AUC) of the receiver operating characteristic curve on the external dataset. Predictions for individual lesions and per patient developing ARE were investigated. Results: The best-performing XGBoost model on a lesion level was trained on a combination of radiomics features and DL features (AUC of 0.71 and recall of 0.80). On a patient level, a combination of radiomics features, DL features, and patient characteristics obtained the best performance (AUC of 0.72 and recall of 0.84). The DL model achieved an AUC of 0.64 and recall of 0.85 per lesion and an AUC of 0.70 and recall of 0.60 per patient. Conclusion: Machine learning models built on radiomics features and DL features extracted from BM combined with patient characteristics show potential to predict ARE at the patient and lesion levels. These models could be used in clinical decision making, informing patients on their risk of ARE and allowing physicians to opt for different therapies.

4.
Front Oncol ; 12: 852076, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35978813

RESUMEN

Background: Amide proton transfer (APT) imaging as an emerging MRI approach has been used for distinguishing tumor recurrence (TR) and treatment effects (TEs) in glioma patients, but the initial results from recent studies are different. Aim: The aim of this study is to systematically review and quantify the diagnostic performance of APT in assessing treatment response in patients with post-treatment gliomas. Methods: A systematic search in PubMed, EMBASE, and the Web of Science was performed to retrieve related original studies. For the single and added value of APT imaging in distinguishing TR from TEs, we calculated pooled sensitivity and specificity by using Bayesian bivariate meta-analyses. Results: Six studies were included, five of which reported on single APT imaging parameters and four of which reported on multiparametric MRI combined with APT imaging parameters. For single APT imaging parameters, the pooled sensitivity and specificity were 0.85 (95% CI: 0.75-0.92) and 0.88 (95% CI: 0.74-0.97). For multiparametric MRI including APT, the pooled sensitivity and specificity were 0.92 (95% CI: 0.85-0.97) and 0.83 (95% CI: 0.55-0.97), respectively. In addition, in the three studies reported on both single and added value of APT imaging parameters, the combined imaging parameters further improved diagnostic performance, yielding pooled sensitivity and specificity of 0.91 (95% CI: 0.80-0.97) and 0.92 (95% CI: 0.79-0.98), respectively, but the pooled sensitivity was 0.81 (95% CI: 0.65-0.93) and specificity was 0.82 (95% CI: 0.61-0.94) for single APT imaging parameters. Conclusion: APT imaging showed high diagnostic performance in assessing treatment response in patients with post-treatment gliomas, and the addition of APT imaging to other advanced MRI techniques can improve the diagnostic accuracy for distinguishing TR from TE.

5.
BMC Cancer ; 21(1): 167, 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33593308

RESUMEN

BACKGROUND: Radiotherapy is the mainstay of brain metastasis (BM) management. Radiation necrosis (RN) is a serious complication of radiotherapy. Bevacizumab (BV), an anti-vascular endothelial growth factor monoclonal antibody, has been increasingly used for RN treatment. We systematically reviewed the medical literature for studies reporting the efficacy and safety of bevacizumab for treatment of RN in BM patients. MATERIALS AND METHODS: PubMed, Medline, EMBASE, and Cochrane library were searched with various search keywords such as "bevacizumab" OR "anti-VEGF monoclonal antibody" AND "radiation necrosis" OR "radiation-induced brain necrosis" OR "RN" OR "RBN" AND "Brain metastases" OR "BM" until 1st Aug 2020. Studies reporting the efficacy and safety of BV treatment for BM patients with RN were retrieved. Study selection and data extraction were carried out by independent investigators. Open Meta Analyst software was used as a random effects model for meta-analysis to obtain mean reduction rates. RESULTS: Two prospective, seven retrospective, and three case report studies involving 89 patients with RN treated with BV were included in this systematic review and meta-analysis. In total, 83 (93%) patients had a recorded radiographic response to BV therapy, and six (6.7%) had experienced progressive disease. Seven studies (n = 73) reported mean volume reductions on gadolinium-enhanced T1 (mean: 47.03%, +/- 24.4) and T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI images (mean: 61.9%, +/- 23.3). Pooling together the T1 and T2 MRI reduction rates by random effects model revealed a mean of 48.58 (95% CI: 38.32-58.85) for T1 reduction rate and 62.017 (95% CI: 52.235-71.799) for T2W imaging studies. Eighty-five patients presented with neurological symptoms. After BV treatment, nine (10%) had stable symptoms, 39 (48%) had improved, and 34 (40%) patients had complete resolution of their symptoms. Individual patient data was available for 54 patients. Dexamethasone discontinuation or reduction in dosage was observed in 30 (97%) of 31 patients who had recorded dosage before and after BV treatment. Side effects were mild. CONCLUSIONS: Bevacizumab presents a promising treatment strategy for patients with RN and brain metastatic disease. Radiographic response and clinical improvement was observed without any serious adverse events. Further class I evidence would be required to establish a bevacizumab recommendation in this group of patients.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Bevacizumab/uso terapéutico , Neoplasias Encefálicas/radioterapia , Traumatismos por Radiación/tratamiento farmacológico , Radioterapia/efectos adversos , Neoplasias Encefálicas/patología , Humanos , Necrosis , Pronóstico , Traumatismos por Radiación/etiología , Traumatismos por Radiación/patología
6.
Front Oncol ; 11: 794615, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096594

RESUMEN

PURPOSE/OBJECTIVES: Clinical trials of anti-Programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein (CTLA-4) therapies have demonstrated a clinical benefit with low rates of neurologic adverse events in patients with melanoma brain metastases (MBMs). While the combined effect of these immunotherapies (ITs) and stereotactic radiosurgery (SRS) has yielded impressive results with regard to local control (LC) and overall survival (OS), it has also been associated with increased rates of radiation necrosis (RN) compared to historical series of SRS alone. We retrospectively reviewed patients treated with IT in combination with SRS to report on predictors of clinical outcomes. MATERIALS AND METHODS: Patients were included if they had MBMs treated with SRS within 1 year of receiving anti-PD-1 and/or CTLA-4 therapy. Clinical outcomes including OS, LC, intracranial death (ID), and RN were correlated with type and timing of IT with SRS, radiation dose, total volume, and size and number of lesions treated. RESULTS: Twenty-nine patients with 171 MBMs were treated between May 2012 and May 2018. Patients had a median of 5 lesions treated (median volume of 6.5 cm3) over a median of 2 courses of SRS. The median dose was 21 Gy. Most patients were treated with ipilimumab (n = 13) or nivolumab-ipilimumab (n = 10). Most patients underwent SRS concurrently or within 3 months of receiving immunotherapy (n = 21). Two-year OS and LC were 54.4% and 85.5%, respectively. In addition, 14% of patients developed RN; however, only 4.7% of the total treated lesions developed RN. The median time to development of RN was 9.5 months. Patients with an aggregate tumor volume >6.5 cm3 were found to be at increased risk of ID (p = 0.05) and RN (p = 0.03). There was no difference in OS, ID, or RN with regard to type of IT, timing of SRS and IT, number of SRS courses, SRS dose, or number of cumulative lesions treated. CONCLUSIONS: In our series, patients treated with SRS and IT for MBMs had excellent rates of OS and LC; however, patients with an aggregate tumor volume >6.5 cm3 were found to be at increased risk of ID and RN. Given the efficacy of combined anti-PD-1/CTLA-4 therapy for MBM management, further study of optimal selection criteria for the addition of SRS is warranted.

7.
Front Oncol ; 10: 592796, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178618

RESUMEN

Objective: Stereotactic radiosurgery (SRS) is an established treatment for brain metastases in the management of metastasized melanoma. The increasing use of checkpoint inhibitors in melanoma therapy leads to combined treatment schemes consisting of immunotherapy and SRS that need to be evaluated regarding safety and feasibility. Methods: We retrospectively analyzed 36 patients suffering from cerebral metastasized melanoma. Between November 2011 and May 2016, altogether 66 brain metastases were treated with single-fraction SRS (18-20 Gy prescribed to the 80% isodose) in combination with a checkpoint inhibitor (ipilimumab: 82%, pembrolizumab: 14% or nivolumab: 4%), administered within 3 months before or after SRS. Toxicity was evaluated with focus on the incidence of central nervous system (CNS) radiation necrosis (CRN). Overall survival (OS), freedom from local progression (FFLP), freedom from central nervous system radiation necrosis (FFCRN), and freedom from distant intracranial progression (FFDIP) were analyzed using the Kaplan-Meier method. Results: The median follow-up was 25 months (range: 2-115 months). Two patients (6%) presented with cerebral edema CTCAE °III and another two patients (6%) presented with one-sided muscle weakness CTCAE °III after SRS. One of these four symptomatic cases correlated with an observed CRN, the other three symptomatic cases were related to local tumor progression (n = 2) or related to the performance of additional whole brain radiotherapy (WBRT). No further CTCAE °III or °IV toxicity was seen. During follow-up, seven of the growing contrast-enhanced lesions were resected, revealing two cases of CRN and five cases of local tumor progression. Altogether, the observed CRN rate of the irradiated metastases was 6-17% at the time of analysis, ranging due to the radiologically challenging differentiation between CRN and local tumor progression. The observed ranges of the 1- and 2-years FFLP rates were 82-85% and 73-80%, respectively. The median FFDIP was 6.1 months, the median OS was 22.2 months. Conclusion: In the presented cohort, the combination of SRS and checkpoint inhibitors in the management of cerebral metastasized melanoma was safe and effective. Compared to historic data on SRS only, the observed CRN rate was acceptable. To gain resilient data on the incidence of CRN after combined treatment schemes, prospective trials are needed.

8.
Front Oncol ; 10: 576926, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240815

RESUMEN

BACKGROUND: Intracranial activity of lapatinib has been demonstrated in several studies in patients with human epidermal growth factor receptor-2 positive breast cancers (HER-2+ BC). Stereotactic radiosurgery (SRS) has been increasingly used as the local therapy for brain metastases in breast cancer patients. Increased objective response rate was observed for lapatinib plus whole brain radiotherapy (WBRT) is such patients with high toxicity. OBJECTIVE: We seek to obtain clinical evidence of synergistic efficacy of lapatinib in combination with radiation therapy, in particular, SRS. MATERIALS AND METHODS: We carried out a comprehensive research using the following databases: PubMed; Medline; EMBASE; Cochrane library. These databases were searched until 10 June 2020. PRISMA guidelines were followed step by step for carrying out this systematic review and meta-analysis. Review Manager v 5.4 software was used for statistical evaluation of data. RESULTS: Overall 6 studies with 843 HER-2 positive breast cancer patients (442 HER-2 amplified disease, 399 luminal B disease) were included in this systematic review and meta-analysis. A total 279 patients had received lapatinib in addition to HER-2 antibody (trastuzumab) plus/minus chemoradiotherapy, while 610 patients had received trastuzumab-based management or only chemoradiotherapy. Lapatinib-based management of BM was associated with significant increase in overall survival (HR 0.63 [0.52, 0.77], p < 0.00001). Combination of the two (trastuzumab plus lapatinib) was associated with increased survival advantage compared to each agent alone (0.55 [0.32, 0.92], p = 0.02). SRS in combination with lapatinib was associated with increased local control (HR 0.47 [0.33, 0.66], p = 0.0001). Ever use of lapatinib with SRS was associated an increased survival as reported in two studies (Shireen et al.: 27.3 vs. 19.5 months, p = 0.03; Kim et al.: 33.3 vs. 23.6 months, p = 0.009). Kim et al. also revealed significant increase in intracranial activity with concurrent lapatinib reporting 57% complete response compared to 38% (p < 0.001) and lower progressive disease rate of 11 vs. 19% (p < 0.001). Risk of radiation necrosis was decreased with lapatinib use. CONCLUSIONS: Lapatinib has shown intracranial activity and yielded better survival for HER-2+ BC patients with BMs. SRS in combination with ever use of lapatinib had better local control and were associated with better survival. Radiation necrosis risk was reduced with the use of lapatinib.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...