Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
1.
Eur J Pharm Biopharm ; : 114430, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39103001

RESUMEN

The prediction of central nervous system (CNS) active pharmaceuticals and radiopharmaceuticals has experienced a boost by the introduction of computational approaches, like blood-brain barrier (BBB) score or CNS multiparameter optimization values. These rely heavily on calculated pKa values and other physicochemical parameters. Despite the inclusion of various physicochemical parameters in online data banks, pKa values are often missing and published experimental pKa values are limited especially for radiopharmaceuticals. This comparative study investigated the discrepancies between predicted and experimental pKa values and their impact on CNS activity prediction scores. The pKa values of 46 substances, including therapeutic drugs and PET imaging radiopharmaceuticals, were measured by means of potentiometry and spectrophotometry. Experimentally obtained pKa values were compared with in silico predictions (Chemicalize/Marvin). The results demonstrate a considerable discrepancy between experimental and in silico values, with linear regression analysis showing intermediate correlation (R2(Marvin) = 0.88, R2(Chemicalize) = 0.82). This indicates that if one requires an accurate pKa value, it is essential to experimentally assess it. This underscores the importance of experimentally determining pKa values for accurate drug design and optimization. The study's data provide a valuable library of reliable experimental pKa values for therapeutic drugs and radiopharmaceuticals, aiding researchers in the field.

2.
EJNMMI Radiopharm Chem ; 9(1): 58, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117920

RESUMEN

BACKGROUND: The cysteine-aspartic acid protease caspase-3 is recognized as the main executioner of apoptosis in cells responding to specific extrinsic and intrinsic stimuli. Caspase-3 represents an interesting biomarker to evaluate treatment response, as many cancer therapies exert their effect by inducing tumour cell death. Previously developed caspase-3 PET tracers were unable to reach routine clinical use due to low tumour uptake or lack of target selectivity, which are two important requirements for effective treatment response evaluation in cancer patients. Therefore, the goal of this study was to develop and preclinically evaluate novel caspase-3-selective activity-based probes (ABPs) for apoptosis imaging. RESULTS: A library of caspase-3-selective ABPs was developed for tumour apoptosis detection. In a first attempt, the inhibitor Ac-DW3-KE (Ac-3Pal-Asp-ßhLeu-Phe-Asp-KE) was 18F-labelled on the N-terminus to generate a radiotracer that was incapable of adequately detecting an increase in apoptosis in vivo. The inability to effectively detect active caspase-3 in vivo was likely attributable to slow binding, as demonstrated with in vitro inhibition kinetics. Hence, a second generation of caspase-3 selective ABPs was developed based on the Ac-ATS010-KE (Ac-3Pal-Asp-Phe(F5)-Phe-Asp-KE) with greatly improved binding kinetics over Ac-DW3-KE. Our probes based on Ac-ATS010-KE were made by modifying the N-terminus with 6 different linkers. All the linker modifications had limited effect on the binding kinetics, target selectivity, and pharmacokinetic profile in healthy mice. In an in vitro apoptosis model, the least hydrophilic tracer [18F]MICA-316 showed an increased uptake in apoptotic cells in comparison to the control group. Finally, [18F]MICA-316 was tested in an in vivo colorectal cancer model, where it showed a limited tumour uptake and was unable to discriminate treated tumours from the untreated group, despite demonstrating that the radiotracer was able to bind caspase-3 in complex mixtures in vitro. In contrast, the phosphatidylethanolamine (PE)-binding radiotracer [99mTc]Tc-duramycin was able to recognize the increased cell death in the disease model, making it the best performing treatment response assessment tracer developed thus far. CONCLUSIONS: In conclusion, a novel library of caspase-3-binding PET tracers retaining similar binding kinetics as the original inhibitor was developed. The most promising tracer, [18F]MICA-316, showed an increase uptake in an in vitro apoptosis model and was able to selectively bind caspase-3 in apoptotic tumour cells. In order to distinguish therapy-responsive from non-responsive tumours, the next generation of caspase-3-selective ABPs will be developed with higher tumour accumulation and in vivo stability.

3.
Bioorg Chem ; 152: 107745, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39213795

RESUMEN

The diagnosis and treatment of triple negative breast cancer (TNBC) are huge challenges due to the lack of identifiable molecular targets. The high expression of Nectin4 in a variety of tumors, including TNBC, is associated with the occurrence, invasion, progression and poor prognosis of tumors. Therefore, Nectin4 is an emerging biomarker for the diagnosis and treatment of TNBC. A PET imaging method to non-invasively quantify Nectin4 expression levels may aid in TNBC diagnosis and classification. In this study, a novel bicyclic peptide molecular probe [68Ga]Ga-DN68 was used to evaluate the expression of Nectin4 in tumors. The radiolabeling rate of [68Ga]Ga-DN68 was over 97 %, while maintaining more than 99 % radiochemical purity. In vitro experiments showed that [68Ga]Ga-DN68 could effectively target Nectin4 in tumor cells, and the cellular uptake of MC38-Nectin4 cells (Nectin4+) was significantly higher than that of MC38 cells (Nectin4-). Biodistribution and PET imaging studies consistently showed that [68Ga]Ga-DN68 was specifically accumulated in MC38-Nectin4 and MDA-MB-468 tumors, which was significantly higher than that of MC38. When co-injected with cold DN68, the specific accumulation could block the tumor uptake of MDA-MB-468. Notably, the signal-to-noise ratio at the tumor site gradually increased over time, reaching a peak at 1 h. These results strongly suggest that [68Ga]Ga-DN68 has broad application prospects as a PET tracer in TNBC imaging.

4.
EJNMMI Radiopharm Chem ; 9(1): 63, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192050

RESUMEN

BACKGROUND: Selection of the most promising radiotracer candidates for radiolabeling is a difficult step in the development of radiotracer pharmaceuticals, especially for the brain. Mass spectrometry (MS) is an alternative to study ex vivo the characteristics of candidates, but most MS studies are complicated by the pharmacologic doses injected and the dissection of regions to study candidate biodistribution. In this study, we tested the ability of a triple quadrupole analyzer (TQ LC-MS/MS) to quantify low concentrations of a validated precursor of a radiotracer targeting the DAT (LBT-999) in dissected regions. We also investigated its biodistribution on brain slices using MS imaging with desorption electrospray ionization (DESI) coupled to time-of-flight (TOF) vs. TQ mass analyzers. RESULTS: TQ LC-MS/MS enabled quantification of LBT-999 injected at sub-tracer doses in dissected striata. DESI-MS imaging (DESI-MSI) with both analyzers provided images of LBT-999 biodistribution on sagittal slices that were consistent with positron emission tomography (PET). However, the TOF analyzer only obtained biodistribution images at a high injected dose of LBT-999, while the TQ analyzer provided biodistribution images at lower injected doses of LBT-999 with a better signal-to-noise ratio. It also allowed simultaneous visualization of endogenous metabolites such as dopamine. CONCLUSIONS: Our results show that LC-TQ MS/MS in combination with DESI-MSI can provide important information (biodistribution, specific and selective binding) that can facilitate the selection of the most promising candidates for radiolabeling and support the development of radiotracers.

5.
Bioorg Chem ; 151: 107645, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059074

RESUMEN

Colorectal cancer (CRC) is among the most lethal and prevalent malignancies in the world. Human epidermal growth factor receptor 2 (HER2) is a promising target for the diagnosis and treatment of CRC. In this study, we aimed to design, synthesize and label peptide-based positron emission tomography (PET) tracers targeting HER2-positive CRC, namely [68Ga]Ga-ES-01 and [68Ga]Ga-ES-02. The results show that [68Ga]Ga-ES-01 and [68Ga]Ga-ES-02 possessed hydrophilicity, rapid pharmacokinetic properties and excellent stabilities. [68Ga]Ga-ES-02 demonstrated higher binding affinity (Kd = 24.29 ± 4.95 nM) toward the HER2 in CRC. In HER2-positive HT-29 CRC xenograft mouse model, PET study showed specific tumor uptake after injection of [68Ga]Ga-ES-02 (SUV15min max = 0.87 ± 0.03; SUV30min max = 0.64 ± 0.02). In biodistribution study, the T/M ratios of 68Ga-ES-02 at 30 min after injection reached a maximum of 4.07 ± 0.34. In summary, we successfully synthesized and evaluated two novel peptide-based PET tracers. Our data demonstrate that [68Ga]Ga-ES-01/02 is capable of HER2-positive colorectal cancer, with [68Ga]Ga-ES-02 showing superior imaging effect, enhanced targeting, and increased specificity.


Asunto(s)
Neoplasias Colorrectales , Radioisótopos de Galio , Péptidos , Tomografía de Emisión de Positrones , Receptor ErbB-2 , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Radioisótopos de Galio/química , Animales , Receptor ErbB-2/metabolismo , Ratones , Péptidos/química , Péptidos/síntesis química , Distribución Tisular , Estructura Molecular , Radiofármacos/química , Radiofármacos/síntesis química , Radiofármacos/farmacología , Radiofármacos/farmacocinética , Ratones Desnudos , Proliferación Celular/efectos de los fármacos , Células HT29 , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Ratones Endogámicos BALB C , Femenino
6.
Molecules ; 29(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999030

RESUMEN

Coatings with xenogenic materials, made of detonation nanodiamonds, provide additional strength and increase elasticity. A functionally developed surface of nanodiamonds makes it possible to apply antibiotics. Previous experiments show the stability of such coatings; however, studies on stability in the bloodstream and calcification of the material in natural conditions have yet to be conducted. Tritium-labeled nanodiamonds (negative and positive) were obtained by the tritium activation method and used to develop coatings for a pork aorta to analyze their stability in a pig's bloodstream using a radiotracer technique. A chitosan layer was applied from a solution of carbonic acid under high-pressure conditions to prevent calcification. The obtained materials were used to prepare a porcine conduit, which was surgically stitched inside the pig's aorta for four months. The aorta samples, including nanodiamond-coated and control samples, were analyzed for nanodiamond content and calcium, using the radiotracer and ICP-AES methods. A histological analysis of the materials was also performed. The obtained coatings illustrate a high in vivo stability and low levels of calcification for all types of nanodiamonds. Even though we did not use additional antibiotics in this case, the development of infection was not observed for negatively charged nanodiamonds, opening up prospects for their use in developing coatings.


Asunto(s)
Materiales Biocompatibles Revestidos , Nanodiamantes , Tritio , Animales , Nanodiamantes/química , Porcinos , Materiales Biocompatibles Revestidos/química , Tritio/química , Aorta , Bioprótesis , Quitosano/química , Prótesis Valvulares Cardíacas
7.
ACS Infect Dis ; 10(8): 2615-2622, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39012184

RESUMEN

Gallium-68-labeled siderophores as radiotracers have gained interest for the development of in situ infection-specific imaging diagnostics. Here, we report radiolabeling, in vitro screening, and in vivo pharmacokinetics (PK) of gallium-68-labeled schizokinen ([68Ga]Ga-SKN) as a new potential radiotracer for imaging bacterial infections. We radiolabeled SKN with ≥95% radiochemical purity. Our in vitro studies demonstrated its hydrophilic characteristics, neutral pH stability, and short-term stability in human serum and toward transchelation. In vitro uptake of [68Ga]Ga-SKN by Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and S. epidermidis, but no uptake by Candida glabrata, C. albicans, or Aspergillus fumigatus, demonstrated its specificity to bacterial species. Whole-body [68Ga]Ga-SKN positron emission tomography (PET) combined with computerized tomography (CT) in healthy mice showed rapid renal excretion with no or minimal organ uptake. The subsequent ex vivo biodistribution resembled this fast PK with rapid renal excretion with minimal blood retention and no major organ uptake and showed some dissociation of the tracer in the urine after 60 min postinjection. These findings warrant further evaluation of [68Ga]Ga-SKN as a bacteria-specific radiotracer for infection imaging.


Asunto(s)
Infecciones Bacterianas , Radioisótopos de Galio , Radiofármacos , Animales , Radioisótopos de Galio/química , Ratones , Infecciones Bacterianas/diagnóstico por imagen , Infecciones Bacterianas/microbiología , Radiofármacos/química , Radiofármacos/farmacocinética , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Distribución Tisular , Tomografía de Emisión de Positrones/métodos , Femenino , Bacterias , Proteínas Ribosómicas
8.
Appl Radiat Isot ; 211: 111404, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38917619

RESUMEN

This study aimed to determine the optimal injection dose for non-human primate positron emission tomography (PET). We first used a monkey brain phantom with a volume of 80,000 mm3 containing 250 MBq of [18F]FDG. Next, we compared the radioactivity difference between the PET images and the actual radioactivity from the dose calibrator to determine the low-error range. We then evaluated the image quality using the NEMA-NU phantom. Finally, [18F]FP-CIT PET images were obtained from two monkeys with middle and high doses. As a result, PET images with a middle injected dose generated reasonable image quality and showed a high signal-to-noise ratio in monkey brain PET with [18F]FP-CIT. These results are expected to be actively applied in PET research using non-human primates.


Asunto(s)
Encéfalo , Fluorodesoxiglucosa F18 , Fantasmas de Imagen , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Fluorodesoxiglucosa F18/administración & dosificación , Radiofármacos/administración & dosificación , Macaca mulatta , Relación Señal-Ruido
9.
Mol Pharm ; 21(7): 3513-3524, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38867453

RESUMEN

The estrogen receptor α positive (ERα+) subtype represents nearly 70% of all breast cancers (BCs), which seriously threaten women's health. Positron emission computed tomography (PET) characterizes its superiority in detecting the recurrence and metastasis of BC. In this article, an array of novel PET probes ([18F]R-1, [18F]R-2, [18F]R-3, and [18F]R-4) targeting ERα based on the tetrahydropyridinyl indole scaffold were developed. Among them, [18F]R-3 and [18F]R-4 showed good target specificity toward ERα and could distinguish MCF-7 (ERα+) and MDA-MB-231 (ERα-) tumors efficiently. Especially, [18F]R-3 could differentiate the ERα positive/negative tumors successfully with a higher tumor-to-muscle uptake ratio (T/M) than that of [18F]R-4. The radioactivity of [18F]R-3 in the MCF-7 tumor was 5.24 ± 0.84%ID/mL and its T/M ratio was 2.49 ± 0.62 at 25 min postinjection, which might be the optimal imaging time point in PET scanning. On the contrary, [18F]R-3 did not accumulate in the MDA-MB-231 tumor at all. The autoradiography analysis of [18F]R-3 on the MCF-7 tumor-bearing mice model was consistent with the PET imaging results. [18F]R-3 exhibited the pharmacokinetic property of rapid distribution and slow clearance, making it suitable for use as a diagnostic PET probe. Overall, [18F]R-3 was capable of serving as a PET radiotracer to delineate the ERα+ tumor and was worthy of further exploitation.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Humanos , Femenino , Receptor alfa de Estrógeno/metabolismo , Radioisótopos de Flúor/farmacocinética , Ratones , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Radiofármacos/farmacocinética , Células MCF-7 , Línea Celular Tumoral , Ratones Desnudos , Distribución Tisular , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto , Diseño de Fármacos
10.
Cells ; 13(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38920676

RESUMEN

Tumour hypoxia is a known microenvironmental culprit for treatment resistance, tumour recurrence and promotion of metastatic spread. Despite the long-known existence of this factor within the tumour milieu, hypoxia is still one of the greatest challenges in cancer management. The transition from invasive and less reliable detection methods to more accurate and non-invasive ways to identify and quantify hypoxia was a long process that eventually led to the promising results showed by functional imaging techniques. Hybrid imaging, such as PET-CT, has the great advantage of combining the structural or anatomical image (offered by CT) with the functional or metabolic one (offered by PET). However, in the context of hypoxia, it is only the PET image taken after appropriate radiotracer administration that would supply hypoxia-specific information. To overcome this limitation, the development of the latest hybrid imaging systems, such as PET-MRI, enables a synergistic approach towards hypoxia imaging, with both methods having the potential to provide functional information on the tumour microenvironment. This study is designed as a systematic review of the literature on the newest developments of PET-MRI for the imaging of hypoxic cells in breast cancer. The analysis includes the affinity of various PET-MRI tracers for hypoxia in this patient group as well as the correlations between PET-specific and MRI-specific parameters, to offer a broader view on the potential for the widespread clinical implementation of this hybrid imaging technique.


Asunto(s)
Neoplasias de la Mama , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Femenino , Hipoxia de la Célula , Microambiente Tumoral , Hipoxia Tumoral
11.
Mol Pharm ; 21(8): 3979-3991, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38935927

RESUMEN

Colony-stimulating factor 1 receptor (CSF1R) is a type III receptor tyrosine kinase that is crucial for immune cell activation, survival, proliferation, and differentiation. Its expression significantly increases in macrophages during inflammation, playing a crucial role in regulating inflammation resolution and termination. Consequently, CSF1R has emerged as a critical target for both therapeutic intervention and imaging of inflammatory diseases. Herein, we have developed a radiotracer, 1-[4-((7-(dimethylamino)quinazolin-4-yl)oxy)phenyl]-3-(4-[18F]fluorophenyl)urea ([18F]17), for in vivo positron emission tomography (PET) imaging of CSF1R. Compound 17 exhibits a comparable inhibitory potency against CSF1R as the well-known CSF1R inhibitor PLX647. The radiosynthesis of [18F]17 was successfully performed by radiofluorination of aryltrimethyltin precursor with a yield of approximately 12% at the end of synthesis, maintaining a purity exceeding 98%. In vivo stability and biodistribution studies demonstrate that [18F]17 remains >90% intact at 30 min postinjection, with no defluorination observed even at 60 min postinjection. The PET/CT imaging study in lipopolysaccharide-induced pulmonary inflammation mice indicates that [18F]17 offers a more sensitive characterization of pulmonary inflammation compared to traditional [18F]FDG. Notably, [18F]17 shows a higher discrepancy in uptake ratio between mice with pulmonary inflammation and the sham group. Furthermore, the variations in [18F]17 uptake ratio observed on day 7 and day 14 correspond to lung density changes observed in CT imaging. Moreover, the expression levels of CSF1R on day 7 and day 14 follow a trend similar to the uptake pattern of [18F]17, indicating its potential for accurately characterizing CSF1R expression levels and effectively monitoring the pulmonary inflammation progression. These results strongly suggest that [18F]17 has promising prospects as a CSF1R PET tracer, providing diagnostic opportunities for pulmonary inflammatory diseases.


Asunto(s)
Neumonía , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Ratones , Neumonía/diagnóstico por imagen , Neumonía/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Distribución Tisular , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Radioisótopos de Flúor , Humanos , Masculino , Ratones Endogámicos C57BL , Pulmón/diagnóstico por imagen , Pulmón/metabolismo
12.
Eur J Med Chem ; 274: 116545, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38823263

RESUMEN

Prostate cancer (PCa) is one of the most common tumors in men, with the overexpression of prostate-specific membrane. In this study, we developed four new 68Ga-labeled PSMA-targeting tracers by introducing quinoline, phenylalanine and decanoic acid groups to enhance their lipophilicity, strategically limiting their metabolic pathway through the urinary system. Four radiotracers were synthesized with radiochemical purity >95 %, and exhibited high stability in vivo and in vitro. The inhibition constants (Ki) of SDTWS01-04 to PSMA were in the nanomolar range (<10 nM). Micro PET/CT imaging and biodistribution analysis revealed that 68Ga-SDTWS01 enabled clear tumor visualization in PET images at 1.5 h post-injection, with excellent pharmacokinetic properties. Notably, the kidney uptake of 68Ga-SDTWS01 significantly reduced, with higher tumor-to-kidney ratio (0.36 ± 0.02), tumor-to-muscle ratio (24.31 ± 2.10), compared with 68Ga-PSMA-11 (T/K: 0.15 ± 0.01; T/M: 14.97 ± 1.40), suggesting that 68Ga-SDTWS01 is a promising radiotracer for the diagnosis of PCa. Moreover, SDTWS01 with a chelator DOTA could also label 177Lu and 225Ac, which could be used for the treatment of PCa.


Asunto(s)
Radioisótopos de Galio , Glutamato Carboxipeptidasa II , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Radioisótopos de Galio/química , Humanos , Masculino , Animales , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Glutamato Carboxipeptidasa II/metabolismo , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Distribución Tisular , Ratones , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/farmacología , Antígenos de Superficie/metabolismo , Estructura Molecular , Línea Celular Tumoral
13.
Nucl Med Mol Imaging ; 58(4): 237-245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932755

RESUMEN

Positron emission tomography/computed tomography (PET/CT) has dramatically altered the landscape of noninvasive glioma evaluation, offering complementary insights to those gained through magnetic resonance imaging (MRI). PET/CT scans enable a multifaceted analysis of glioma biology, supporting clinical applications from grading and differential diagnosis to mapping the full extent of tumors and planning subsequent treatments and evaluations. With a broad array of specialized radiotracers, researchers and clinicians can now probe various biological characteristics of gliomas, such as glucose utilization, cellular proliferation, oxygen deficiency, amino acid trafficking, and reactive astrogliosis. This review aims to provide a recent update on the application of versatile PET/CT radiotracers in glioma research and clinical practice.

14.
Nucl Med Mol Imaging ; 58(4): 160-176, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932754

RESUMEN

Neuroinflammation is associated with the pathophysiologies of neurodegenerative and psychiatric disorders. Evaluating neuroinflammation using positron emission tomography (PET) plays an important role in the early diagnosis and determination of proper treatment of brain diseases. To quantify neuroinflammatory responses in vivo, many PET tracers have been developed using translocator proteins, imidazole-2 binding site, cyclooxygenase, monoamine oxidase-B, adenosine, cannabinoid, purinergic P2X7, and CSF-1 receptors as biomarkers. In this review, we introduce the latest developments in PET tracers that can image neuroinflammation, focusing on clinical trials, and further consider their current implications.

15.
Nucl Med Biol ; 134-135: 108912, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38691942

RESUMEN

Chemokine receptors are important components of cellular signaling and play a critical role in directing leukocytes during inflammatory reactions. Their importance extends to numerous pathological processes, including tumor differentiation, angiogenesis, metastasis, and associations with multiple inflammatory disorders. The necessity to monitor the in vivo interactions of cellular chemokine receptors has been driven the recent development of novel positron emission tomography (PET) imaging agents. This imaging modality provides non-invasive localization and quantitation of these receptors that cannot be provided through blood or tissue-based assays. Herein, we provide a review of PET imaging of the chemokine receptors that have been imaged to date, namely CXCR3, CXCR4, CCR2, CCR5, and CMKLR1. The quantification of these receptors can aid in understanding various diseases, including cancer, atherosclerosis, idiopathic pulmonary fibrosis, and acute respiratory distress syndrome. The development of specific radiotracers targeting these receptors will be discussed, including promising results for disease diagnosis and management. However, challenges persist in fully translating these imaging advancements into practical therapeutic applications. Given the success of CXCR4 PET imaging to date, future research should focus on clinical translation of these approaches to understand their role in the management of a wide variety of diseases.


Asunto(s)
Tomografía de Emisión de Positrones , Receptores de Quimiocina , Humanos , Tomografía de Emisión de Positrones/métodos , Animales , Receptores de Quimiocina/metabolismo
16.
Cancers (Basel) ; 16(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791878

RESUMEN

There are several well-described molecular mechanisms that influence cell growth and are related to the development of cancer. Chemokines constitute a fundamental element that is not only involved in local growth but also affects angiogenesis, tumor spread, and metastatic disease. Among them, the C-X-C motif chemokine ligand 12 (CXCL12) and its specific receptor the chemokine C-X-C motif receptor 4 (CXCR4) have been widely studied. The overexpression in cell membranes of CXCR4 has been shown to be associated with the development of different kinds of histological malignancies, such as adenocarcinomas, epidermoid carcinomas, mesenchymal tumors, or neuroendocrine neoplasms (NENs). The molecular synapsis between CXCL12 and CXCR4 leads to the interaction of G proteins and the activation of different intracellular signaling pathways in both gastroenteropancreatic (GEP) and bronchopulmonary (BP) NENs, conferring greater capacity for locoregional aggressiveness, the epithelial-mesenchymal transition (EMT), and the appearance of metastases. Therefore, it has been hypothesized as to how to design tools that target this receptor. The aim of this review is to focus on current knowledge of the relationship between CXCR4 and NENs, with a special emphasis on diagnostic and therapeutic molecular targets.

17.
J Neurochem ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690718

RESUMEN

Positron emission tomography (PET) imaging studies in laboratory animals are almost always performed under isoflurane anesthesia to ensure that the subject stays still during the image acquisition. Isoflurane is effective, safe, and easy to use, and it is generally assumed to not have an impact on the imaging results. Motivated by marked differences observed in the brain uptake and metabolism of the PET tracer 3-[18F]fluoro-4-aminopyridine [(18F]3F4AP) between human and nonhuman primate studies, this study investigates the possible effect of isoflurane on this process. Mice received [18F]3F4AP injection while awake or under anesthesia and the tracer brain uptake and metabolism was compared between groups. A separate group of mice received the known cytochrome P450 2E1 inhibitor disulfiram prior to tracer administration. Isoflurane was found to largely abolish tracer metabolism in mice (74.8 ± 1.6 vs. 17.7 ± 1.7% plasma parent fraction, % PF) resulting in a 4.0-fold higher brain uptake in anesthetized mice at 35 min post-radiotracer administration. Similar to anesthetized mice, animals that received disulfiram showed reduced metabolism (50.0 ± 6.9% PF) and a 2.2-fold higher brain signal than control mice. The higher brain uptake and lower metabolism of [18F]3F4AP observed in anesthetized mice compared to awake mice are attributed to isoflurane's interference in the CYP2E1-mediated breakdown of the tracer, which was confirmed by reproducing the effect upon treatment with the known CYP2E1 inhibitor disulfiram. These findings underscore the critical need to examine the effect of isoflurane in PET imaging studies before translating tracers to humans that will be scanned without anesthesia.

18.
J Neurochem ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770633

RESUMEN

Here, we describe the characterization of a radioligand selective for GluN2B-containing NMDA receptors, 3-[3H] 1-(azetidin-1-yl)-2-(6-(4-fluoro-3-methyl-phenyl)pyrrolo[3,2-b]pyridin-1-yl)ethanone ([3H]-JNJ- GluN2B-5). In rat cortical membranes, the compound bound to a single site, and the following kinetic parameters were measured; association rate constant Kon = 0.0066 ± 0.0006 min-1 nM-1, dissociation rate constant Koff = 0.0210 ± 0.0001 min-1 indicating calculated KD = Koff/Kon = 3.3 ± 0.4 nM, (mean ± SEM, n = 3). The equilibrium dissociation constant determined from saturation binding experiments in rat cortex was KD of 2.6 ± 0.3 nM (mean ± SEM, n = 3). In contrast to the widely used GluN2B radioligand [3H]-Ro 25-6981, whose affinity Ki for sigma 1 and sigma 2 receptors are 2 and 189 nM, respectively, [3H]-JNJ-GluN2B-5 exhibits no measurable affinity for sigma 1 and sigma 2 receptors (Ki > 10 µM for both) providing distinct selectivity advantages. Anatomical distribution of [3H]-JNJ-GluN2B-5 binding sites in rat, mouse, dog, monkey, and human brain tissue was studied using in vitro autoradiography, which showed high specific binding in the hippocampus and cortex and negligible binding in the cerebellum. Enhanced selectivity for GluN2B-containing receptors translated to a good signal-to-noise ratio in both in vitro radioligand binding and in vitro autoradiography assays. In conclusion, [3H]-JNJ-GluN2B-5 is a high-affinity GluN2B radioligand with excellent signal-to-noise ratio and unprecedented selectivity.

19.
Mol Pharm ; 21(6): 2751-2766, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38693707

RESUMEN

Innate defense regulator-1002 (IDR-1002) is a synthetic peptide with promising immunomodulatory and antibiofilm properties. An appreciable body of work exists around its mechanism of action at the cellular and molecular level, along with its efficacy across several infection and inflammation models. However, little is known about its absorption, distribution, and excretion in live organisms. Here, we performed a comprehensive biodistribution assessment with a gallium-67 radiolabeled derivative of IDR-1002 using nuclear tracing techniques. Various dose levels of the radiotracer (2-40 mg/kg) were administered into the blood, peritoneal cavity, and subcutaneous tissue, or instilled into the lungs. The peptide was well tolerated at all subcutaneous and intraperitoneal doses, although higher levels were associated with delayed absorption kinetics and precipitation of the peptide within the tissues. Low intratracheal doses were rapidly absorbed systemically, and small increases in the dose level were lethal. Intravenous doses were rapidly cleared from the blood at lower levels, and upon escalation, were toxic with a high proportion of the dose accumulating within the lung tissue. To improve biocompatibility and prolong its circulation within the blood, IDR-1002 was further formulated onto high molecular weight hyperbranched polyglycerol (HPG) polymers. Constructs prepared at 5:1 and 10:1 peptide-to-polymer ratios were colloidally stable, maintained the biological profile of the peptide payload and helped reduce red blood cell lysis. The 5:1 construct circulated well in the blood, but higher peptide loading was associated with rapid clearance by the reticuloendothelial system. Many peptides face pharmacokinetic and biocompatibility challenges, but formulations such as those with HPG have the potential to overcome these limitations.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Nanopartículas , Animales , Femenino , Masculino , Ratones , Péptidos Catiónicos Antimicrobianos/farmacocinética , Péptidos Catiónicos Antimicrobianos/química , Radioisótopos de Galio/farmacocinética , Radioisótopos de Galio/química , Radioisótopos de Galio/administración & dosificación , Inmunidad Innata/efectos de los fármacos , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Ratones Endogámicos C57BL , Nanopartículas/química , Distribución Tisular
20.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38675383

RESUMEN

To overcome the limitations of current nano/micro-scale drug delivery systems, an Escherichia coli (E. coli)-based drug delivery system could be a potential alternative, and an effective tumor-targeting delivery system can be developed by attempting to perform chemical binding to the primary amine group of a cell membrane protein. In addition, positron emission tomography (PET) is a representative non-invasive imaging technology and is actively used in the field of drug delivery along with radioisotopes capable of long-term tracking, such as zirconium-89 (89Zr). The membrane proteins were labeled with 89Zr using chelate (DFO), and not only was the long-term biodistribution in tumors and major organs evaluated in the body, but the labeling stability of 89Zr conjugated to the membrane proteins was also evaluated through continuous tracking. E. coli accumulated at high levels in the tumor within 5 min (initial time) after tail intravenous injection, and when observed after 6 days, 89Zr-DFO on the surface of E. coli was found to be stable for a long period of time in the body. In this study, we demonstrated the long-term biodistribution and tumor-targeting effect of an E. coli-based drug delivery system and verified the in vivo stability of radioisotopes labeled on the surface of E. coli.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...