Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 33(15): e17450, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38973501

RESUMEN

Replicability of divergence after contact is a poorly characterized process, particularly in the contexts of phylogeography and postglacial range dynamics within species. Using contact zones located at the leading-, mid- and rear-edges of a species' range, we examined variation in outcomes to contact between divergent lineages of Campanula americana. We investigated whether contact zones vary in quantity and directionality of gene flow, how phylogeographic structure differs between contact zones, and how historic range dynamics may affect outcomes to contact. We found that all contact zones formed at similar times via primary contact yet detected significant admixture in only the rear-edge (RE) contact zone. In the northern leading-edge contact zone and the mid-range Virginia contact zone, gene flow was minimal and asymmetric. In the southern RE contact zone, gene flow was strong and symmetric. Asymmetric admixture in the leading-edge and Virginia contact zones matches the directionality of a known cosmopolitan cytonuclear incompatibility between lineages of C. americana. Our results emphasize the dependence of speciation processes on phylogeographic structure, evolutionary history and range dynamics.


Asunto(s)
Flujo Génico , Filogeografía , Campanulaceae/genética , Genética de Población , Especiación Genética , Virginia
2.
Ecol Appl ; 34(4): e2966, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38629509

RESUMEN

Generating spatial predictions of species distribution is a central task for research and policy. Currently, correlative species distribution models (cSDMs) are among the most widely used tools for this purpose. However, a fundamental assumption of cSDMs, that species distributions are in equilibrium with their environment, is rarely fulfilled in real data and limits the applicability of cSDMs for dynamic projections. Process-based, dynamic SDMs (dSDMs) promise to overcome these limitations as they explicitly represent transient dynamics and enhance spatiotemporal transferability. Software tools for implementing dSDMs are becoming increasingly available, but their parameter estimation can be complex. Here, we test the feasibility of calibrating and validating a dSDM using long-term monitoring data of Swiss red kites (Milvus milvus). This population has shown strong increases in abundance and a progressive range expansion over the last decades, indicating a nonequilibrium situation. We construct an individual-based model using the RangeShiftR modeling platform and use Bayesian inference for model calibration. This allows the integration of heterogeneous data sources, such as parameter estimates from published literature and observational data from monitoring schemes, with a coherent assessment of parameter uncertainty. Our monitoring data encompass counts of breeding pairs at 267 sites across Switzerland over 22 years. We validate our model using a spatial-block cross-validation scheme and assess predictive performance with a rank-correlation coefficient. Our model showed very good predictive accuracy of spatial projections and represented well the observed population dynamics over the last two decades. Results suggest that reproductive success was a key factor driving the observed range expansion. According to our model, the Swiss red kite population fills large parts of its current range but has potential for further increases in density. We demonstrate the practicality of data integration and validation for dSDMs using RangeShiftR. This approach can improve predictive performance compared to cSDMs. The workflow presented here can be adopted for any population for which some prior knowledge on demographic and dispersal parameters as well as spatiotemporal observations of abundance or presence/absence are available. The fitted model provides improved quantitative insights into the ecology of a species, which can greatly aid conservation and management efforts.


Asunto(s)
Modelos Biológicos , Dinámica Poblacional , Animales , Suiza , Falconiformes/fisiología , Monitoreo del Ambiente/métodos , Factores de Tiempo , Teorema de Bayes
3.
Insects ; 15(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667410

RESUMEN

Invasive insect pests adversely impact human welfare and global ecosystems. However, no studies have used a unified scheme to compare the range dynamics of the world's worst invasive insect pests. We investigated the future range shifts of 15 of the world's worst invasive insect pests. Although future range dynamics varied substantially among the 15 worst invasive insect pests, most exhibited large range expansions. Increases in the total habitat suitability occurred in more than ca. 85% of global terrestrial regions. The relative impacts of anthropogenic disturbance and climate variables on the range dynamics depended on the species and spatial scale. Aedes albopictus, Cinara cupressi, and Trogoderma granarium occurred four times in the top five largest potential ranges under four future climate scenarios. Anoplophora glabripennis, Aedes albopictus, and Co. formosanus were predicted to have the largest range expansions. An. glabripennis, Pl. manokwari, Co. formosanus, and So. invicta showed the largest range centroid shifts. More effective strategies will be required to prevent their range expansions. Although the strategies should be species-specific, mitigating anthropogenic disturbances and climate change will be essential to preventing future invasions. This study provides critical and novel insights for developing global strategies to combat the invasions of invasive insect pests in the future.

4.
Pest Manag Sci ; 80(6): 2785-2795, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38415910

RESUMEN

BACKGROUND: The invasion of Asian yellow-legged hornets (Vespa velutina) has significantly affected Western honey bees (Apis mellifera) and apiculture in Europe. However, the range dynamics of this hornet and its range overlap with the bees under future change scenarios have not yet been clarified. Using land-use, climate, and topographical datasets, we projected the range dynamics of this hornet and Western honey bees in Europe and the future overlap of their ranges. RESULTS: We found that climatic factors had stronger effects on the potential ranges of the hornets compared with land-use and topographical factors. A considerable range expansion of this hornet was predicted, and an increase in the overlap between this pest and the bees was primarily caused by future decreases in temperature seasonality. Additionally, we detected future range expansions of the hornet in the UK and France; future range overlap between this pest and Western honey bees in the UK, Ireland, Portugal, and France; and future overlap between the ranges of this pest and bees but not under recent conditions was mainly projected in Germany, Denmark, and the UK. CONCLUSION: Mitigating future climate change might effectively control the proliferation of the hornets and their effects on the bees. Strategies for preventing the invasion of this pest and developing European apiculture should be developed and implemented in these regions where future range overlap between them was projected. Given that climate-change scenarios may result in uncertainty in our projections, further investigation is needed to clarify future range changes of our target species. © 2024 Society of Chemical Industry.


Asunto(s)
Distribución Animal , Cambio Climático , Especies Introducidas , Avispas , Animales , Abejas/fisiología , Europa (Continente) , Avispas/fisiología , Conservación de los Recursos Naturales
5.
MethodsX ; 12: 102608, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38379718

RESUMEN

Species distribution models (SDMs) are powerful tools that can predict potential distributions of species under climate change. However, traditional SDMs that rely on current species occurrences may underestimate their climatic tolerances and potential distributions. To address this limitation, we developed an integrated framework that incorporates eco-evolutionary data into SDMs. In our approach, the fundamental niches of species are constructed by their realized niches in different periods, and those fundamental niches are used to predict potential distributions of species. Our framework includes multiple phylogenetic analyses, such as niche evolution rate estimation and ancestral area reconstruction. These analyses provide deeper insights into the responses of species to climate change. We applied our approach to the Chrysanthemum zawadskii species complex to evaluate its efficacy through comprehensive performance evaluations and validation tests. Our framework can be applied broadly to species with available phylogenetic data and occurrence records, making it a valuable tool for understanding species adaptation in a rapidly changing world.•Integrating the niches of species in different periods estimates more complete climatic envelopes for them.•Combining eco-evolutionary data with SDMs predicts more comprehensive potential distributions of species under climate change.•Our framework provides a general procedure for species with phylogenetic data and occurrence records.

6.
Proc Biol Sci ; 291(2015): 20231760, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38290543

RESUMEN

Understanding how the abundance of species varies across geographical ranges is central to ecology; however, few studies test hypotheses using detailed abundance estimates across the full ranges of species on a continental scale. Here, we use unprecedented, detailed estimates of breeding abundance for North American birds (eBird) to test two hypotheses for how abundance varies across species' ranges. We find widespread support for the rare-edge hypothesis-where the abundance of species declines near the range edge-reflecting both reduced occurrence and lower local abundance near range edges. By contrast, we find mixed support for the abundant-centre hypothesis-where the abundance of species peaks in the centre of the range and declines towards the edges-with limited support in conservative tests within species, but general support in among-species tests that control for unbalanced sampling and consider a broader definition of the range centre. Overall, results are consistent with a gradual decline in suitable conditions and increase in challenge towards the range edge that eventually limit the ability of populations to persist.


Asunto(s)
Aves , Ecología , Animales , Dinámica Poblacional , Geografía , América del Norte , Ecosistema
7.
Ecology ; 105(1): e4171, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37776264

RESUMEN

Species engage in mutually beneficial interspecific interactions (mutualisms) that shape their population dynamics in ecological communities. Species engaged in mutualisms vary greatly in their degree of dependence on their partner from complete dependence (e.g., yucca and yucca moth mutualism) to low dependence (e.g., generalist bee with multiple plant species). While current empirical studies show that, in mutualisms, partner dependence can alter the speed of a species' range expansion, there is no theory that provides conditions when expansion is sped up or slowed down. To address this, we built a spatially explicit model incorporating the population dynamics of two dispersing species interacting mutualistically. We explored how mutualisms impacted range expansion across a gradient of dependence (from complete independence to obligacy) between the two species. We then studied the conditions in which the magnitude of the mutualistic benefits could hinder versus enhance the speed of range expansion. We showed that either complete dependence, no dependence, or intermediate degree of dependence on a mutualist partner can lead to the greatest speeds of a focal species' range expansion based on the magnitude of benefits exchanged between partner species in the mutualism. We then showed how different degrees of dependence between species could alter the spatial distribution of the range expanding populations. Finally, we identified the conditions under which mutualistic interactions can turn exploitative across space, leading to the formation of a species' range limits. Our work highlights how couching mutualisms and mutualist dependence in a spatial context can provide insights about species range expansions, limits, and ultimately their distributions.


Asunto(s)
Mariposas Nocturnas , Simbiosis , Animales , Abejas , Dinámica Poblacional , Biota
8.
Proc Biol Sci ; 290(2013): 20231095, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38087919

RESUMEN

European bison (Bison bonasus) were widespread throughout Europe during the late Pleistocene. However, the contributions of environmental change and humans to their near extinction have never been resolved. Using process-explicit models, fossils and ancient DNA, we disentangle the combinations of threatening processes that drove population declines and regional extinctions of European bison through space and across time. We show that the population size of European bison declined abruptly at the termination of the Pleistocene in response to rapid environmental change, hunting by humans and their interaction. Human activities prevented populations of European bison from rebounding in the Holocene, despite improved environmental conditions. Hunting caused range loss in the north and east of its distribution, while land use change was responsible for losses in the west and south. Advances in hunting technologies from 1500 CE were needed to simulate low abundances observed in 1870 CE. While our findings show that humans were an important driver of the extinction of the European bison in the wild, vast areas of its range vanished during the Pleistocene-Holocene transition because of post-glacial environmental change. These areas of its former range have been climatically unsuitable for millennia and should not be considered in reintroduction efforts.


Asunto(s)
Bison , Animales , Humanos , Bison/genética , Europa (Continente) , Fósiles , Actividades Humanas , Caza
9.
Proc Natl Acad Sci U S A ; 120(52): e2301055120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109531

RESUMEN

Predicting how the range dynamics of migratory species will respond to climate change requires a mechanistic understanding of the factors that operate across the annual cycle to control the distribution and abundance of a species. Here, we use multiple lines of evidence to reveal that environmental conditions during the nonbreeding season influence range dynamics across the life cycle of a migratory songbird, the American redstart (Setophaga ruticilla). Using long-term data from the nonbreeding grounds and breeding origins estimated from stable hydrogen isotopes in tail feathers, we found that the relationship between annual survival and migration distance is mediated by precipitation, but only during dry years. A long-term drying trend throughout the Caribbean is associated with higher mortality for individuals from the northern portion of the species' breeding range, resulting in an approximate 500 km southward shift in breeding origins of this Jamaican population over the past 30 y. This shift in connectivity is mirrored by changes in the redstart's breeding distribution and abundance. These results demonstrate that the climatic effects on demographic processes originating during the tropical nonbreeding season are actively shaping range dynamics in a migratory bird.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Migración Animal , Región del Caribe , Dinámica Poblacional , Estaciones del Año
10.
J Environ Manage ; 347: 119197, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37797520

RESUMEN

Due to global changes, e.g., climate change and trade globalization, China is facing an increasingly severe threat from invasive freshwater fish species, which have the potential to cause negative impacts across various aspects and pose significant challenges for their eradication once established. Therefore, prioritizing the understanding of invasive species' potential ranges and their determinants is vital for developing more targeted management strategies. Moreover, it is equally essential to consider the transitory range dynamics of invasive species that reflect changes in habitat availability and accessibility. Here, we used species distribution models (the maximum entropy algorithm) to assess the potential distributions of six notorious invasive fish species (i.e., Coptodon zillii, Cyprinus carpio, Gambusia affinis, Hemiculter leucisculus, Oreochromis mossambicus, and Oreochromis niloticus) in current and future (i.e., the 2030s, 2050s, and 2070s) periods along with their determinants, under two Shared Socio-economic Pathways scenarios (SSP1-2.6 and SSP5-8.5; global climate model: MRI-ESM2-0). Our results showed that the habitat suitability for the six species substantially benefited from temperature conditions (i.e., annual mean temperature or maximum temperature of warmest month). Throughout the given time periods, dramatic range expansions would occur for C. zillii, G. affinis, O. mossambicus, and O. niloticus, ranging from 38.61% to 291.90%. In contrast, the range of C. carpio would change slightly and irregularly, while H. leucisculus would contract marginally, with losses ranging from 1.06% to 12.60%. By the 2070s, species richness of these species would be relatively high in South, Central, and East China and parts of Southwest China. Furthermore, transitory fluctuations in the species ranges for all six species were observed throughout the entire time period (the 2030s-2070s). Given the range shifts for each species during different time periods, as well as time costs and budgets, adaptation strategies should be developed and implemented in the areas where they are most needed in each time period.


Asunto(s)
Carpas , Especies Introducidas , Animales , Ecosistema , China , Cambio Climático
11.
New Phytol ; 240(1): 23-40, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37501525

RESUMEN

Functional traits offer a promising avenue to improve predictions of species range shifts under climate change, which will entail warmer and often drier conditions. Although the conceptual foundation linking traits with plant performance and range shifts appears solid, the predictive ability of individual traits remains generally low. In this review, we address this apparent paradox, emphasizing examples of woody plants and traits associated with drought responses at the species' rear edge. Low predictive ability reflects the fact not only that range dynamics tend to be complex and multifactorial, as well as uncertainty in the identification of relevant traits and limited data availability, but also that trait effects are scale- and context-dependent. The latter results from the complex interactions among traits (e.g. compensatory effects) and between them and the environment (e.g. exposure), which ultimately determine persistence and colonization capacity. To confront this complexity, a more balanced coverage of the main functional dimensions involved (stress tolerance, resource use, regeneration and dispersal) is needed, and modelling approaches must be developed that explicitly account for: trait coordination in a hierarchical context; trait variability in space and time and its relationship with exposure; and the effect of biotic interactions in an ecological community context.


Asunto(s)
Sequías , Plantas , Biota , Cambio Climático , Fenotipo , Ecosistema
12.
Biol Rev Camb Philos Soc ; 98(6): 2012-2027, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37364865

RESUMEN

Novel biotic interactions in shifting communities play a key role in determining the ability of species' ranges to track suitable habitat. To date, the impact of biotic interactions on range dynamics have predominantly been studied in the context of interactions between different trophic levels or, to a lesser extent, exploitative competition between species of the same trophic level. Yet, both theory and a growing number of empirical studies show that interspecific behavioural interference, such as interspecific territorial and mating interactions, can slow down range expansions, preclude coexistence, or drive local extinction, even in the absence of resource competition. We conducted a systematic review of the current empirical research into the consequences of interspecific behavioural interference on range dynamics. Our findings demonstrate there is abundant evidence that behavioural interference by one species can impact the spatial distribution of another. Furthermore, we identify several gaps where more empirical work is needed to test predictions from theory robustly. Finally, we outline several avenues for future research, providing suggestions for how interspecific behavioural interference could be incorporated into existing scientific frameworks for understanding how biotic interactions influence range expansions, such as species distribution models, to build a stronger understanding of the potential consequences of behavioural interference on the outcome of future range dynamics.


Asunto(s)
Ecosistema , Territorialidad , Especificidad de la Especie , Reproducción
13.
Pest Manag Sci ; 79(10): 3731-3739, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37194192

RESUMEN

BACKGROUND: As an invasive pest from North America, grey squirrels (GSs; Sciurus carolinensis Gmelin) are displacing native squirrels in Europe. However, the climatic niche and range dynamics of GSs in Europe remain largely unknown. Through niche and range dynamic models, we investigated climatic niche and range shifts between introduced GSs in Europe and native GSs in North America. RESULTS: GSs in North America can survive in more variable climatic conditions and have much wider climatic niche breadth than do GSs in Europe. Based on climate, the potential range of GSs in Europe included primarily Britain, Ireland, and Italy, whereas the potential range of GSs in North America included vast regions of western and southern Europe. If GSs in Europe could occupy the same climatic niche space and potential range as GSs in North America, they would occupy an area ca. 2.45 times the size of their current range. The unfilling ranges of GSs in Europe relative to those of GSs in North America were primarily in France, Italy, Spain, Croatia, and Portugal. CONCLUSION: Our observations implied that GSs in Europe have significant invasion potential, and that range projections based on their occurrence records in Europe may underestimate their invasion risk. Given that small niche shifts between GSs in Europe and in North America could lead to large range shifts, niche shifts could be a sensitive indicator in invasion risk assessment. The identified unfilling ranges of the GS in Europe should be prioritized in combating GS invasions in the future. © 2023 Society of Chemical Industry.


Asunto(s)
Especies Introducidas , Sciuridae , Animales , Europa (Continente) , Italia , Francia
14.
Sci Total Environ ; 877: 162878, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36934937

RESUMEN

Like the Dodo and Passenger Pigeon before it, the predatory marsupial Thylacine (Thylacinus cynocephalus), or 'Tasmanian tiger', has become an iconic symbol of anthropogenic extinction. The last captive animal died in 1936, but even today reports of the Thylacine's possible ongoing survival in remote regions of Tasmania are newsworthy and capture the public's imagination. Extirpated from mainland Australia in the mid-Holocene, the island of Tasmania became the species' final stronghold. Following European settlement in the 1800s, the Thylacine was relentlessly persecuted and pushed to the margins of its range, although many sightings were reported thereafter-even well beyond the 1930s. To gain a new depth of insight into the extinction of the Thylacine, we assembled an exhaustive database of 1237 observational records from Tasmania (from 1910 onwards), quantified their uncertainty, and charted the patterns these revealed. We also developed a new method to visualize the species' 20th-century spatio-temporal dynamics, to map potential post-bounty refugia and pinpoint the most-likely location of the final persisting subpopulation. A direct reading of the high-quality records (confirmed kills and captures, in combination with sightings by past Thylacine hunters and trappers, wildlife professionals and experienced bushmen) implies a most-likely extinction date within four decades following the last capture (i.e., 1940s to 1970s). However, uncertainty modelling of the entire sighting record, where each observation is assigned a probability and the whole dataset is then subject to a sensitivity analysis, suggests that extinction might have been as recent as the late 1980s to early 2000s, with a small chance of persistence in the remote south-western wilderness areas. Beyond the intrinsically fascinating problem of reconstructing the final fate of the Thylacine, the new spatio-temporal mapping of extirpation developed herein would also be useful for conservation prioritization and search efforts for other rare taxa of uncertain status.


Asunto(s)
Extinción Biológica , Marsupiales , Animales , Australia , Tasmania , Animales Salvajes
15.
Ecol Evol ; 13(2): e9797, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36778838

RESUMEN

Aim: To test whether the occupancy of shorebirds has changed in the eastern Canadian Arctic, and whether these changes could indicate that shorebird distributions are shifting in response to long-term climate change. Location: Foxe Basin and Rasmussen Lowlands, Nunavut, Canada. Methods: We used a unique set of observations, made 25 years apart, using general linear models to test if there was a relationship between changes in shorebird species' occupancy and their species temperature Index, a simple version of a species climate envelope. Results: Changes in occupancy and density varied widely across species, with some increasing and some decreasing. This is despite that overall population trends are known to be negative for all of these species based on surveys during migration. The changes in occupancy that we observed were positively related to the species temperature index, such that the warmer-breeding species appear to be moving into these regions, while colder-breeding species appear to be shifting out of the regions, likely northward. Main Conclusions: Our results suggest that we should be concerned about declining breeding habitat availability for bird species whose current breeding ranges are centered on higher and colder latitudes.

16.
Fungal Biol ; 126(11-12): 809-816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36517148

RESUMEN

Batrachochytrium dendrobatidis (Bd) is one of the world's most invasive species, and is responsible for chytridiomycosis, an emerging infectious disease that has caused huge losses of global amphibian biodiversity. Few studies have investigated invasive Bd's niche and range relative to those of native Bd. In the present study, we applied niche and range dynamic models to investigate global niche and range dynamics between native and invasive Bd. Invasive Bd occupied wider and different niche positions than did native Bd. Additionally, invasive Bd was observed in hotter, colder, wetter, drier, and more labile climatic conditions. Contrast to most relevant studies presuming Bd's niche remaining stable, we found that invasive Bd rejected niche conservatism hypotheses, suggesting its high lability in niche, and huge invasion potential. Bd's niche non-conservatism may result in range lability, and small niche expansions could induce large increases in range. Niche shifts may therefore be a more sensitive indicator of invasion than are range shifts. Our findings indicate that Bd is a high-risk invasive fungus not only due to its high infection and mortality rates, but also due to its high niche and range lability, which enhance its ability to adapt to novel climatic conditions. Therefore, invasive Bd should be a high-priority focus species in strategizing against biological invasions.


Asunto(s)
Quitridiomicetos , Micosis , Animales , Batrachochytrium , Anfibios/microbiología , Micosis/veterinaria , Biodiversidad
17.
Glob Chang Biol ; 28(22): 6602-6617, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36031712

RESUMEN

Processes leading to range contractions and population declines of Arctic megafauna during the late Pleistocene and early Holocene are uncertain, with intense debate on the roles of human hunting, climatic change, and their synergy. Obstacles to a resolution have included an overreliance on correlative rather than process-explicit approaches for inferring drivers of distributional and demographic change. Here, we disentangle the ecological mechanisms and threats that were integral in the decline and extinction of the muskox (Ovibos moschatus) in Eurasia and in its expansion in North America using process-explicit macroecological models. The approach integrates modern and fossil occurrence records, ancient DNA, spatiotemporal reconstructions of past climatic change, species-specific population ecology, and the growth and spread of anatomically modern humans. We show that accurately reconstructing inferences of past demographic changes for muskox over the last 21,000 years require high dispersal abilities, large maximum densities, and a small Allee effect. Analyses of validated process-explicit projections indicate that climatic change was the primary driver of muskox distribution shifts and demographic changes across its previously extensive (circumpolar) range, with populations responding negatively to rapid warming events. Regional analyses show that the range collapse and extinction of the muskox in Europe (~13,000 years ago) was likely caused by humans operating in synergy with climatic warming. In Canada and Greenland, climatic change and human activities probably combined to drive recent population sizes. The impact of past climatic change on the range and extinction dynamics of muskox during the Pleistocene-Holocene transition signals a vulnerability of this species to future increased warming. By better establishing the ecological processes that shaped the distribution of the muskox through space and time, we show that process-explicit macroecological models have important applications for the future conservation and management of this iconic species in a warming Arctic.


Asunto(s)
ADN Antiguo , Rumiantes , Animales , Regiones Árticas , Cambio Climático , Fósiles , Humanos
18.
Ecol Evol ; 12(2): e8590, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35222963

RESUMEN

Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non-native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non-native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region-specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non-native species richness. Non-native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series, even more exciting results can be expected, especially about range shifts. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented.

19.
Bull Math Biol ; 84(3): 37, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35099649

RESUMEN

Geographic ranges of communities of species evolve in response to environmental, ecological, and evolutionary forces. Understanding the effects of these forces on species' range dynamics is a major goal of spatial ecology. Previous mathematical models have jointly captured the dynamic changes in species' population distributions and the selective evolution of fitness-related phenotypic traits in the presence of an environmental gradient. These models inevitably include some unrealistic assumptions, and biologically reasonable ranges of values for their parameters are not easy to specify. As a result, simulations of the seminal models of this type can lead to markedly different conclusions about the behavior of such populations, including the possibility of maladaptation setting stable range boundaries. Here, we harmonize such results by developing and simulating a continuum model of range evolution in a community of species that interact competitively while diffusing over an environmental gradient. Our model extends existing models by incorporating both competition and freely changing intraspecific trait variance. Simulations of this model predict a spatial profile of species' trait variance that is consistent with experimental measurements available in the literature. Moreover, they reaffirm interspecific competition as an effective factor in limiting species' ranges, even when trait variance is not artificially constrained. These theoretical results can inform the design of, as yet rare, empirical studies to clarify the evolutionary causes of range stabilization.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Ecosistema , Conceptos Matemáticos , Modelos Teóricos , Fenotipo , Dinámica Poblacional
20.
Ecol Lett ; 25(1): 125-137, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738712

RESUMEN

Pathways to extinction start long before the death of the last individual. However, causes of early stage population declines and the susceptibility of small residual populations to extirpation are typically studied in isolation. Using validated process-explicit models, we disentangle the ecological mechanisms and threats that were integral in the initial decline and later extinction of the woolly mammoth. We show that reconciling ancient DNA data on woolly mammoth population decline with fossil evidence of location and timing of extinction requires process-explicit models with specific demographic and niche constraints, and a constrained synergy of climatic change and human impacts. Validated models needed humans to hasten climate-driven population declines by many millennia, and to allow woolly mammoths to persist in mainland Arctic refugia until the mid-Holocene. Our results show that the role of humans in the extinction dynamics of woolly mammoth began well before the Holocene, exerting lasting effects on the spatial pattern and timing of its range-wide extinction.


Asunto(s)
Mamuts , Animales , Efectos Antropogénicos , Clima , Extinción Biológica , Fósiles , Humanos , Mamuts/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...