Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.640
Filtrar
1.
Adv Sci (Weinh) ; : e2403849, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352304

RESUMEN

Inflammation is highlighted as an initial factor that helps orchestrate liver reconstitution. However, the precise mechanisms controlling inflammation during liver reconstitution have not been fully elucidated. In this study, a clear immune response is demonstrated during hepatic reconstitution. Inhibition of the hepatic inflammatory response retards liver regeneration. During this process, Ccl2 is primarily produced by type 1 innate lymphoid cells (ILC1s), and ILC1-derived Ccl2 recruits peripheral ILC1s and regulatory T cells (Tregs) to the liver. Deletion of Ccl2 or Tregs exacerbates hepatic injury and inflammatory cytokine release, accelerating liver proliferation and regeneration. The adoption of Tregs and IL-10 injection reversed these effects on hepatocyte regenerative proliferation. Additionally, Treg-derived IL-10 can directly induce macrophage polarization from M1 to M2, which alleviated macrophage-secreted IL-6 and TNF-α and balanced the intrahepatic inflammatory milieu during liver reconstitution. This study reveals the capacity of Tregs to modulate the intrahepatic inflammatory milieu and liver reconstitution through IL-10-mediated macrophage polarization, providing a potential opportunity to improve hepatic inflammation and maintain homeostasis.

2.
Br J Haematol ; 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39406393

RESUMEN

Imbalanced nicotinamide adenine dinucleotide (NAD+) homeostasis has been reported in multiple autoimmune diseases and supplementation with NAD+ precursors has consistently demonstrated positive therapeutic benefits for these conditions. Immune thrombocytopenia (ITP) is an acquired autoimmune disease, in which the decreased number and impaired function of regulatory T cells (Tregs) contribute to the main pathogenesis. Here we found NAD+ level was decreased in the plasma and CD4+ T cells of ITP patients. Supplementation with NAD+ precursor nicotinamide (NAM), but not nicotinamide mononucleotide (NMN), increased Treg frequency and ameliorated thrombocytopenia in an ITP murine model. Moreover, whilst both NAM and NMN restored cytosolic NAD+ level in the CD4+ T cells from ITP patients, only NAM promoted Treg differentiation. Mechanistically, Sirtuin1 (Sirt1), a major consumer of NAD+, was highly expressed in the CD4+ T cells of ITP patients, potentially contributing to the low level of NAD+. NAM, which could act as Sirt1 inhibitor, promoted Foxp3 acetylation and stability in induced Tregs derived from naïve CD4+ T cells of ITP patients. These findings suggest that NAM holds promise as a novel therapeutic strategy for restoring immune balance in ITP.

3.
ACS Synth Biol ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375864

RESUMEN

CRISPR gene editing strategies are shaping cell therapies through precise and tunable control over gene expression. However, limitations in safely delivering high quantities of CRISPR machinery demand careful target gene selection to achieve reliable therapeutic effects. Informed target gene selection requires a thorough understanding of the involvement of target genes in gene regulatory networks (GRNs) and thus their impact on cell phenotype. Effective decoding of these complex networks has been achieved using machine learning models, but current techniques are limited to single cell types and focus mainly on transcription factors, limiting their applicability to CRISPR strategies. To address this, we present CRISPR-GEM, a multilayer perceptron (MLP) based synthetic GRN constructed to accurately predict the downstream effects of CRISPR gene editing. First, input and output nodes are identified as differentially expressed genes between defined experimental and target cell/tissue types, respectively. Then, MLP training learns regulatory relationships in a black-box approach allowing accurate prediction of output gene expression using only input gene expression. Finally, CRISPR-mimetic perturbations are made to each input gene individually, and the resulting model predictions are compared to those for the target group to score and assess each input gene as a CRISPR candidate. The top scoring genes provided by CRISPR-GEM therefore best modulate experimental group GRNs to motivate transcriptomic shifts toward a target group phenotype. This machine learning model is the first of its kind for predicting optimal CRISPR target genes and serves as a powerful tool for enhanced CRISPR strategies across a range of cell therapies.

4.
medRxiv ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39314954

RESUMEN

Men with high-risk localized prostate cancer exhibit high rates of post-surgical recurrence. In these patients, androgen deprivation therapy (ADT) is immunomodulatory, however increased infiltration of regulatory T cells (Tregs) may limit the antitumor immune effects of ADT. We designed a neoadjuvant clinical trial to test whether BMS-986218 - a next-generation non-fucosylated anti-CTLA-4 antibody engineered for enhanced antibody-dependent cellular cytotoxicity or phagocytosis (ADCC/P) - depletes intratumoral Tregs and augments the response to ADT. In this single-center, two-arm, open-label study, 24 men with high-risk localized prostate cancer were randomized to receive a single dose of ADT with or without two pre-operative doses of BMS-986218 (anti-CTLA4-NF) prior to radical prostatectomy. Treatment was well tolerated and feasible in the neoadjuvant setting. A secondary clinical outcome was the rate of disease recurrence, which was lower than predicted in both arms. Mechanistically, anti-CTLA4-NF reduced ADT-induced Treg accumulation through engagement of CD16a/FCGR3A on tumor macrophages, and depth of Treg depletion was quantitatively associated with clinical outcome. Increased intratumoral dendritic cell (DC) frequencies also associated with lack of recurrence, and pre-clinical data suggest ADCC/P-competent anti-CTLA-4 antibodies elicit activation and expansion of tumor DCs. Patients receiving anti-CTLA4-NF also exhibited phenotypic signatures of enhanced antitumor T cell priming. In total, this study provides the first-in-human evidence of Treg depletion by glycoengineered antibodies targeting CTLA-4 in humans and their potential in combination with ADT in prostate cancer patients with high-risk of recurrence.

5.
J Exp Clin Cancer Res ; 43(1): 252, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227950

RESUMEN

BACKGROUND: Glioblastoma (GBM) is an immunosuppressive, universally lethal cancer driven by glioblastoma stem cells (GSCs). The interplay between GSCs and immunosuppressive microglia plays crucial roles in promoting the malignant growth of GBM; however, the molecular mechanisms underlying this crosstalk are unclear. This study aimed to investigate the role of POSTN in maintaining GSCs and the immunosuppressive phenotype of microglia. METHODS: The expression of POSTN in GBM was identified via immunohistochemistry, quantitative real-time PCR, and immunoblotting. Tumorsphere formation assay, Cell Counting Kit-8 assay and immunofluorescence were used to determine the key role of POSTN in GSC maintenance. ChIP-seq and ChIP-PCR were conducted to confirm the binding sequences of ß-catenin in the promoter region of FOSL1. Transwell migration assays, developmental and functional analyses of CD4+ T cells, CFSE staining and analysis, enzyme-linked immunosorbent assays and apoptosis detection tests were used to determine the key role of POSTN in maintaining the immunosuppressive phenotype of microglia and thereby promoting the immunosuppressive tumor microenvironment. Furthermore, the effects of POSTN on GSC maintenance and the immunosuppressive phenotype of microglia were investigated in a patient-derived xenograft model and orthotopic glioma mouse model, respectively. RESULTS: Our findings revealed that POSTN secreted from GSCs promotes GSC self-renewal and tumor growth via activation of the αVß3/PI3K/AKT/ß-catenin/FOSL1 pathway. In addition to its intrinsic effects on GSCs, POSTN can recruit microglia and upregulate CD70 expression in microglia through the αVß3/PI3K/AKT/NFκB pathway, which in turn promotes Treg development and functionality and supports the formation of an immunosuppressive tumor microenvironment. In both in vitro models and orthotopic mouse models of GBM, POSTN depletion disrupted GSC maintenance, decreased the recruitment of immunosuppressive microglia and suppressed GBM growth. CONCLUSION: Our findings reveal that POSTN plays critical roles in maintaining GSCs and the immunosuppressive phenotype of microglia and provide a new therapeutic target for treating GBM.


Asunto(s)
Moléculas de Adhesión Celular , Glioblastoma , Microglía , Células Madre Neoplásicas , Animales , Humanos , Ratones , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/inmunología , Glioblastoma/genética , Microglía/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/inmunología , Fenotipo , Transducción de Señal , Microambiente Tumoral
6.
Allergy ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250135

RESUMEN

BACKGROUND: Reasons for Th2 skewing in IgE-mediated food allergies remains unclear. Clinical observations suggest impaired T cell activation may drive Th2 responses evidenced by increased atopic manifestations in liver transplant patients on tacrolimus (a calcineurin inhibitor). We aimed to assess differentiation potential, T cell activation and calcium influx of naïve CD4+ T cells in children with IgE-mediated food allergies. METHODS: Peripheral blood mononuclear cells from infants in the Starting Time for Egg Protein (STEP) Trial were analyzed by flow cytometry to assess Th1/Th2/Treg development. Naïve CD4+ T cells from children with and without food allergies were stimulated for 7 days to assess Th1/Th2/Treg transcriptional factors and cytokines. Store operated calcium entry (SOCE) was measured in children with and without food allergies. The effect of tacrolimus on CD4+ T cell differentiation was assessed by treating stimulated naïve CD4+ T cells from healthy volunteers with tacrolimus for 7 days. RESULTS: Egg allergic infants had impaired development of IFNγ+ Th1 cells and FoxP3+ transitional CD4+ T cells compared with non-allergic infants. This parallels reduced T-bet, IFNγ and FoxP3 expression in naïve CD4+ T cells from food allergic children after in vitro culture. SOCE of naïve CD4+ T cells was impaired in food allergic children. Naïve CD4+ T cells treated with tacrolimus had reduced IFNγ, T-bet, and FoxP3, but preserved IL-4 expression. CONCLUSIONS: In children with IgE-mediated food allergies, dysregulation of T helper cell development is associated with impaired SOCE, which underlies an intrinsic impairment in Th1 and Treg differentiation. Along with tacrolimus-induced Th2 skewing, this highlights an important role of SOCE/calcineurin pathway in T helper cell differentiation.

7.
Front Immunol ; 15: 1444622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301030

RESUMEN

Background: Chronic obstructive pulmonary disease (COPD) has been linked to immune responses to lung-associated self-antigens. Exposure to cigarette smoke (CS), the main cause of COPD, causes chronic lung inflammation, resulting in pulmonary matrix (ECM) damage. This tissue breakdown exposes collagen V (Col V), an antigen typically hidden from the immune system, which could trigger an autoimmune response. Col V autoimmunity has been linked to several lung diseases, and the induction of immune tolerance can mitigate some of these diseases. Evidence suggests that autoimmunity to Col V might also occur in COPD; thus, immunotolerance to Col V could be a novel therapeutic approach. Objective: The role of autoimmunity against collagen V in COPD development was investigated by analyzing the effects of Col V-induced tolerance on the inflammatory response and lung remodeling in a murine model of CS-induced COPD. Methods: Male C57BL/6 mice were divided into three groups: one exposed to CS for four weeks, one previously tolerated for Col V and exposed to CS for four weeks, and one kept in clean air for the same period. Then, we proceeded with lung functional and structural evaluation, assessing inflammatory cells in bronchoalveolar lavage fluid (BALF) and inflammatory markers in the lung parenchyma, inflammatory cytokines in lung and spleen homogenates, and T-cell phenotyping in the spleen. Results: CS exposure altered the structure of elastic and collagen fibers and increased the pro-inflammatory immune response, indicating the presence of COPD. Col V tolerance inhibited the onset of emphysema and prevented structural changes in lung ECM fibers by promoting an immunosuppressive microenvironment in the lung and inducing Treg cell differentiation. Conclusion: Induction of nasal tolerance to Col V can prevent inflammatory responses and lung remodeling in experimental COPD, suggesting that autoimmunity to Col V plays a role in COPD development.


Asunto(s)
Autoinmunidad , Colágeno Tipo V , Modelos Animales de Enfermedad , Tolerancia Inmunológica , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica , Animales , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Ratones , Colágeno Tipo V/inmunología , Masculino , Pulmón/inmunología , Pulmón/patología , Citocinas/metabolismo , Autoantígenos/inmunología
8.
Chin Clin Oncol ; 13(Suppl 1): AB046, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39295364

RESUMEN

BACKGROUND: Glioblastoma (GBM) is an immunosuppressive, universally lethal cancer driven by GBM stem cells (GSCs). The interplay between GSCs and the immunosuppressive microglia plays crucial roles in promoting malignant growth of GBM, however, the molecular mechanisms underlying this crosstalk are incompletely understood. METHODS: We performed RNA sequencing to explore the mechanism by which periostin (POSTN) regulates GSCs and microglia. The biological function of POSTN in GBM development was confirmed in vitro and in vivo. Specifically, tumorsphere formation assay, proliferation analysis, migration assays, enzyme-linked immunosorbent assay, immunoblotting, and intracranial mouse model were performed. RESULTS: We identified POSTN secreted from GSCs promotes GSC self-renewal and tumor growth via activation of the αVß3/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/ß-catenin/FOS like antigen 1 (FOSL1) pathway. In addition to its GSC intrinsic effects, POSTN is able to recruit microglia and upregulate cluster of differentiation 70 (CD70) expression through PI3K/AKT/nuclear factor-kappa B (NFκB) pathway in microglial cells, which in turn promotes the Treg development and functionality, and generates an immunosuppressive tumor microenvironment. Inhibition POSTN disrupts the GSC maintenance, inhibits recruitment of immunosuppressive microglial, reduces Treg development and function, and suppresses GBM growth, suggesting that targeting POSTN may effectively improve GBM treatment. CONCLUSIONS: In conclusion, our study defined POSTN as a key regulator in mediating the molecular crosstalk between GSCs and immune-suppressive Microglia in the tumor microenvironment in GBM. POSTN activates the PI3K/AKT/ß-catenin/FOSL1 pathway in an autocrine manner to promote GSC self-renewal and tumor growth. At the same time, POSTN recruits microglia in a paracrine manner and upregulates the expression of CD70 in microglia through the PI3K/AKT/NFκB pathway, thereby promoting the development and function of Treg and generating an immunosuppressive tumor microenvironment. Our findings indicate that targeting the POSTN gene may be a promising approach to ablating GSCs, breaking the immunosuppressive environment and overcoming treatment resistance in GBM.


Asunto(s)
Moléculas de Adhesión Celular , Glioblastoma , Microglía , Células Madre Neoplásicas , Glioblastoma/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Microglía/metabolismo , Ratones , Humanos , Animales , Moléculas de Adhesión Celular/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Microambiente Tumoral , Proliferación Celular
9.
ACS Appl Mater Interfaces ; 16(37): 48969-48981, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39233638

RESUMEN

Psoriasis is a chronic, recurrent, and inflammatory skin disease. Topical agents, which can avoid the adverse effects of systemic treatment, are the first-choice therapy for patients with mild-to-moderate psoriasis. Hederacoside C (HSC) with anti-inflammatory properties has been used to treat some inflammatory diseases. We speculated that HSC might also be effective for psoriasis treatment. However, topical application of HSC for psoriasis treatment is challenging because of its low water solubility and poor skin permeability. Therefore, it is important to effectively deliver HSC percutaneously using certain biomaterials. Here we constructed a hydroxypropyl-ß-cyclodextrin-coated liposome gel formulation for the loading and percutaneously delivering of HSC, referred to as HSC-Lipo@gel. The characterization, stability, release properties, and mechanical or transdermal features of the HSC-Lipo@gel were evaluated. Its therapeutic potential was also demonstrated using mouse models of IMQ-induced psoriasis. We found that HSC-Lipo@gel effectively improved the skin permeability of HSC with the property of good stability and sustained release. Importantly, HSC-Lipo@gel showed higher efficacy than HSC@gel without liposomes in alleviating psoriatic skin lesions. It attenuated epidermal hyperplasia and suppressed expression of IL-17A, TNF-α, IL-6, and IL-23 in lesional skin. Interestingly, HSC-Lipo@gel reduced the expression of CC chemokine ligand 17 (CCL17), but not CCL22, in the skin. Especially, HSC-Lipo@gel inhibited CCL17 expression by skin dendritic cells while increasing regulatory T cells (Tregs) in both skin and draining lymph nodes of psoriatic mice. Administration of CCL17 resulted in severe skin lesions and reduced CD4+FoxP3+ Tregs in psoriatic mice previously treated with HSC-Lipo@gel. Finally, HSC or HSC-Lipo also suppressed the CCL17 production by dendritic cells in vitro. Therefore, HSC-Lipo@gel alleviated psoriasiform skin inflammation by increasing cutaneous Tregs via downregulation of the expression of CCL17, but not CCL22. Thus, HSC-Lipo@gel may be a stable, highly permeable, and effective system for topical treatment of psoriasis.


Asunto(s)
Quimiocina CCL17 , Liposomas , Ácido Oleanólico , Psoriasis , Linfocitos T Reguladores , Animales , Liposomas/química , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Psoriasis/inducido químicamente , Ratones , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Ácido Oleanólico/química , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Quimiocina CCL17/metabolismo , Geles/química , Piel/efectos de los fármacos , Piel/patología , Piel/metabolismo , Administración Cutánea , Ratones Endogámicos BALB C , Humanos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Nanopartículas/química , Imiquimod
10.
Cytokine ; 184: 156769, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342821

RESUMEN

BACKGROUND: Interleukin (IL)-38 belongs to the IL-36 subfamily within the IL-1 family. Patients with inflammatory bowel diseases (IBD) exhibit higher levels of IL-38 in their intestinal tissue compared to healthy controls, suggesting that IL-38 may play a role in the pathogenesis of IBD. However, IL-38's impact on T cell-mediated immune responses in gastrointestinal inflammation has not been investigated. Therefore, the objective of this work was to elucidate the role of IL-38 in modulating T cells in a mouse model of dextran sulfate sodium (DSS)-induced chronic colitis. METHODS: Recombinant IL-38 (rIL-38) was administered intraperitoneally (i.p.) to mice with chronic colitis induced by DSS. Clinical symptoms, length of colon, and histologic alterations were assessed. Cytokine production was quantified using ELISA, and helper T (Th) cell subsets were evaluated via flow cytometry. RESULTS: Administration of recombinant IL-38 (rIL-38) alleviated DSS-induced chronic colitis. In addition, animals with chronic colitis treated with rIL-38 exhibited a significant decrease in the spontaneous production of inflammatory cytokines by neutrophils in the lamina propria. Furthermore, rIL-38 treatment increased the absolute numbers and percentages of regulatory T cells (Tregs) but decreased the absolute numbers and percentages of Th1 and Th17 cells. Moreover, rIL-38 treatment also decreased IL-17A-producing γδT cells substantially. CONCLUSION: This study's results show that IL-38 reduces the effects of chronic colitis caused by DSS by boosting Treg reactions and reducing Th1/Th17 reactions and IL-17A-producing γδT cells in LPL. Therefore, we propose that IL-38 has the potential to be utilized as a biological therapy agent for IBD.

11.
Front Immunol ; 15: 1389387, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247196

RESUMEN

Introduction: The role of zinc (Zn) in tumor development and immune modulation has always been paradoxical. This study redefines our understanding of the impact of Zn on cancer progression and therapeutic strategies. Methods: We investigated the effects of dietary Zn levels on tumor progression and immune responses. This included examining the impact of both high and deficient dietary Zn, as well as Zn chelation, on tumor growth and immune cell populations. Specifically, we analyzed the frequency of Foxp3+ regulatory T-cells (Tregs) and identified the role of FOXO1 in Zn-mediated effects on Tregs. Additionally, we explored the therapeutic potential of clioquinol (CQ) in enhancing α-PD-1 immunotherapy responses, particularly in melanoma. Results: Our findings show that high dietary Zn promotes tumor progression by fostering a protumorigenic environment mediated by T cells. Increased Zn intake was found to facilitate tumor progression by increasing Foxp3+ Treg frequency. In contrast, deficiency in dietary Zn and chelation of tissue Zn emerged as potent drivers of antitumor immunity. We pinpointed FOXO1 as the master regulator governing the influence of Zn on Tregs. Discussion: These results reveal a novel mechanistic insight into how Zn influences tumor progression and immune regulation. The identification of FOXO1 as a key regulator opens new avenues for understanding the role of Zn in cancer biology. Furthermore, we introduce a promising therapeutic approach by showing that administering clioquinol (CQ) significantly enhances α-PD-1 immunotherapy response, particularly in melanoma. These revelations transform our comprehension of the multifaceted role of Zn in tumorigenesis and immune regulation, highlighting innovative possibilities for cancer therapy.


Asunto(s)
Factores de Transcripción Forkhead , Linfocitos T Reguladores , Zinc , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Animales , Zinc/metabolismo , Factores de Transcripción Forkhead/metabolismo , Ratones , Clioquinol/farmacología , Ratones Endogámicos C57BL , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Melanoma Experimental/inmunología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Melanoma/inmunología , Melanoma/tratamiento farmacológico , Humanos , Línea Celular Tumoral , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Inmunoterapia/métodos , Femenino
12.
Transl Oncol ; 50: 102116, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39232378

RESUMEN

OBJECTIVES: The chemokine CCL22 is recognized for recruiting immunosuppressive regulatory T-cells (Treg) that contribute to disease progression in various tumor entities helping them to evade the host immune response. Our study aims to identify the expressing cell types and to evaluate the prognostic significance of CCL22 secretion and its association with Treg invasion in endometrial cancer (EC), an immunogenic cancer. METHODS: Specimens from 275 patients with EC and 28 healthy controls were screened immunohistochemically for CCL22. Immunofluorescence double-staining for CCL22 and different immune cell markers was performed. In vitro regulation of CCL22-expression was examined in EC cell lines (Ishikawa+, RL95-2) and human PBMCs in coculture settings via qPCR and ELISA. RESULTS: Elevated CCL22 staining in tumor cells and CCL22-positive M1-macrophages in tumordistant areas were significantly associated with increased overall survival (OS). Conversely, high, secretory-appearing staining in the peritumoral and intratumoral stroma correlated with reduced OS. Although the analysis of the in vitro coculture model of epithelial tumor- and immune cells revealed PBMCs as the primary source of CCL22, we could confirm expression of the chemokine also in the EC epithelial cells. CONCLUSION: Our study suggests that CCL22 in EC is associated with OS, dependent on its location and the cell type producing it. Intracellular upregulation and extracellular secretion must be considered separately when investigating CCL22 expressing cell types in EC. These results may provide evidence for CCL22-mediated Treg recruitment in EC as a potential future therapeutic target.

13.
J Invest Dermatol ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218144

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer caused by mutagenesis resulting from excess UVR or other types of oxidative stress. These stressors also upregulate the production of a cutaneous innate immune element, cathelicidin antimicrobial peptide (CAMP), through endoplasmic reticulum stress-initiated, sphingosine-1-phosphate (S1P) signaling pathway. Although CAMP has beneficial antimicrobial activities, it also can be proinflammatory and procarcinogenic. We addressed whether and how S1P-induced CAMP production leads to cSCC development. Our study demonstrated that (i) CAMP expression is increased in cSCC cells and skin from patients with cSCC; (ii) S1P levels are elevated in cSCC cells, whereas inhibition of S1P production attenuates CAMP-stimulated cSCC growth; (iii) exogenous CAMP stimulates cSCC but not normal human keratinocyte growth; (iv) blockade of FPRL1 protein, a CAMP receptor, attenuates cSCC growth as well as the growth and invasion of cSCC cells mediated by CAMP into an extracellular matrix-containing fibroblast substrate; (v) FOXP3+ regulatory T-cell (which decreases antitumor immunity) levels increase in cSCC skin; and (vi) CAMP induces endoplasmic reticulum stress in cSCC cells. Together, the endoplasmic reticulum stress-S1P-CAMP axis forms a vicious circle, creating a favorable environment for cSCC development, that is, cSCC growth and invasion impede anticancer immunity.

14.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273290

RESUMEN

This study aimed to identify hub genes involved in regulatory T cell (Treg) function and migration, offering insights into potential therapeutic targets for cancer immunotherapy. We performed a comprehensive bioinformatics analysis using three gene expression microarray datasets from the GEO database. Differentially expressed genes (DEGs) were identified to pathway enrichment analysis to explore their functional roles and potential pathways. A protein-protein interaction network was constructed to identify hub genes critical for Treg activity. We further evaluated the co-expression of these hub genes with immune checkpoint proteins (PD-1, PD-L1, CTLA4) and assessed their prognostic significance. Through this comprehensive analysis, we identified CCR8 as a key player in Treg migration and explored its potential synergistic effects with ICIs. Our findings suggest that CCR8-targeted therapies could enhance cancer immunotherapy outcomes, with breast invasive carcinoma (BRCA) emerging as a promising indication for combination therapy. This study highlights the potential of CCR8 as a biomarker and therapeutic target, contributing to the development of targeted cancer treatment strategies.


Asunto(s)
Biología Computacional , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Mapas de Interacción de Proteínas , Linfocitos T Reguladores , Humanos , Biología Computacional/métodos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Movimiento Celular/genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Perfilación de la Expresión Génica , Pronóstico , Redes Reguladoras de Genes , Receptores CCR8/genética , Receptores CCR8/metabolismo , Biomarcadores de Tumor/genética
15.
Front Immunol ; 15: 1472133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39324134

RESUMEN

Introduction: Even under the standard medical care, patients with left ventricular (LV) failure or heart failure (HF) often progress to pulmonary hypertension and right ventricular (RV) hypertrophy. We previously showed that inflammation and regulatory T cells (Tregs) modulate HF progression in mice with preexisting LV failure. The main objective of this study is to determine the role of CD8+ T cells in modulating LV failure and the consequent pulmonary inflammation and RV hypertrophy in mice with preexisting LV failure. Methods: Mice with LV failure produced by transverse aortic constriction (TAC) were randomized to depletion of cytotoxic CD8+ T cells, Tregs, or both using specific blocking antibodies. Cardiac function, lung inflammation, fibrosis, vascular remodeling, and right ventricular remodeling were determined. Results: LV failure caused pulmonary inflammation, fibrosis, vascular remodeling, and RV hypertrophy. Depletion of CD8+ T cells significantly attenuated above changes in mice with preexisting LV failure. LV failure was associated with increased CD4+ and CD8+ T cell activation, and increased ratios of activated T cells to Tregs. Treg depletion exacerbated lung inflammation and HF progression, as well as lung CD4+ and CD8+ T cell infiltration and activation in HF mice. However, CD8+ T cells depletion rescue these mice from exacerbated lung inflammation and RV hypertrophy after Treg depletion. Discussion: Our findings demonstrate an important role of CD8+ T cells in promoting pulmonary inflammation and RV hypertrophy in mice with preexisting LV failure. Depletion of CD8+ T cells also rescued HF mice from the exacerbated HF progression by Treg depletion.


Asunto(s)
Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Insuficiencia Cardíaca , Linfocitos T Reguladores , Disfunción Ventricular Izquierda , Animales , Insuficiencia Cardíaca/inmunología , Insuficiencia Cardíaca/etiología , Ratones , Linfocitos T CD8-positivos/inmunología , Disfunción Ventricular Izquierda/inmunología , Disfunción Ventricular Izquierda/etiología , Linfocitos T Reguladores/inmunología , Ratones Endogámicos C57BL , Masculino , Hipertrofia Ventricular Derecha/inmunología , Hipertrofia Ventricular Derecha/etiología , Neumonía/inmunología
16.
Biomed Rep ; 21(5): 164, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39268403

RESUMEN

Immune cells migrate to hypertrophied adipocytes and release proinflammatory cytokines, leading to adipocyte dysfunction and diabetes. Numerous species of Lespedeza, which are members of the plant family Fabaceae and distributed primarily in temperate Asia and North America, exhibit binding to peroxisome proliferator-activated receptor (PPAR) γ, a target nuclear receptor for treating diabetes. Therefore, the present study aimed to determine which species of Lespedeza plants exert an anti-inflammatory effect in adipose tissue and suppression of blood glucose increase through PPARγ ligand and radical scavenging activity. PPARγ binding and DPPH radical scavenging assays of L. homoloba (LH), L. thunbergii (LT), L. maximowiczii (LM) and L. thunbergii (LT) were performed. LH and LT showed significant ligand activity towards PPARγ and notable radical scavenging activity. LH exhibited a stronger DPPH radical scavenging activity than LT and thus was measured adiponectin secretion from 3T3-L1-derived adipocytes and IL-10 secretion from murine splenocytes. LH increased the adiponectin and the IL-10 secretions. In flow cytometric analysis, BALB/c male mice administered LH exhibited an increase in regulatory T cells (Tregs) and cytotoxic T lymphocyte-associated protein (CTLA)-4+ Tregs as well as a decrease in T helper (Th)17, Th17/Treg ratio and CD8+ and CD4+ T cells in subcutaneous adipose tissue. Conversely, in the spleen, LH decreased Tregs and increased Th17 cells, Th17/Treg ratio and CD4+ and CD8+ T cells. These findings indicated that LH activated immunoreaction in the spleen and Treg cells that migrate to subcutaneous adipose tissue may suppress inflammation. In fasting blood glucose and adiponectin assays, LH-exposed mice exhibited suppression of fasting glucose levels. Therefore, LH may prevent type 2 diabetes by suppressing adipose tissue inflammation.

17.
Inflamm Res ; 73(10): 1601-1614, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39198294

RESUMEN

INTRODUCTION: Probiotics provide therapeutic benefits not only in the gut but also other mucosal organs, including the lungs. OBJECTIVE AND DESIGN: To evaluate the effects of the probiotic strain L. delbrueckii UFV-H2b20 oral administration in an experimental murine model of A. fumigatus pulmonary infection. BALB/c mice were associated with L. delbrueckii and infected with Aspergillus fumigatus and compared with non-associated group. METHODS: We investigated survival, respiratory mechanics, histopathology, colony forming units, cytokines in bronchoalveolar lavage, IgA in feces, efferocytosis, production of reactive oxygen species and the cell population in the mesenteric lymph nodes. RESULTS: L. delbrueckii induces tolerogenic dendritic cells, IL-10+macrophages and FoxP3+regulatory T cells in mesenteric lymph nodes and increased IgA levels in feces; after infection with A. fumigatus, increased survival and decreased fungal burden. There was decreased lung vascular permeability without changes in the leukocyte profile. There was enhanced neutrophilic response and increased macrophage efferocytosis. L. delbrueckii-treated mice displayed more of FoxP3+Treg cells, TGF-ß and IL-10 levels in lungs, and concomitant decreased IL-1ß, IL-17 A, and CXCL1 production. CONCLUSION: Uur results indicate that L. delbrueckii UFV H2b20 ingestion improves immune responses, controlling pulmonary A. fumigatus infection. L. delbrueckii seems to play a role in pathogenesis control by promoting immune regulation.


Asunto(s)
Aspergillus fumigatus , Citocinas , Lactobacillus delbrueckii , Pulmón , Ratones Endogámicos BALB C , Probióticos , Animales , Probióticos/administración & dosificación , Aspergillus fumigatus/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/microbiología , Administración Oral , Lactobacillus delbrueckii/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Ratones , Aspergilosis/inmunología , Aspergilosis/prevención & control , Linfocitos T Reguladores/inmunología , Inmunoglobulina A/inmunología , Femenino , Líquido del Lavado Bronquioalveolar/inmunología , Aspergilosis Pulmonar/inmunología , Heces/microbiología , Masculino
18.
Immunity ; 57(9): 2043-2060.e10, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39111316

RESUMEN

The master transcription factor of regulatory T (Treg) cells, forkhead box protein P3 (Foxp3), controls Treg cell function by targeting certain genes for activation or repression, but the specific mechanisms by which it mediates this activation or repression under different conditions remain unclear. We found that Ikzf1 associates with Foxp3 via its exon 5 (IkE5) and that IkE5-deficient Treg cells highly expressed genes that would otherwise be repressed by Foxp3 upon T cell receptor stimulation, including Ifng. Treg-specific IkE5-deletion caused interferon-γ (IFN-γ) overproduction, which destabilized Foxp3 expression and impaired Treg suppressive function, leading to systemic autoimmune disease and strong anti-tumor immunity. Pomalidomide, which degrades IKZF1 and IKZF3, induced IFN-γ overproduction in human Treg cells. Mechanistically, the Foxp3-Ikzf1-Ikzf3 complex competed with epigenetic co-activators, such as p300, for binding to target gene loci via chromatin remodeling. Therefore, the Ikzf1 association with Foxp3 is essential for the gene-repressive function of Foxp3 and could be exploited to treat autoimmune disease and cancer.


Asunto(s)
Autoinmunidad , Factores de Transcripción Forkhead , Factor de Transcripción Ikaros , Interferón gamma , Linfocitos T Reguladores , Factor de Transcripción Ikaros/metabolismo , Factor de Transcripción Ikaros/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Humanos , Animales , Autoinmunidad/genética , Autoinmunidad/inmunología , Ratones , Interferón gamma/metabolismo , Regulación de la Expresión Génica , Ratones Noqueados , Neoplasias/inmunología , Neoplasias/genética , Ratones Endogámicos C57BL , Proteína p300 Asociada a E1A/metabolismo
19.
Autoimmun Rev ; 23(7-8): 103591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39117005

RESUMEN

Autoimmune hepatitis (AIH) is a severe hepatopathy characterized by hypergammaglobulinemia, presence of serum autoantibodies and histological appearance of interface hepatitis. Liver damage in AIH is initiated by the presentation of a liver autoantigen to uncommitted Th0 lymphocytes, followed by a cascade of effector immune responses culminating with the production of inflammatory cytokines, activation of cytotoxic cells and subsequent hepatocyte injury. B cells actively participate in AIH liver damage by presenting autoantigens to uncommitted T lymphocytes. B cells also undergo maturation into plasma cells that are responsible for production of immunoglobulin G and autoantibodies, which mediate antibody dependent cell cytotoxicity. Perpetuation of effector immunity with consequent progression of liver damage is permitted by impairment in regulatory T cells (Tregs), a lymphocyte subset central to the maintenance of immune homeostasis. Treg impairment in AIH is multifactorial, deriving from numerical decrease, reduced suppressive function, poor response to IL-2 and less stable phenotype. In this review, we discuss the role of B and T lymphocytes in the pathogenesis of AIH. Immunotherapeutic strategies that could limit inflammation and halt disease progression while reconstituting tolerance to liver autoantigens are also reviewed and discussed.


Asunto(s)
Linfocitos B , Hepatitis Autoinmune , Humanos , Hepatitis Autoinmune/inmunología , Hepatitis Autoinmune/patología , Linfocitos B/inmunología , Animales , Autoantígenos/inmunología , Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Autoanticuerpos/inmunología
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(4): 1197-1200, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39192419

RESUMEN

OBJECTIVE: To explore the levels of regulatory T cells (Tregs) and cytokines IL-35, TGF-ß and IL-10 in peripheral blood of hemophilia A(HA) patients with FⅧ inhibitor and their clinical significance. METHODS: 43 HA patients admitted to the Hematology Department of the Affiliated Hospital of North China University of Science and Technology from October 2019 to December 2020 were selected, including 6 cases with FⅧ inhibitor and 37 cases without FⅧ inhibitor. In addition, 20 healthy males who underwent physical examinations were selected as healthy controls. Flow cytometry was used to detect the levels of CD4 + CD25 + CD127 - Tregs in peripheral blood of the HA patients and healthy controls, and ELISA assay was used to detect the expression levels of IL-35, TGF-ß and IL-10 in serum, and their differences between different groups were compared. RESULTS: Compared with the healthy control group, the level of Tregs in HA patients was decreased, and the level of Tregs in the FⅧ inhibitor positive group was the lowest, the difference was statistically significant (P <0.05). There was no significant difference in the expression level of Tregs in HA patients of different severity levels. The serum IL-35, TGF-ß, and IL-10 levels in both FⅧ inhibitor negative and positive groups were significantly lower than those in healthy control group, and those in FⅧ inhibitor positive group were significantly lower than those in FⅧ inhibitor negative group (all P <0.05). CONCLUSION: The decrease of Tregs, IL-35, TGF-ß, and IL-10 levels in HA patients may be related to the formation of FⅧ inhibitors.


Asunto(s)
Hemofilia A , Interleucina-10 , Interleucinas , Linfocitos T Reguladores , Factor de Crecimiento Transformador beta , Humanos , Interleucina-10/sangre , Hemofilia A/sangre , Factor de Crecimiento Transformador beta/sangre , Interleucinas/sangre , Masculino , Estudios de Casos y Controles , Relevancia Clínica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...