Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Eur J Cell Biol ; 103(3): 151442, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986342

RESUMEN

Urine-derived renal epithelial cells (URECs) are highly voided after kidney transplant and express typical kidney markers, including markers of kidney epithelial progenitor cells. Recently URECs have shown promising immunomodulatory properties when cultured with Peripheral Blood Mononuclear Cells (PBMCs), promoting an increase in the T regulatory cells. In vivo, kidney cells are highly exposed to damage associated molecules during both acute and chronic kidney injury. Neutrophil gelatinase-associated lipocalin (NGAL) is one of the most -known early marker of acute and chronic kidney damage. However, its role on the evolution of renal damage has not yet been fully described, nor has its impact on the characteristics of renal-derived cells during in vitro culture. The aim of this study is to investigate the effect of NGAL on the characteristics of URECs isolated after kidney transplant, by exposing these cells to the treatment with NGAL during in vitro culture and evaluating its effect on UREC viability, proliferation, and immunomodulatory potential. The exposure of URECs to NGAL reduced their viability and proliferative capacity, promoting the onset of apoptosis. The immunomodulatory properties of URECs were partially inhibited by NGAL, without affecting the increase of Treg cells observed during UREC-PBMCs coculture. These results suggest that the exposure to NGAL may compromise some features of kidney stem and specialized cell types, reducing their viability, increasing apoptosis, and partially altering their immunomodulatory properties. Thus, NGAL could represent a target for approaches acting on its inhibition or reduction to improve functional recovery.


Asunto(s)
Células Epiteliales , Trasplante de Riñón , Lipocalina 2 , Humanos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Riñón/citología , Riñón/metabolismo , Lipocalina 2/metabolismo
2.
Mol Biol Rep ; 51(1): 304, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361088

RESUMEN

Mitochondrial dysfunction represents a pivotal aspect of the pathogenesis and progression of diabetic kidney disease (DKD). Central to the orchestration of mitochondrial biogenesis is the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α), a master regulator with a profound impact on mitochondrial function. In the context of DKD, PGC1-α exhibits significant downregulation within intrinsic renal cells, precipitating a cascade of deleterious events. This includes a reduction in mitochondrial biogenesis, heightened levels of mitochondrial oxidative stress, perturbed mitochondrial dynamics, and dysregulated mitophagy. Concurrently, structural and functional abnormalities within the mitochondrial network ensue. In stark contrast, the sustained expression of PGC1-α emerges as a beacon of hope in maintaining mitochondrial homeostasis within intrinsic renal cells, ultimately demonstrating an impressive renoprotective potential in animal models afflicted with DKD. This comprehensive review aims to delve into the recent advancements in our understanding of the renoprotective properties wielded by PGC1-α. Specifically, it elucidates the potential molecular mechanisms underlying PGC1-α's protective effects within renal tubular epithelial cells, podocytes, glomerular endothelial cells, and mesangial cells in the context of DKD. By shedding light on these intricate mechanisms, we aspire to provide valuable insights that may pave the way for innovative therapeutic interventions in the management of DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Podocitos , Animales , Nefropatías Diabéticas/metabolismo , Células Endoteliales/metabolismo , Riñón/metabolismo , Podocitos/metabolismo , Mitocondrias/metabolismo , Diabetes Mellitus/metabolismo
3.
Cell Physiol Biochem ; 58(1): 33-48, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38285930

RESUMEN

BACKGROUND/AIMS: Nitric oxide (NO) plays a dual role, acting as both an oxidant and a reducer, with various effects depending on its concentration and environment. Acute kidney injury's (AKI) pathogenesis observed in cardiorenal syndrome 3 (CRS 3) involves inflammatory responses and the production of reactive oxygen and nitrogen species. However, the role of NO on the development of CRS 3 is still not completely understood. The study aimed to mimic CRS 3 in vitro and investigate NO signaling and inflammatory molecules. METHODS: Thus, HEK293 cells were submitted to normoxia (NX) or hypoxia (HX) protocols for 16 h followed by 3 h of reoxygenation, treated or not with L-NAME. Conditionate medium by HEK293 was transferred to H9c2 for 24 h. Cellular viability was evaluated by MTT assay, real time PCR was used to analyze gene expression and NO content were evaluated in the intra and extracellular medium by amperimetry. RESULTS: Carbonic anhydrase 9 (CA9) expression increased 2.9-fold after hypoxia. Hypoxia reduced 18 % cell viability in HEK293 that was restored by L-NAME treatment. The sum of nitrite (NO2-) and S-nitrosothiol (S-NO) fractions in HEK293 cells showed a substantial decrease on NO intracellular content (38 %). Both IL-6 and IL-10 decreased in all groups compared to NX cells. Besides TNF-α and Bax/Bcl2 ratio increased in hypoxia (approximately 120-fold and 600-fold, respectively) and L-NAME restored this effect. Regarding H9c2 cells, the S-NO fractions showed a substantial decrease in extracellular content after HX (17%) that was not restored by L-NAME. IL-1ß decreases in cardiac cells treated with conditioned medium from HX/L-NAME. CONCLUSION: In conclusion this study highlights the complex interplay of NO and inflammatory factors in hypoxia-induced renal and cardiac cell responses, with potential implications for cardiorenal syndrome.


Asunto(s)
Síndrome Cardiorrenal , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Células HEK293 , Hipoxia
4.
Cell Biosci ; 13(1): 231, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129901

RESUMEN

Nephrotoxicity is a significant concern during the development of new drugs or when assessing the safety of chemicals in consumer products. Traditional methods for testing nephrotoxicity involve animal models or 2D in vitro cell cultures, the latter of which lack the complexity and functionality of the human kidney. 3D in vitro models are created by culturing human primary kidney cells derived from urine in a 3D microenvironment that mimics the fluid shear stresses of the kidney. Thus, 3D in vitro models provide more accurate and reliable predictions of human nephrotoxicity compared to existing 2D models. In this review, we focus on precision nephrotoxicity testing using 3D in vitro models with human autologous urine-derived kidney cells as a promising approach for evaluating drug safety.

5.
Chem Biol Drug Des ; 102(6): 1409-1420, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37599208

RESUMEN

Diabetic nephropathy is a major complication of diabetes mellitus and is related to dysfunction of renal cells. Hederagenin is a triterpenoid saponin from some Chinese herbs with anti-inflammatory and anti-diabetic activities. However, its role in diabetic nephropathy progression is still obscure. This study aimed to explore the effects of hederagenin on renal cell dysfunction in vitro. Human renal mesangial cells (HRMCs) and human renal proximal tubular epithelial cells (HRPTEpiCs) were cultured under high glucose (HG) conditions to mimic diabetic nephropathy-like injury. Cell proliferation was evaluated by CCK-8. mRNA and protein levels were determined by qRT-PCR and western blotting, respectively. The secretion levels of fibrosis-related biomarkers were analyzed by ELISA. Results showed that hederagenin reduced HG-induced proliferation increase in HRMCs and HRPTEpiCs. Hederagenin attenuated HG-induced increase in mRNA and protein expression of NLRP3, ASC, and IL-1ß. Hederagenin also suppressed HG-induced increase in mRNA and secretion levels of FN, Col. IV, PAI-1, and TGF-ß1. NLRP3 inhibitor MCC950 attenuated HG-induced fibrosis of renal cells, and its activator nigericin reversed the suppressive effect of hederagenin on HG-induced fibrosis. Bioinformatics analysis predicted cathepsin B (CTSB) as a target of hederagenin to modulate NOD-like receptor (NLR) pathway. Hederagenin decreased CTSB level, and CTSB overexpression reversed the suppressive effect of hederagenin on HG-induced NLRP3 inflammasome activation and fibrosis in HRMCs and HRPTEpiCs. In conclusion, hederagenin attenuates HG-induced fibrosis of renal cells by inhibiting NLRP3 inflammasome activation via reducing CTSB expression, indicating a therapeutic potential of hederagenin in diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas , Inflamasomas , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Catepsina B , Fibrosis , Glucosa , ARN Mensajero
6.
Environ Toxicol Pharmacol ; 101: 104192, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37348771

RESUMEN

The effects of the exposure of proliferating MDCK cells to thallium [Tl(I) or Tl(III)] on cell viability and proliferation were investigated. Although Tl stopped cell proliferation, the viability was > 95%. After 3 h, two autophagy markers (SQSTM-1 expression and LC3ß localization) were altered, and at 48 h increased expression of SQSTM-1 (60%) and beclin-1 (50-100%) were found. At 24 h, the expression of endoplasmic reticulum (ER) stress markers ATF-6 and IRE-1 were increased in 100% and 150%, respectively, accompanied by XBP-1 splicing and nuclear translocation. At 48 h, major ultrastructure abnormalities were found, including ER enlargement and cytoplasmic vacuolation which was not prevented by protein synthesis inhibition. Increased PHB (85% and 40% for Tl(I) and Tl(III), respectively) and decreased ß-tubulin (45%) expression were found which may be related to the promotion of paraptosis. In summary, Tl(I) and Tl(III) promoted ER stress and probably paraptosis in MDCK cells, impairing their proliferation.


Asunto(s)
Apoptosis , Talio , Animales , Perros , Talio/farmacología , Células de Riñón Canino Madin Darby , Estrés del Retículo Endoplásmico , Proliferación Celular , Autofagia
7.
Toxicon ; 223: 107011, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36584790

RESUMEN

Envenomation by Bothrops snakes and Apis mellifera bee may imply systemic disorders which affect well-perfused organs such as kidneys, a process that can lead to acute renal failure. Nevertheless, there is scarce information regarding a direct renal cell effect and the putative antagonism by antivenoms. Here the cytotoxic effect of B. jararacussu and A. mellifera venoms was evaluated in the renal proximal tubule cell line LLC-PK1, as well as the antagonism of this effect by heparin. B. jararacussu venom showed significant cytotoxicity as assessed by LDH release and MTT reduction, with a sharp decline of the cell number after 180 min (>90% at 50 µg/mL). A. mellifera venom produced a much faster and potent cytotoxic activity, conferring almost no viable cells after 15 min at 25 µg/mL. Phase contrast microscopy revealed that while B. jararacussu venom induced a progressive loss of cell adhesion and detachment, A. mellifera venom promoted a rapid plasma membrane disruption and nuclear condensation suggestive of necrotic cell death. Pre-incubation of both venoms with heparin for 30 min significantly reduced cytotoxicity. Our results demonstrate direct toxicity of B. jararacussu and A. mellifera venoms toward renal cells but with distinct kinetics and cell pattern, suggesting different mechanisms of action. In addition, the antagonistic, cytoprotective effect of heparin ascribes such compound as a promising drug for preventing renal failure from envenomation.


Asunto(s)
Antineoplásicos , Bothrops , Venenos de Crotálidos , Abejas , Animales , Heparina/farmacología , Antivenenos/farmacología , Venenos de Crotálidos/toxicidad , Riñón
8.
Cell Biol Toxicol ; 39(5): 1939-1956, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-34973136

RESUMEN

The unique physicochemical properties make inorganic nanoparticles (INPs) an exciting tool in diagnosis and disease management. However, as INPs are relatively difficult to fully degrade and excrete, their unintended accumulation in the tissue might result in adverse health effects. Herein, we provide a methylome-transcriptome framework for chronic effects of INPs, commonly used in biomedical applications, in human kidney TH-1 cells. Renal clearance is one of the most important routes of nanoparticle excretion; therefore, a detailed evaluation of nanoparticle-mediated nephrotoxicity is an important task. Integrated analysis of methylome and transcriptome changes induced by INPs (PEG-AuNPs, Fe3O4NPs, SiO2NPs, and TiO2NPs) revealed significantly deregulated genes with functional classification in immune response, DNA damage, and cancer-related pathways. Although most deregulated genes were unique to individual INPs, a relatively high proportion of them encoded the transcription factors. Interestingly, FOS hypermethylation inversely correlating with gene expression was associated with all INPs exposures. Our study emphasizes the need for a more comprehensive investigation of INPs' biological safety, especially after chronic exposure.


Asunto(s)
Nanopartículas del Metal , Transcriptoma , Humanos , Transcriptoma/genética , Epigenoma/genética , Oro , Nanopartículas del Metal/toxicidad , Metilación de ADN/genética , Riñón
9.
Molecules ; 27(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36432058

RESUMEN

Renal excretion is expected to be the major route for the elimination of biomedically applied nanoparticles from the body. Hence, understanding the nanomedicine-kidney interaction is crucially required, but it is still far from being understood. Herein, we explored the lateral dimension- (~70 nm and ~300 nm), dose- (1, 5, and 15 mg/kg in vivo and 0.1~250 µg/mL in vitro), and time-dependent (48 h and 7 d in vivo) deposition and injury of PEGylated graphene oxide sheets (GOs) in the kidney after i.v. injection in mice. We specially investigated the cytotoxic effects on three typical kidney cell types with which GO renal excretion is related: human renal glomerular endothelial cells (HRGECs) and human podocytes, and human proximal tubular epithelial cells (HK-2). By using in vivo fluorescence imaging and in situ Raman imaging and spectroscopic analysis, we revealed that GOs could gradually be eliminated from the kidneys, where the glomeruli and renal tubules are their target deposition sites, but only the high dose of GO injection induced obvious renal histological and ultrastructural changes. We showed that the high-dose GO-induced cytotoxicity included a cell viability decrease and cellular apoptosis increase. GO uptake by renal cells triggered cellular membrane damage (intracellular LDH release) and increased levels of oxidative stress (ROS level elevation and a decrease in the balance of the GSH/GSSG ratio) accompanied by a mitochondrial membrane potential decrease and up-regulation of the expression of pro-inflammatory cytokines TNF-α and IL-18, resulting in cellular apoptosis. GO treatments activated Keap1/Nrf2 signaling; however, the antioxidant function of Nrf2 could be inhibited by apoptotic engagement. GO-induced cytotoxicity was demonstrated to be associated with oxidative stress and an inflammation reaction. Generally, the l-GOs presented more pronounced cytotoxicity and more severe cellular injury than s-GOs did, demonstrating lateral size-dependent toxicity to the renal cells. More importantly, GO-induced cytotoxicity was independent of renal cell type. The results suggest that the dosage of GOs in biomedical applications should be considered and that more attention should be paid to the ability of a high dose of GO to cause renal deposition and potential nephrotoxicity.


Asunto(s)
Células Endoteliales , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Células Endoteliales/metabolismo , Riñón , Células Epiteliales
10.
Nutrients ; 14(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36432415

RESUMEN

We aimed to explore the optimization and application of a bionic system of dynamic co-culture with hepatocytes and renal cells based on the microfluidic chip technique in evaluating emodin, which might replace the conventionally cytological evaluation technique of health food. After optimal experiments, the improved bionic system was composed of human hepatocellular carcinoma cells (HepG2), human renal glomerular endothelial cells (HRGECs), rat tail collagen type I, and gelatin with optimized concentrations (1.3 mg/mL + 7.5%). The applicability of the bionic system indicated that the growth stability was appropriate (CV: 7.36%), and the cell viability of that gradually decreased with the increasing of emodin concentration from 0−100 µM, which statistic significances were at 50 and 100 µM (p < 0.05), and the stained results of dead/live cells also showed the same trend. The LDH level appeared rising trend after decline between 0 µM and 100 µM emodi, and the level of that at 100 µM emodin was significantly higher than that at 25 µM and 50 µM emodin, respectively. The BUN level continuously and significantly declined with the increasing of emodin concentration (p < 0.05). Our research realized the application of this optimized bionic system in evaluating emodin, and provided a useful platform and reference for further in vitro alternative research with regard to evaluating the efficacies of health food in the future.


Asunto(s)
Emodina , Microfluídica , Ratas , Humanos , Animales , Técnicas de Cocultivo , Microfluídica/métodos , Células Endoteliales , Biónica , Hepatocitos
11.
Pharmacol Res ; 185: 106488, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36206957

RESUMEN

The role of mitochondria in health and disease has dramatically changed in the last decade. Its complex integration into cell physiology is comprised of key metabolic functions of great importance in health maintenance. Treating obesity seems to improve overall mitochondria tissue malfunction; however, the extent of their impact on patients remains elusive due to the lack of follow-up studies. It has been observed that procedures such as bariatric surgery (BS) can modify how our body absorbs nutrients, influencing metabolic processes and mitochondrial function in several cells and tissues. In fact, tissue analysis performed in vivo and in patients support that BS mitigates mitochondrial dysfunction in obese subjects. BS has been observed to reduce the presence of comorbidities such as type 2 diabetes (T2D) and hypertension (HTN) in patients. It is still unclear how BS specifically affects mitochondrial dynamics in obesity-induced comorbidities such as kidney disease. This article provides insightful information regarding the amelioration of mitochondrial dynamics in renal cells and systems after BS. Understanding the multiple pathways that lead to mitochondrial dysregulation in obesity-related kidney disease and relating them to the positive molecular changes after BS may lead to the development of adjuvant therapies to control this and other conditions with similar pathophysiological backgrounds.


Asunto(s)
Cirugía Bariátrica , Diabetes Mellitus Tipo 2 , Obesidad Mórbida , Insuficiencia Renal Crónica , Humanos , Obesidad Mórbida/cirugía , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/cirugía , Cirugía Bariátrica/métodos , Obesidad/complicaciones , Obesidad/cirugía , Mitocondrias
12.
Kidney Int Rep ; 7(7): 1619-1629, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35812284

RESUMEN

Introduction: Chronic kidney disease (CKD) is a worldwide disease without cure. Selected renal cells (SRCs) can augment kidney function in animal models. This study correlates the phenotypical characteristics of autologous homologous SRCs (formulated product called Renal Autologous Cell Therapy [REACT]) injected into patients' kidneys with advanced type 2 diabetes-related CKD (D-CKD) to clinical and laboratory findings. Methods: A total of 22 adults with type 2 D-CKD underwent a kidney biopsy followed by 2 subcortical injections of SRCs, 7 ± 3 months apart. There were 2 patients who had only 1 injection. We compared annualized estimated glomerular filtration rate (eGFR) slopes pre- and post-REACT injection using the 2009 CKD-EPI formula for serum creatinine (sCr) and the 2012 CKD-EPI Creatinine-Cystatin C equation and report clinical/laboratory changes. Fluorescent Activated Cell Sorting (FACS) Analysis for renal progenitor lineages in REACT and donor vascular endothelial growth factor A (VEGF-A) analysis were performed. Longitudinal parameter changes were analyzed with longitudinal linear mixed effects model. Results: At baseline, the mean diabetes duration was 18.4 ± 8.80 years, glycated hemoglobin (Hgb) was 7.0 ± 1.05, and eGFR was 40.3 ± 9.35 ml/min per 1.73 m2 using the 2012 CKD-EPI cystatin C and sCr formulas. The annualized eGFR slope (2012 CKD-EPI) was -4.63 ml/min per 1.73 m2 per year pre-injection and improved to -1.69 ml/min per 1.73 m2 per year post-injection (P = 0.015). There were 7 patients who had an eGFR slope of >0 ml/min per 1.73 m2 postinjection. SRCs were found to have cell markers of ureteric bud, mesenchyme cap, and podocyte sources and positive VEGF. There were 2 patients who had remote fatal adverse events determined as unrelated with the biopsies/injections or the REACT product. Conclusion: Our cell marker analysis suggests that SRCs may enable REACT to stabilize and improve kidney function, possibly halting type 2 D-CKD progression.

13.
Front Med (Lausanne) ; 9: 954574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35872775

RESUMEN

A growing number of studies have confirmed that immune cells play various key roles in the pathophysiology of acute kidney injury (AKI) development. After the resident immune cells and intrinsic renal cells are damaged by ischemia and hypoxia, drugs and toxins, more immune cells will be recruited to infiltrate through the release of chemokines, while the intrinsic cells promote macrophage polarity conversion, and the immune cells will promote various programmed deaths, phenotypic conversion and cycle arrest of the intrinsic cells, ultimately leading to renal impairment and fibrosis. In the complex and dynamic immune microenvironment of AKI, the bidirectional interaction between immune cells and intrinsic renal cells affects the prognosis of the kidney and the progression of fibrosis, and determines the ultimate fate of the kidney.

14.
Toxics ; 10(4)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35448438

RESUMEN

Transmission Electron Microscopic (TEM) assessments were performed on the renal cells of common carp Cyprinus carpio to observe the deleterious effects of two organophosphate insecticides, Phorate and Dimethoate. Pesticides such as Phorate and Dimethoate often pollute aquatic systems where they may negatively impact fish, but so far, the ultrastructural toxicity of these pesticides remains poorly understood. Here, we use Transmission Electron Microscopy (TEM) to determine how acute exposure to sublethal concentrations of these two pesticides may affect the renal cells of common carp Cyprinus carpio. For each insecticide, the fish were divided in four experimental conditions: a control and three different exposure concentrations of the pesticide. The Phorate treated fish were exposed to three sublethal concentrations of 0.2 mg/L, 0.4 mg/L, 0.6 mg/L for a duration of 24, 48 & 72 h. The dimethoate treated fish were exposed to three sublethal concentrations of 0.005 mL/L, 0.01 mL/L, 0.015 mL/L for a duration of 24, 48 and 72 h. The two-dimensional transmission electron microscopy revealed ultrastructural abnormalities in the treated fish renal cells when exposed to two toxicants including deformation in the glomerulus, vacuolization of cytoplasm, degenerative nucleus and damaged mitochondria. Furthermore, the ultrastructural abnormalities were more prominent with the increase in the concentrations of both the insecticides and also with their exposure period. Overall, these results provide important baseline data on the ultrastructural toxicity of Phorate and Dimethoate and will allow important follow-up studies to further elucidate the underlying cellular mechanisms of pesticide toxicity in wildlife.

15.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35409004

RESUMEN

tRNA-derived fragments participate in the regulation of many processes, such as gene silencing, splicing and translation in many organisms, ranging from bacteria to humans. We were interested to know how tRF abundance changes during the different stages of renal cell development. The research model used here consisted of the following human renal cells: hESCs, HEK-293T, HK-2 and A-489 kidney tumor cells, which, together, mimic the different stages of kidney development. The characteristics of the most abundant tRFs, tRFGly(CCC), tRFVal(AAC) and tRFArg(CCU), were presented. It was found that these parental tRNAs present in cells are the source of many tRFs, thus increasing the pool of potential regulatory RNAs. Indeed, a bioinformatic analysis showed the possibility that tRFGly(CCC) and tRRFVal(AAC) could regulate the activity of a range of kidney proteins. Moreover, the distribution of tRFs and the efficiency of their expression is similar in adult and embryonic stem cells. During the formation of tRFs, HK-2 cells resemble A-498 cancer cells more than other cells. Additionally, we postulate the involvement of Dicer nuclease in the formation of tRF-5b in all the analyzed tRNAs. To confirm this, 293T NoDice cells, which in the absence of Dicer activity do not generate tRF-5b, were used.


Asunto(s)
Biología Computacional , ARN de Transferencia , Adulto , Humanos , Riñón/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
16.
Stem Cell Res Ther ; 13(1): 72, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177125

RESUMEN

BACKGROUND: Selected renal cells (SRC) are in Phase II clinical trials as a kidney-sourced, autologous, tubular epithelial cell-enriched cell-based therapy for chronic kidney disease (CKD). In preclinical studies with rodent models of CKD, SRC have been shown to positively modulate key renal biomarkers associated with development of the chronic disease condition. METHODS: A comparative bioinformatic analysis of transcripts specifically enriched or depleted in SRC component sub-populations relative to the initial, biopsy-derived cell source was conducted. RESULTS: Outcomes associated with therapeutically relevant bioactivity from a systematic, genome-wide transcriptomic profiling of rodent SRC are reported. Key transcriptomic networks and concomitant signaling pathways that may underlie SRC mechanism of action as manifested by reparative, restorative, and regenerative bioactivity in rodent models of chronic kidney disease are identified. These include genes and gene networks associated with cell cycle control, transcriptional control, inflammation, ECM-receptor interaction, immune response, actin polymerization, regeneration, cell adhesion, and morphogenesis. CONCLUSIONS: These data indicate that gene networks associated with development of the kidney are also leveraged for SRC regenerative bioactivity, providing evidence of potential mechanisms of action.


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Riñón/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/terapia
17.
Med Res Rev ; 42(1): 629-640, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34328226

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most common congenital kidney disorder, generally caused by mutations in the PKD1 and PKD2 genes, coding for polycystins 1 and 2. Its pathogenesis is accompanied by alterations of the cAMP, mTOR, MAPK/ERK, and JAK/STAT pathways. ADPKD is clinically characterized by the formation of many growing cysts with kidney enlargement and a progressive damage to the parenchyma, up to its complete loss of function, and the onset of end-stage renal disease (ESRD). The current aim of ADPKD therapy is the inhibition of cyst development and retardation of chronic kidney disease progression. Several drugs have been recently included as potential therapies for ADPKD including metformin, the drug of choice for the treatment of type 2 diabetes mellitus, according to its potential inhibitory effects on cystogenesis. In this review, we summarize preclinical and clinical evidence endorsing or rejecting metformin administration in ADPKD evolution and pathological mechanisms. We explored the biology of APDKD and the role of metformin in slowing down cystogenesis searching PubMed and Clinical Trials to identify relevant data from the database inception to December 2020. From our research analysis, evidence for metformin as emerging cure for ADPKD mainly arise from preclinical studies. In fact, clinical studies are still scanty and stronger evidence is awaited. Its effects are likely mediated by inhibition of the ERK pathway and increase of AMPK levels, which are both linked to ADPKD pathogenesis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Riñón Poliquístico Autosómico Dominante , Insuficiencia Renal Crónica , Humanos , Riñón/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Mutación , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo
18.
Medicina (Kaunas) ; 57(9)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34577867

RESUMEN

We report the case of a 65-year-old man with acute GFR decline to 37 mL/min and uncontrolled high blood pressure. He was suspected for renovascular hypertension and underwent a renal color Doppler ultrasound scan that detected a bilateral atherosclerotic renal artery stenosis. A digital selective angiography by percutaneous transluminal angioplasty and stenting (PTRAs) was successfully performed. Blood pressure rapidly normalized, GFR increased within a few days, and proteinuria disappeared thereafter. These clinical goals were accompanied by a significant increase of circulating renal stem cells (RSC) and a slight increase of resistive index (RI) in both kidneys. This single observation suggests the need for extensive studies aimed at evaluating the predictive power of RI and RSC in detecting post-ischemic renal repair mechanisms.


Asunto(s)
Hipertensión Renovascular , Obstrucción de la Arteria Renal , Anciano , Angioplastia , Humanos , Hipertensión Renovascular/diagnóstico por imagen , Hipertensión Renovascular/etiología , Hipertensión Renovascular/terapia , Riñón/diagnóstico por imagen , Riñón/cirugía , Masculino , Obstrucción de la Arteria Renal/diagnóstico por imagen , Obstrucción de la Arteria Renal/cirugía , Células Madre , Stents
19.
Int J Gen Med ; 14: 5993-6000, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34588803

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent single-gene disorder leading to renal failure. Current therapies are aimed to treat renal and extrarenal complications of ADPKD, but improved knowledge of the pathophysiological mechanisms leading to the generation and growth of cysts has permitted the identification of new drug candidates for clinical trials. Among these, in this review, we will examine above all the role of metformin, hypothesized to be able to activate the AMP-activated protein kinase (AMPK) pathway and potentially modulate some mechanisms implicated in the onset and the growth of the cysts.

20.
Environ Toxicol ; 36(9): 1857-1872, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34089297

RESUMEN

The study investigated the toxicogenic effects, molecular mechanisms and proteomic assessment of aflatoxin B1 (AFB1 ) on human renal cells. Hek293 cells were exposed to AFB1 (0-100 µM) for 24 h. The effect on cell viability was assessed using the methylthiazol tetrazolium (MTT) assay, which also produced the half maximal inhibitory concentration (IC50 ) used in subsequent assays. Free radical production was evaluated by quantifying malondialdehyde (MDA) and nitrate concentration, while DNA fragmentation was determined using the single cell gel electrophoresis (SCGE) assay and DNA gel electrophoresis. Damage to cell membranes was ascertained using the lactate dehydrogenase (LDH) assay. The concentration of ATP, reduced glutathione (GSH), necrosis, annexin V and caspase activity was measured by luminometry. Western blotting and quantitative PCR was used to assess the expression of proteins and genes associated with apoptosis and oxidative stress. The MTT assay revealed a reduction in cell viability of Hek293 cells as the AFB1 concentration was increased, with a half maximum inhibitory concentration (IC50 ) of 32.60 µM. The decreased viability corresponded to decreased ATP concentration. The upregulation of Hsp70 indicated that oxidative stress was induced in the AFB1 -treated cells. While this implies an increased production of free radicals, the accompanying upregulation of the antioxidant system indicates the activation of defense mechanisms to prevent cellular damage. Thus, membrane damage associated with increased radical formation was prevented as indicated by the reduced LDH release and necrosis. In addition, cytotoxic effects were evident as AFB1 activated the intrinsic pathway of apoptosis with corresponding increased DNA fragmentation, p53 and Bax upregulation and increased caspase activity, but externalization of phosphatidylserine (PS), a major hallmark of apoptosis, did not occur in AFB1 treated renal cells. The results suggest that AFB1 induced oxidative stress leading to cell death by the intrinsic pathway of apoptosis in renal cells.


Asunto(s)
Aflatoxina B1 , Proteómica , Aflatoxina B1/toxicidad , Apoptosis , Células HEK293 , Humanos , Riñón , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...