RESUMEN
Background Radiopacity is a critical property for root canal sealers as it allows for the assessment of the material's placement and quality within the root canal system on radiographic images. The study aimed to evaluate the radiopacity of calcium silicate-based and resin-based materials using direct digital radiography, employing an aluminium step wedge according to American National Standards Institute/International Organization for Standardization (ANSI/ISO) standard protocols for testing the radiopacity of root canal sealers. This study seeks to determine the effectiveness of these materials in meeting the required standards for clinical use. Methodology The materials tested were AH Plus, Apexit Plus, Biodentine and MTA Fillapex in circular disc form and radiographed alongside the aluminium step wedge using direct digital radiography to determine the radiopacity using grey-pixel values. All the materials, viz., AH Plus, Apexit Plus, Biodentine and MTA Fillapex were found satisfactorily radiopaque and met the minimum radiopacity standard, that is, minimum 3mm of aluminium recommended by ANSI/American Dental Association (ADA) Specification No. 57. Results AH Plus exhibited the highest radiopacity with values of 222.54 mm Al Eq (isodensity) and 220.88 mm Al Eq (densitometric), significantly surpassing Apexit Plus, Fillapex and Biodentine (p < 0.001). Apexit Plus and Fillapex showed no significant difference between them (p = 0.238), but both were significantly higher than Biodentine (p < 0.001). Biodentine had the lowest radiopacity among all the sealers tested. Conclusion All the tested materials met the ANSI/ADA minimum radiopacity standard, demonstrating their suitability for clinical use. The materials varied in their levels of radiopacity, demonstrating that they are adequately visible on radiographic images for effective assessment in root canal treatments.
RESUMEN
BACKGROUND: This study aims to evaluate the compressive strength, solubility, radiopacity, and flow of Bromelain (BR)-modified Biodentine (BD) for direct pulp capping (DPC). This is suggested to determine the impact of BR on the physical properties of BD. METHODS: Eighty samples were prepared according to the ISO and ADA specifications and evaluated for compressive strength, solubility, radiopacity, and flow. The compressive strength was evaluated at 24 h and 21 days via a universal testing machine. The solubility was determined by weight loss after 24-hours immersion in deionized water. Radiopacity was assessed via X-ray with aluminum step-wedges, and flow was measured by the diameter of the discs under a standard weight. Independent sample t-tests were used to statistically assess the data. A significance level of 5% was considered. RESULTS: The compressive strength was 41.08 ± 1.84 MPa for BD and 40.92 ± 1.80 MPa for BR + BD after 24 h, and 88.93 ± 3.39 MPa for BD and 87.92 ± 3.76 MPa for BR + BD after 21 days, with no significant differences. Solubility was slightly greater in the BR + BD (2.75 ± 0.10%) compared to BD (2.62 ± 0.25%), but not significantly different. The radiopacity was similar between BD (2.82 ± 0.11 mm) and BR + BD (2.73 ± 0.10 mm). BR + BD resulted in significantly greater flow (9.99 ± 0.18 mm) than did BD (9.65 ± 0.27 mm) (p ≤ 0.05). CONCLUSION: BR-modified BD maintains BD's physical properties, with improved flow, making it a promising DPC agent that warrants further study.
Asunto(s)
Bromelaínas , Compuestos de Calcio , Fuerza Compresiva , Ensayo de Materiales , Silicatos , Solubilidad , Silicatos/química , Silicatos/uso terapéutico , Compuestos de Calcio/química , Compuestos de Calcio/uso terapéutico , Bromelaínas/uso terapéutico , Bromelaínas/química , Recubrimiento de la Pulpa Dental/métodos , Materiales de Recubrimiento Pulpar y Pulpectomía/uso terapéutico , Materiales de Recubrimiento Pulpar y Pulpectomía/química , HumanosRESUMEN
OBJECTIVES: To evaluate the mechanical properties, fluoride release, radiopacity, and setting characteristics of dental cements derived from highly reactive ionomer glasses and bottle glass mixtures. METHODS: Two highly reactive glass series, LG99 and LG117, were synthesized, milled, sieved, and characterized using XRD and laser particle size analysis. These glasses were mixed with predetermined ratios of ground bottle glass, poly(acrylic acid), and aqueous tartaric acid to form glass ionomer cements. The cements' working time (WT), setting time (ST), fluoride release, radiopacity, compressive strength (CS), and elastic modulus (EM) were evaluated. Mean differences in CS were analyzed using multivariate ANOVA with Tukey's post hoc test at p = 0.05. RESULTS: The WT and ST for both groups ranged from 1.5 to 2.5 min. LG99 series cements showed significantly higher CS (â¼65 MPa) and EM (â¼2 GPa) than LG117 series (p < 0.05). Both series showed similar fluoride release profiles, peaking at 1.2 mmol/L at 28 days. Radiopacity for LG99 ranged from 0.97 to 1.34, while LG117 ranged from 0.60 to 0.95. Solid state 27Al magic-angle spinning-nuclear magnetic resonance (MAS NMR) confirmed the presence of Al(IV) and Al(VI), indicating setting completion by one day for both series. Bottle glass showed a chemical shift at 55.8 ppm, overlapping with LG99's Al(IV) signal. The 19F MAS NMR spectra revealed Al-F and F-Sr(n) species in all glasses, with LG117 forming CaF2 after one day in deionized water. CONCLUSION: Mixtures of highly reactive ionomer glass and bottle glass produced cements with satisfactory properties for dental applications. Further research is needed to optimize their formulation and properties.
RESUMEN
Filler content in dental composites is credited for affecting its physical and mechanical properties. This study evaluated the correlation between the filler percentage and strength, modulus, shrinkage stress, depth of cure, translucency and radiopacity of commercially available high- and low-viscosity dental composites. Filler weight percentage (wt%) was determined through the burned ash technique (800 °C for 15 min). Three-point bend flexural strength and modulus were measured according to ISO 4049 with 2 mm × 2 mm × 25 mm bars. Shrinkage stress was evaluated using a universal testing machine in which composite was polymerized through two transparent acrylic rods 2 mm apart. Shrinkage was measured from the maximum force following 500 s. The translucency parameter (TP) was measured as the difference in color (ΔE00) of 1 mm thick specimens against white and black tiles. The depth of cure was measured according to ISO 4049 in a cylindrical metal mold (4 mm diameter) with a 10 s cure. Radiopacity was measured by taking a digital X-ray (70 kVp for 0.32 s at 400 mm distance) of 1 mm thick specimens and comparing the radiopacity to an aluminum step wedge using image analysis software. The correlation between the filler wt% and properties was measured by Pearson's correlation coefficient using SPSS. There was a positive linear correlation between the filler wt% and modulus (r = 0.78, p < 0.01), flexural strength (r = 0.46, p < 0.01) and radiopacity (r = 0.36, p < 0.01) and negative correlation with translucency (r = -0.29, p < 0.01). Filler wt% best predicts the modulus and strength and, to a lesser extent, the radiopacity and translucency. All but two of the high- and low-viscosity composites from the same manufacturer had statistically equivalent strengths as each other; however, the high-viscosity materials almost always had a statistically higher modulus. For two of the flowable composites measured from the same manufacturer (3M and Dentsply), there was a lower shrinkage stress in the bulk-fill version of the material but not for the other two manufacturers (Ivoclar and Tokuyama). All flowable bulk-fill composites achieved a deeper depth of cure than the flowable composite from the same manufacturer other than Omnichroma Flow Bulk.
RESUMEN
Divalent cations have captured the interest of researchers in biomedical and dental fields due to their beneficial effects on bone formation. These metallic elements are similar to trace elements found in human bone. Strontium is a divalent cation commonly found in various biomaterials. Since strontium has a radius similar to calcium, it has been used to replace calcium in many calcium-containing biomaterials. Strontium has the ability to inhibit bone resorption and increase bone deposition, making it useful in the treatment of osteoporosis. Strontium has also been used as a radiopacifier in dentistry and has been incorporated into a variety of dental materials to improve their radiopacity. Furthermore, strontium has been shown to improve the antimicrobial and mechanical properties of dental materials, promote enamel remineralization, alleviate dentin hypersensitivity, and enhance dentin regeneration. The objective of this review is to provide a comprehensive review of the applications of strontium in dentistry.
RESUMEN
Premature loss of root canal-treated primary teeth has long been a concern in dentistry. To address this, researchers developed a sodium iodide-based root canal-filling material as an alternative to traditional iodoform-based materials. The goal of this study was to improve the physicochemical properties of the sodium iodide-based material to meet clinical use standards. To resolve high solubility issues in the initial formulation, researchers adjusted component ratios and added new ingredients, resulting in a new paste called L5. This study compared L5 with L0 (identical composition minus lanolin) and Vitapex as controls, conducting physicochemical and antibacterial tests. Results showed that L5 met all ISO 6876 standards, demonstrated easier injection and irrigation properties than Vitapex, and exhibited comparable antibacterial efficacy to Vitapex, which is currently used clinically. The researchers conclude that if biological stability is further verified, L5 could potentially be presented as a new option for root canal-filling materials in primary teeth.
RESUMEN
Three-dimensional printing technologies are becoming increasingly attractive for their versatility; the geometrical customizability and manageability of the final product properties are the key points. This work aims to assess the feasibility of producing radiopaque filaments for fused deposition modeling (FDM), a 3D printing technology, starting with zinc oxide (ZnO) and polylactic acid (PLA) as the raw materials. Indeed, ZnO and PLA are promising materials due to their non-toxic and biocompatible nature. Pellets of PLA and ZnO in the form of nanoparticles were mixed together using ethanol; this homogenous mixture was processed by a commercial extruder, optimizing the process parameters for obtaining mechanically stable samples. Scanning electron microscopy analyses were used to assess, in the extruded samples, the homogenous distribution of the ZnO in the PLA matrix. Moreover, X-ray microtomography revealed a certain homogenous radiopacity; this imaging technique also confirmed the correct distribution of the ZnO in the PLA matrix. Thus, our tests showed that mechanically stable radiopaque filaments, ready for FDM systems, were obtained by homogenously loading the PLA with a maximum ZnO content of 6.5% wt. (nominal). This study produced multiple outcomes. We demonstrated the feasibility of producing radiopaque filaments for additive manufacturing using safe materials. Moreover, each phase of the process is cost-effective and green-oriented; in fact, the homogenous mixture of PLA and ZnO requires only a small amount of ethanol, which evaporates in minutes without any temperature adjustment. Finally, both the extruding and the FDM technologies are the most accessible systems for the additive manufacturing commercial apparatuses.
RESUMEN
Barium zirconate (BaZrO3, BZO), which exhibits superior mechanical, thermal, and chemical stability, has been widely used in many applications. In dentistry, BZO is used as a radiopacifier in mineral trioxide aggregates (MTAs) for endodontic filling applications. In the present study, BZO was prepared using the sol-gel process, followed by calcination at 700-1000 °C. The calcined BZO powders were investigated using X-ray diffraction and scanning electron microscopy. Thereafter, MTA-like cements with the addition of calcined BZO powder were evaluated to determine the optimal composition based on radiopacity, diametral tensile strength (DTS), and setting times. The experimental results showed that calcined BZO exhibited a majority BZO phase with minor zirconia crystals. The crystallinity, the percentage, and the average crystalline size of BZO increased with the increasing calcination temperature. The optimal MTA-like cement was obtained by adding 20% of the 700 °C-calcined BZO powder. The initial and final setting times were 25 and 32 min, respectively. They were significantly shorter than those (70 and 56 min, respectively) prepared with commercial BZO powder. It exhibited a radiopacity of 3.60 ± 0.22 mmAl and a DTS of 3.02 ± 0.18 MPa. After 28 days of simulated oral environment storage, the radiopacity and DTS decreased to 3.36 ± 0.53 mmAl and 2.84 ± 0.27 MPa, respectively. This suggests that 700 °C-calcined BZO powder has potential as a novel radiopacifier for MTAs.
RESUMEN
In the context of arteriovenous fistula (AVF) failure, local delivery enables the release of higher concentrations of drugs that can suppress neointimal hyperplasia (NIH) while reducing systemic adverse effects. However, the radiolucency of polymeric delivery systems hinders long-term in vivo surveillance of safety and efficacy. We hypothesize that using a radiopaque perivascular wrap to deliver anti-NIH drugs could enhance AVF maturation. Through electrospinning, we fabricated multifunctional perivascular polycaprolactone (PCL) wraps loaded with bismuth nanoparticles (BiNPs) for enhanced radiologic visibility and drugs that can attenuate NIHârosuvastatin (Rosu) and rapamycin (Rapa). The following groups were tested on the AVFs of a total of 24 Sprague-Dawley rats with induced chronic kidney disease: control (i.e., without wrap), PCL-Bi (i.e., wrap with BiNPs), PCL-Bi-Rosu, and PCL-Bi-Rapa. We found that BiNPs significantly improved the wraps' radiopacity without affecting biocompatibility. The drug release profiles of Rosu (hydrophilic drug) and Rapa (hydrophobic drug) differed significantly. Rosu demonstrated a burst release followed by gradual tapering over 8 weeks, while Rapa demonstrated a gradual release similar to that of the hydrophobic BiNPs. In vivo investigations revealed that both drug-loaded wraps can reduce vascular stenosis on ultrasonography and histomorphometry, as well as reduce [18F]Fluorodeoxyglucose uptake on positron emission tomography. Immunohistochemical studies revealed that PCL-Bi-Rosu primarily attenuated endothelial dysfunction and hypoxia in the neointimal layer, while PCL-Bi-Rapa modulated hypoxia, inflammation, and cellular proliferation across the whole outflow vein. In summary, the controlled delivery of drugs with different properties and mechanisms of action against NIH through a multifunctional, radiopaque perivascular wrap can improve imaging and histologic parameters of AVF maturation.
Asunto(s)
Bismuto , Ratas Sprague-Dawley , Rosuvastatina Cálcica , Sirolimus , Animales , Ratas , Sirolimus/química , Sirolimus/farmacología , Rosuvastatina Cálcica/química , Rosuvastatina Cálcica/farmacología , Rosuvastatina Cálcica/farmacocinética , Bismuto/química , Bismuto/farmacología , Poliésteres/química , Masculino , Fístula Arteriovenosa/patología , Nanopartículas del Metal/química , Neointima/patología , Nanopartículas/química , Humanos , Liberación de FármacosRESUMEN
Barium titanate (BaTiO3, BTO), conventionally used for dielectric and ferroelectric applications, has been assessed for biomedical applications, such as its utilization as a radiopacifier in mineral trioxide aggregates (MTA) for endodontic treatment. In the present study, BTO powders were prepared using the sol-gel process, followed by calcination at 400-1100 °C. The X-ray diffraction technique was then used to examine the as-prepared powders to elucidate the effect of calcination on the phase composition and crystalline size of BTO. Calcined BTO powders were then used as radiopacifiers for MTA. MTA-like cements were investigated to determine the optimal calcination temperature based on the radiopacity and diametral tensile strength (DTS). The experimental results showed that the formation of BTO phase was observed after calcination at temperatures of 600 °C and above. The calcined powders were a mixture of BaTiO3 phase with residual BaCO3 and/or Ba2TiO4 phases. The performance of MTA-like cements with BTO addition increased with increasing calcination temperature up to 1000 °C. The radiopacity, however, decreased after 7 days of simulated oral environmental storage, whereas an increase in DTS was observed. Optimal MTA-like cement was obtained by adding 40 wt.% 1000 °C-calcined BTO powder, with its resulting radiopacity and DTS at 4.83 ± 0.61 mmAl and 2.86 ± 0.33 MPa, respectively. After 7 days, the radiopacity decreased slightly to 4.69 ± 0.51 mmAl, accompanied by an increase in DTS to 3.13 ± 0.70 MPa. The optimal cement was biocompatible and verified using MG 63 and L929 cell lines, which exhibited cell viability higher than 95%.
RESUMEN
BACKGROUND: Despite the efficacy of absolute ethanol (EtOH), its radiolucency introduces several risks in interventional therapy for treating vascular malformations. This study aims to develop a novel radiopaque ethanol injection (REI) to address this issue. METHODS: Iopromide is mixed with ethanol to achieve radiopacity and improve the physicochemical properties of the solution. Overall, 82 male New Zealand white rabbits are selected for in vivo radiopacity testing, peripheral vein sclerosis [animals were divided into the following 5 groups (n = 6): negative control (NC, saline, 0.250 ml/kg), positive control (EtOH, 0.250 ml/kg), low-dose REI (L-D REI, 0.125 ml/kg), moderate-dose REI (M-D REI, 0.250 ml/kg), and high-dose REI (H-D REI 0.375 ml/kg)], pharmacokinetic analyses (the blood sample was harvested before injection, 5 min, 10 min, 20 min, 40 min, 1 h, 2 h, 4 h, and 8 h after injection in peripheral vein sclerosis experiment), peripheral artery embolization [animals were divided into the following 5 groups (n = 3): NC (saline, 0.250 ml/kg), positive control (EtOH, 0.250 ml/kg), L-D REI (0.125 ml/kg), M-D REI (0.250 ml/kg), and H-D REI (0.375 ml/kg)], kidney transcatheter arterial embolization [animals were divided into the following 4 groups (n = 3): positive control (EtOH, 0.250 ml/kg), L-D REI (0.125 ml/kg), M-D REI (0.250 ml/kg), and H-D REI (0.375 ml/kg); each healthy kidney was injected with saline as negative control], and biosafety evaluations [animals were divided into the following 5 groups (n = 3): NC (0.250 ml/kg), high-dose EtOH (0.375 ml/kg), L-D REI (0.125 ml/kg), M-D REI (0.250 ml/kg), and H-D REI (0.375 ml/kg)]. Then, a prospective cohort study involving 6 patients with peripheral venous malformations (VMs) is performed to explore the clinical safety and effectiveness of REI. From Jun 1, 2023 to August 31, 2023, 6 patients [age: (33.3 ± 17.2) years] with lingual VMs received sclerotherapy of REI and 2-month follow-up. Adverse events and serious adverse events were evaluated, whereas the efficacy of REI was determined by both the traceability of the REI under DSA throughout the entire injection and the therapeutic effect 2 months after a single injection. RESULTS: The REI contains 81.4% ethanol (v/v) and 111.3 mg/ml iodine, which can be traced throughout the injection in the animals and patients. The REI also exerts a similar effect as EtOH on peripheral venous sclerosis, peripheral arterial embolization, and renal embolization. Furthermore, the REI can be metabolized at a similar rate compared to EtOH and Ultravist® and did not cause injury to the animals' heart, liver, spleen, lungs, kidneys and brain. No REI-related adverse effects have occurred during sclerotherapy of VMs, and 4/6 patients (66.7%) have achieved complete response at follow-up. CONCLUSION: In conclusion, REI is safe, exerts therapeutic effects, and compensates for the radiolucency of EtOH in treating VMs. TRIAL REGISTRATION: The clinical trial was registered as No. ChiCTR2300071751 on May 24 2023.
Asunto(s)
Etanol , Malformaciones Vasculares , Animales , Conejos , Etanol/uso terapéutico , Etanol/farmacología , Masculino , Malformaciones Vasculares/terapia , Malformaciones Vasculares/tratamiento farmacológico , Humanos , Medios de Contraste/farmacocinética , Medios de Contraste/farmacología , Medios de Contraste/uso terapéutico , Yohexol/análogos & derivadosRESUMEN
Background: Root perforation repair presents a significant challenge in dentistry due to inherent limitations of existing materials. This study explored the potential of a novel polydopamine-based composite as a root repair material by evaluating its sealing efficacy, radiopacity, and surface topography. Methods: Confocal microscopy assessed sealing ability, comparing the polydopamine-based composite to the gold standard, mineral trioxide aggregate (MTA). Radiopacity was evaluated using the aluminium step wedge technique conforming to ISO standards. Surface roughness analysis utilized atomic force microscopy (AFM), while field emission scanning electron microscopy (FESEM) visualized morphology. Results: The polydopamine-based composite exhibited significantly superior sealing efficacy compared to MTA (P < 0.001). Radiopacity reached 3 mm aluminium equivalent, exceeding minimum clinical requirements. AFM analysis revealed a smooth surface topography, and FESEM confirmed successful composite synthesis. Conclusion: This study demonstrates promising properties of the polydopamine-based composite for root perforation repair, including superior sealing efficacy, clinically relevant radiopacity, and smooth surface topography. Further investigation is warranted to assess its clinical viability and potential translation to endodontic practice.
Asunto(s)
Compuestos de Aluminio , Compuestos de Calcio , Indoles , Óxidos , Polímeros , Materiales de Obturación del Conducto Radicular , Silicatos , Propiedades de Superficie , Polímeros/química , Indoles/química , Silicatos/química , Compuestos de Calcio/química , Óxidos/química , Materiales de Obturación del Conducto Radicular/química , Compuestos de Aluminio/química , Humanos , Combinación de Medicamentos , Microscopía Electrónica de Rastreo , Microscopía de Fuerza Atómica/métodos , Microscopía Confocal , Ensayo de Materiales , Raíz del Diente/lesiones , Raíz del Diente/diagnóstico por imagen , Raíz del Diente/cirugíaRESUMEN
Polymethyl methacrylate (PMMA) bone cement is commonly used in orthopedic surgeries to fill the bone defects or fix the prostheses. These cements are usually containing amounts of a nonbioactive radiopacifying agent such as barium sulfate and zirconium dioxide, which does not have a good interface compatibility with PMMA, and the clumps formed from these materials can scratch metal counterfaces. In this work, graphene oxide encapsulated baghdadite (GOBgh) nanoparticles were applied as radiopacifying and bioactive agent in a PMMA bone cement containing 2 wt.% of vancomycin (VAN). The addition of 20 wt.% of GOBgh (GOBgh20) nanoparticles to PMMA powder caused a 33.6% increase in compressive strength and a 70.9% increase in elastic modulus compared to the Simplex® P bone cement, and also enhanced the setting properties, radiopacity, antibacterial activity, and the apatite formation in simulated body fluid. In vitro cell assessments confirmed the increase in adhesion and proliferation of MG-63 cells as well as the osteogenic differentiation of human adipose-derived mesenchymal stem cells on the surface of PMMA-GOBgh20 cement. The chorioallantoic membrane assay revealed the excellent angiogenesis activity of nanocomposite cement samples. In vivo experiments on a rat model also demonstrated the mineralization and bone integration of PMMA-GOBgh20 cement within four weeks. Based on the promising results obtained, PMMA-GOBgh20 bone cement is suggested as an optimal sample for use in orthopedic surgeries.
Asunto(s)
Cerámica , Grafito , Nanocompuestos , Polimetil Metacrilato , Silicatos , Humanos , Ratas , Animales , Cementos para Huesos , Vancomicina/farmacología , Osteogénesis , Ensayo de MaterialesRESUMEN
Polymers as biomaterials possess favorable properties, which include corrosion resistance, light weight, biocompatibility, ease of processing, low cost, and an ability to be easily tailored to meet specific applications. However, their inherent low X-ray attenuation, resulting from the low atomic numbers of their constituent elements, i.e., hydrogen (1), carbon (6), nitrogen (7), and oxygen (8), makes them difficult to visualize radiographically. Imparting radiopacity to radiolucent polymeric implants is necessary to enable noninvasive evaluation of implantable medical devices using conventional imaging methods. Numerous studies have undertaken this by blending various polymers with contrast agents consisting of heavy elements. The selection of an appropriate contrast agent is important, primarily to ensure that it does not cause detrimental effects to the relevant mechanical and physical properties of the polymer depending upon the intended application. Furthermore, its biocompatibility with adjacent tissues and its excretion from the body require thorough evaluation. We aimed to summarize the current knowledge on contrast agents incorporated into synthetic polymers in the context of implantable medical devices. While a single review was found that discussed radiopacity in polymeric biomaterials, the publication is outdated and does not address contemporary polymers employed in implant applications. Our review provides an up-to-date overview of contrast agents incorporated into synthetic medical polymers, encompassing both temporary and permanent implants. We expect that our results will significantly inform and guide the strategic selection of contrast agents, considering the specific requirements of implantable polymeric medical devices.
Asunto(s)
Medios de Contraste , Prótesis e Implantes , Materiales Biocompatibles , Corrosión , PolímerosRESUMEN
OBJECTIVE: The aim of this study was to evaluate the radiopacity of single-shade composite resins with group and multi-shade composite resins via a digital image analysis. MATERIALS AND METHODS: Disc-shaped (5 mm in diameter, 2 mm in thickness) specimens were prepared with one multi-shade (Estelite Sigma Quick-ESQ), four single-shade (Omnichroma-OC, Charisma Topaz One-CTO, Vitra Unique-VU, and ZenChroma-ZC), three group-shade (G-aenial Achord-GA, Optishade-OS, and Estelite Asteria-EA), and one posterior composite resin (Estelite Posterior-EP) (n = 3). A radiographic image of all the specimens, an aluminum step-wedge, and a 2 mm thick tooth section were taken. Mean gray values (MGV) of the specimens, enamel, and dentin were calculated by ImageJ software. Composition analysis was performed with EDS, and SEM images (×10,000) were obtained. The data were analyzed with Kruskal-Wallis and Post hoc adjusted Bonferroni analysis (p = 0.05). RESULTS: The mean MGV of CTO, the highest of all test groups, was significantly higher than OC and dentin (p = 0.04 and p = 0.009, relatively). The lowest mean MGV was also observed in a single-shade group, OC. EDS analysis showed that the tested materials comprised various radiopaque elements. CONCLUSIONS: All of the single-shade and group-shade groups exceeded the MGV value of dentin, which is clinically expected from any restorative material. CLINICAL SIGNIFICANCE: The radiopacity properties of various single-shade composite resins which as a category is a rising trend in esthetic dentistry were investigated. It is important for clinicians to be aware of novel materials' physical qualities including radiopacity, a daily clinical criteria for restorative materials.
Asunto(s)
Resinas Compuestas , Diente , Materiales Dentales , Esmalte Dental , Ensayo de MaterialesRESUMEN
Transparency to UV-Vis light and radiopacity of dental resin composites containing zirconia (ZrO2) fillers were investigated. The transparency of the resin composite containing porous ZrO2 spheres was much higher than that containing irregularly shaped ZrO2 particles. Calcination of the porous ZrO2 spheres at high temperatures led to dramatically reduced specific surface areas and pore volumes. The transparency of the resin composite containing the calcined porous ZrO2 spheres drastically decreased as the calcination temperature increased. Then, the enhanced UV-Vis transmittance of the resin composite containing porous ZrO2 spheres is attributed to the concentration and physical characteristics of the pores. The radiopacity of the resin composites containing porous ZrO2 spheres increased slightly with increasing calcination temperature. This study revealed that the internal structure of the ZrO2 fillers mainly influenced in the UV-Vis light transmittance of the resin composites.
Asunto(s)
Resinas Compuestas , Circonio , Porosidad , Resinas Compuestas/química , Circonio/química , Ensayo de Materiales , Propiedades de SuperficieRESUMEN
Radiopacities of dental materials used in restorations are very important in making the radiographic diagnosis. Therefore, the aim of our study was to evaluate the radiopacity of five single-shade and six simplishade resin composites with digital technique. Five different single-shade (Charisma Topaz One, Omnichroma, Clearfil Majesty ES-2 Universal, Vittra APS Unique, ZenChroma) and six different simplishade resin composites (G-aenial A'CHORD, Essentia Universal, OptiShade, Estelite Asteria, Filtek Universal, Filtek Z250) were used. For each group, five disk-shaped resin composites of 1 mm and 2 mm thicknesses were prepared. As a control, tooth slices with 1 mm and 2 mm thicknesses and a 99.5% pure aluminum step-wedge were used. The samples, tooth slices, and a step-wedge were placed on a photostimulable phosphor plate. Digital radiographs were taken from 30 and 40 cm distances (70 kVp, 7 mA 0.28 ms). The images were analyzed using ImageJ software to measure the mean gray values. Data were analyzed using SPSS 22 package program and Kruskal-Wallis H Test (p < 0.05). The highest radiopacity was seen in Filtek Universal at both distances and thicknesses. Omnichroma had the lowest radiopacity in all parameters. All specimens showed higher radiopacity than dentin. Except for Omnichroma 1 and 2 mm thick, Clearfil Majesty ES-2 Universal 2 mm thick, samples showed higher radiopacities than enamel (p < 0.05). The restorative materials tested were found to be more radiopaque than dentin. The samples passed the International Organization for Standardization for radiopacity values. The radiopacity values were affected by thickness and type of materials.
Asunto(s)
Resinas Compuestas , Dentina , Materiales Dentales , Esmalte Dental , Ensayo de MaterialesRESUMEN
Mineral trioxide aggregates (MTA) are commonly used as endodontic filling materials but suffer from a long setting time and tooth discoloration. In the present study, the feasibility of using barium titanate (BTO) for discoloration and a calcium chloride (CaCl2) solution to shorten the setting time was investigated. BTO powder was prepared using high-energy ball milling for 3 h, followed by sintering at 700-1300 °C for 2 h. X-ray diffraction was used to examine the crystallinity and crystalline size of the as-milled and heat-treated powders. MTA-like cements were then prepared using 20-40 wt.% BTO as a radiopacifier and solidified using a 0-30% CaCl2 solution. The corresponding radiopacity, diametral tensile strength (DTS), initial and final setting times, and discoloration performance were examined. The experimental results showed that for the BTO powder prepared using a combination of mechanical milling and heat treatment, the crystallinity and crystalline size increased with the increasing sintering temperature. The BTO sintered at 1300 °C (i.e., BTO-13) exhibited the best radiopacity and DTS. The MTA-like cement supplemented with 30% BTO-13 and solidified with a 10% CaCl2 solution exhibited a radiopacity of 3.68 ± 0.24 mmAl and a DTS of 2.54 ± 0.28 MPa, respectively. In the accelerated discoloration examination using UV irradiation, the color difference was less than 1.6 and significantly lower than the clinically perceptible level (3.7). This novel MTA exhibiting a superior color stability, shortened setting time, and excellent biocompatibility has potential for use in endodontic applications.
RESUMEN
Sodium Zirconium Cyclosilicate (SZC) is commonly used for treating hyperkalemia because it sequesters gastrointestinal potassium ions, thereby reducing serum potassium levels. However, a less-discussed aspect of SZC is its radiopacity on x-ray-based imaging techniques. The European Medicines Agency (EMA) has only vaguely addressed this issue. Radiopaque substances like SZC can interfere with diagnostic imaging, creating challenges for clinicians and radiologists. We present the case of a 34-year-old Italian male to illustrate these concerns.
Asunto(s)
Hiperpotasemia , Enfermedades Renales , Humanos , Masculino , Adulto , Hiperpotasemia/etiología , Potasio , Enfermedades Renales/complicaciones , Tomografía/efectos adversosRESUMEN
A polymer with high contents of ester bonds and iodine atoms was synthesized, exhibiting sufficient biodegradability and radioactivity for biomedical applications. The iodine moieties of the synthesized polyester can generate halogen bonding between molecules, which may develop additional functional properties through the bonding. In this study, poly(glycerol adipate) (PGA) was selected and synthesized as a polyester, which was then adequately conjugated with three different types of iodine compounds via the hydroxy groups of PGA. It was found that the iodine compounds could effectively work as donors of halogen bonding. The thermal analysis by differential scanning calorimetry (DSC) revealed that the glass transition temperature increased with the increase in the strength of interactions caused by π-π stacking and halogen bonding, eventually reaching 49.6 °C for PGA with triiodobenzoic groups. An elastomeric PGA with monoiodobenzoic groups was also obtained, exhibiting a high self-healing ability at room temperature because of the reconstruction of halogen bonding. Such multifaceted performance of the synthesized polyester with controllable thermal/mechanical properties was realized by halogen bonding, leading to a promising biomaterial with multifunctionality.