RESUMEN
PURPOSE: To expand on the previously developed B 1 + $$ {\mathrm{B}}_1^{+} $$ -encoding technique, frequency-modulated Rabi-encoded echoes (FREE), to perform accelerated image acquisition by collecting multiple lines of k-space in an echo train. METHODS: FREE uses adiabatic full-passage pulses and a spatially varying RF field to encode unique spatial information without the use of traditional B0 gradients. The original implementation relied on acquiring single lines of k-space, leading to long acquisitions. In this work, an acceleration scheme is presented in which multiple echoes are acquired in a single shot, analogous to conventional fast spin-echo sequences. Theoretical analysis and computer simulations investigated the feasibility of this approach and presented a framework to analyze important imaging parameters of FREE-based sequences. Experimentally, the multi-echo approach was compared with conventional phase-encoded images of the human visual cortex using a simple surface transceiver coil. Finally, different contrasts demonstrated the clinical versatility of the new accelerated sequence. RESULTS: Images were acquired with an acceleration factor of 3.9, compared with the previous implementation of FREE, without exceeding specific absorption rate limits. Different contrasts can easily be acquired without major modifications, including inversion recovery-type images. CONCLUSION: FREE initially illustrated the feasibility of performing slice-selective 2D imaging of the human brain without the need for a B0 gradient along the y-direction. The multi-echo version maintains the advantages that B 1 + $$ {\mathrm{B}}_1^{+} $$ encoding provides but represents an important step toward improving the clinical feasibility of such sequences. Additional acceleration and more advanced reconstruction techniques could further improve the clinical viability of FREE-based techniques.
Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Cabeza , Simulación por Computador , Aceleración , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de ImagenRESUMEN
PURPOSE: To correct image distortions that result from nonlinear spatial variation in the transmit RF field amplitude ( B 1 + $$ {B}_1^{+} $$ ) when performing spatial encoding with the method called frequency-modulated Rabi encoded echoes (FREE). THEORY AND METHODS: An algorithm developed to correct image distortion resulting from the use of nonlinear static field (B0 ) gradients in standard MRI is adapted herein to correct image distortion arising from a nonlinear B 1 + $$ {B}_1^{+} $$ -gradient field in FREE. From a B 1 + $$ {B}_1^{+} $$ -map, the algorithm performs linear interpolation and intensity scaling to correct the image. The quality of the distortion correction is evaluated in 1.5T images of a grid phantom and human occipital lobe. RESULTS: An expanded theoretical description of FREE revealed the symmetry between this B 1 + $$ {B}_1^{+} $$ -gradient field spatial-encoding and standard B0 -gradient field spatial-encoding. The adapted distortion-correction algorithm substantially reduced image distortions arising in the spatial dimension that was encoded by the nonlinear B 1 + $$ {B}_1^{+} $$ gradient of a circular surface coil. CONCLUSION: Image processing based on straightforward linear interpolation and intensity scaling, as previously applied in conventional MRI, can effectively reduce distortions in FREE images acquired with nonlinear B 1 + $$ {B}_1^{+} $$ -gradient fields.
Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Fantasmas de ImagenRESUMEN
Carbon fiber-reinforced polymer (CFRP) is a widely-used composite material that is vulnerable to impact damage. Light impact damages destroy the inner structure but barely show obvious change on the surface. As a non-contact and high-resolution method to detect subsurface and inner defect, near-field radiofrequency imaging (NRI) suffers from high imaging times. Although some existing works use compressed sensing (CS) for a faster measurement, the corresponding CS reconstruction time remains high. This paper proposes a deep learning-based CS method for fast NRI, this plugin method decreases the measurement time by one order of magnitude without hardware modification and achieves real-time imaging during CS reconstruction. A special 0/1-Bernoulli measurement matrix is designed for sensor scanning firstly, and an interpretable neural network-based CS reconstruction method is proposed. Besides real-time reconstruction, the proposed learning-based reconstruction method can further reduce the required data thus reducing measurement time more than existing CS methods. Under the same imaging quality, experimental results in an NRI system show the proposed method is 20 times faster than traditional raster scan and existing CS reconstruction methods, and the required data is reduced by more than 90% than existing CS reconstruction methods.
RESUMEN
PURPOSE: Reduce expense and increase accessibility of MRI by eliminating pulsed field (B0 ) gradient hardware. METHODS: A radiofrequency imaging method is described that enables spatial encoding without B0 gradients. This method, herein referred to as frequency-modulated Rabi-encoded echoes (FREE), utilizes adiabatic full passage pulses and a gradient in the RF field (B1 ) to produce spatially dependent phase modulation, equivalent to conventional phase encoding. In this work, Cartesian phase encoding was accomplished using FREE in a multi-shot double spin-echo sequence. Theoretical analysis and computer simulations investigated the influence of resonance offset and B1 -gradient steepness and magnitude on reconstruction quality, which limit other radiofrequency imaging methodologies. Experimentally, FREE was compared to conventional phase-encoded MRI on human visual cortex using a simple surface transceiver coil. RESULTS: Image distortions occurred in FREE when using nonlinear B1 fields where the phase dependence becomes nonlinear, but with minimal change in signal intensity. Resonance offset effects were minimal for Larmor frequencies within the adiabatic full-passage pulse bandwidth. CONCLUSION: For the first time, FREE enabled slice-selective 2D imaging of the human brain without a B0 gradient in the y-direction. FREE achieved high resolution in regions where the B1 gradient was steepest, whereas images were distorted in regions where nonlinearity in the B1 gradient was significant. Given that FREE experiences no significant signal loss due to B1 nonlinearities and resonance offset, image distortions shown in this work might be corrected in the future based on B1 and B0 maps.