Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Intervalo de año de publicación
1.
Proteins ; 92(4): 509-528, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37982321

RESUMEN

Interactions between proteins are vital in almost all biological processes. The characterization of protein-protein interactions helps us understand the mechanistic basis of biological processes, thereby enabling the manipulation of proteins for biotechnological and clinical purposes. The interface residues of a protein-protein complex are assumed to have the following two properties: (a) they always interact with a residue of a partner protein, which forms the basis for distance-based interface residue identification methods, and (b) they are solvent-exposed in the isolated form of the protein and become buried in the complex form, which forms the basis for Accessible Surface Area (ASA)-based methods. The study interrogates this popular assumption by recognizing interface residues in protein-protein complexes through these two methods. The results show that a few residues are identified uniquely by each method, and the extent of conservation, propensities, and their contribution to the stability of protein-protein interaction varies substantially between these residues. The case study analyses showed that interface residues, unique to distance, participate in crucial interactions that hold the proteins together, whereas the interface residues unique to the ASA method have a potential role in the recognition, dynamics, and specificity of the complex and can also be a hotspot. Overall, the study recommends applying both distance and ASA methods so that some interface residues missed by either method but crucial to the stability, recognition, dynamics, and function of protein-protein complexes are identified in a complementary manner.


Asunto(s)
Proteínas , Proteínas/química , Solventes/química , Unión Proteica
2.
Proteins ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828826

RESUMEN

Protein domains are structural, functional, and evolutionary units. These domains bring out the diversity of functionality by means of interactions with other co-existing domains and provide stability. Hence, it is important to study intra-protein inter-domain interactions from the perspective of types of interactions. Domains within a chain could interact over short timeframes or permanently, rather like protein-protein interactions (PPIs). However, no systematic study has been carried out between two classes, namely permanent and transient domain-domain interactions. In this work, we studied 263 two-domain proteins, belonging to either of these classes and their interfaces on the basis of several factors, such as interface area and details of interactions (number, strength, and types of interactions). We also characterized them based on residue conservation at the interface, correlation of residue motions across domains, its involvement in repeat formation, and their involvement in particular molecular processes. Finally, we could analyze the interactions arising from domains in two-domain monomeric proteins, and we observed significant differences between these two classes of domain interactions and a few similarities. This study will help to obtain a better understanding of structure-function and folding principles of multi-domain proteins.

3.
Biochim Biophys Acta Bioenerg ; 1864(2): 148958, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758662

RESUMEN

Pyruvate:quinone oxidoreductases (PQOs) catalyse the oxidative decarboxylation of pyruvate to acetate and concomitant reduction of quinone to quinol with the release of CO2. They are thiamine pyrophosphate (TPP) and flavin-adenine dinucleotide (FAD) containing enzymes, which interact with the membrane in a monotopic way. PQOs are considered as part of alternatives to most recognized pyruvate catabolizing pathways, and little is known about their taxonomic distribution and structural/functional relationship. In this bioinformatics work we tackled these gaps in PQO knowledge. We used the KEGG database to identify PQO coding genes, performed a multiple sequence analysis which allowed us to study the amino acid conservation on these enzymes, and looked at their possible cellular function. We observed that PQOS are enzymes exclusively present in prokaryotes with most of the sequences identified in bacteria. Regarding the amino acid sequence conservation, we found that 75 amino acid residues (out of 570, on average) have a conservation over 90 %, and that the most conserved regions in the protein are observed around the TPP and FAD binding sites. We systematized the presence of conserved features involved in Mg2+, TPP and FAD binding, as well as residues directly linked to the catalytic mechanism. We also established the presence of a new motif named "HEH lock", possibly involved in the dimerization process. The results here obtained for the PQO protein family contribute to a better understanding of the biochemistry of these respiratory enzymes.


Asunto(s)
Ácido Pirúvico , Quinona Reductasas , Secuencia de Aminoácidos , Flavina-Adenina Dinucleótido/metabolismo , Proteínas , Quinona Reductasas/metabolismo , Aminoácidos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Quinonas
4.
Proteins ; 90(3): 632-644, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34626492

RESUMEN

Structure, function, and evolution are interdependent properties of proteins. Diversity of protein functions arising from structural variations is a potential driving force behind protein evolvability. Intrinsically disordered proteins or regions (IDPs or IDRs) lack well-defined structure under normal physiological conditions, yet, they are highly functional. Increased occurrence of IDPs in eukaryotes compared to prokaryotes indicates strong correlation of protein evolution and disorderedness. IDPs generally have higher evolution rate compared to globular proteins. Structural pliability allows IDPs to accommodate multiple mutations without affecting their functional potential. Nevertheless, how evolutionary signals vary between different classes of disordered residues (DRs) in IDPs is poorly understood. This study addresses variation of evolutionary behavior in terms of residue conservation and intra-protein coevolution among structural and functional classes of DRs in IDPs. Analyses are performed on 579 human IDPs, which are classified based on length of IDRs, interacting partners and functional classes. We find short IDRs are less conserved than long IDRs or full IDPs. Functional classes which require flexibility and specificity to perform their activity comparatively evolve slower than others. Disorder promoting amino acids evolve faster than order promoting amino acids. Pro, Gly, Ile, and Phe have unique coevolving nature which further emphasizes on their roles in IDPs. This study sheds light on evolutionary footprints in different classes of DRs from human IDPs and enhances our understanding of the structural and functional potential of IDPs.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Biología Computacional , Bases de Datos de Proteínas , Humanos , Mutación , Unión Proteica , Conformación Proteica , Receptores de Aminoácidos , Relación Estructura-Actividad
5.
Annu Rev Virol ; 8(1): 51-72, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34586874

RESUMEN

Viral quasispecies are dynamic distributions of nonidentical but closely related mutant and recombinant viral genomes subjected to a continuous process of genetic variation, competition, and selection that may act as a unit of selection. The quasispecies concept owes its theoretical origins to a model for the origin of life as a collection of mutant RNA replicators. Independently, experimental evidence for the quasispecies concept was obtained from sampling of bacteriophage clones, which revealed that the viral populations consisted of many mutant genomes whose frequency varied with time of replication. Similar findings were made in animal and plant RNA viruses. Quasispecies became a theoretical framework to understand viral population dynamics and adaptability. The evidence came at a time when mutations were considered rare events in genetics, a perception that was to change dramatically in subsequent decades. Indeed, viral quasispecies was the conceptual forefront of a remarkable degree of biological diversity, now evident for cell populations and organisms, not only for viruses. Quasispecies dynamics unveiled complexities in the behavior of viral populations,with consequences for disease mechanisms and control strategies. This review addresses the origin of the quasispecies concept, its major implications on both viral evolution and antiviral strategies, and current and future prospects.


Asunto(s)
Virus ARN , Virus , Animales , Antivirales , Genoma Viral , Cuasiespecies/genética , Virus ARN/genética , Virus/genética
6.
Viruses ; 13(4)2021 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916702

RESUMEN

Replication of RNA viruses is characterized by exploration of sequence space which facilitates their adaptation to changing environments. It is generally accepted that such exploration takes place mainly in response to positive selection, and that further diversification is boosted by modifications of virus population size, particularly bottleneck events. Our recent results with hepatitis C virus (HCV) have shown that the expansion in sequence space of a viral clone continues despite prolonged replication in a stable cell culture environment. Diagnosis of the expansion was based on the quantification of diversity indices, the occurrence of intra-population mutational waves (variations in mutant frequencies), and greater individual residue variations in mutant spectra than those anticipated from sequence alignments in data banks. In the present report, we review our previous results, and show additionally that mutational waves in amplicons from the NS5A-NS5B-coding region are equally prominent during HCV passage in the absence or presence of the mutagenic nucleotide analogues favipiravir or ribavirin. In addition, by extending our previous analysis to amplicons of the NS3- and NS5A-coding region, we provide further evidence of the incongruence between amino acid conservation scores in mutant spectra from infected patients and in the Los Alamos National Laboratory HCV data banks. We hypothesize that these observations have as a common origin a permanent state of HCV population disequilibrium even upon extensive viral replication in the absence of external selective constraints or changes in population size. Such a persistent disequilibrium-revealed by the changing composition of the mutant spectrum-may facilitate finding alternative mutational pathways for HCV antiviral resistance. The possible significance of our model for other genetically variable viruses is discussed.


Asunto(s)
Hepacivirus/genética , Hepacivirus/fisiología , Hepatitis C/virología , Antivirales/farmacología , COVID-19 , Línea Celular , Farmacorresistencia Viral/efectos de los fármacos , Hepacivirus/efectos de los fármacos , Humanos , Mutación , ARN Viral , Ribavirina/farmacología , Análisis de Secuencia , Proteínas no Estructurales Virales/genética , Replicación Viral/efectos de los fármacos
7.
Proteins ; 89(9): 1111-1124, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33843105

RESUMEN

The multi-domain bacterial S1 protein is the largest and most functionally important ribosomal protein of the 30S subunit, which interacts with both mRNA and proteins. The family of ribosomal S1 proteins differs in the classical sense from a protein with tandem repeats and has a "bead-on-string" organization, where each repeat is folded into a globular domain. Based on our recent data, the study of evolutionary relationships for the bacterial phyla will provide evidence for one of the proposed theories of the evolutionary development of proteins with structural repeats: from multiple repeats of assembles to single repeats, or vice versa. In this comparative analysis of 1333 S1 sequences that were identified in 24 different phyla, we demonstrate how such phyla can form independently/dependently during evolution. To the best of our knowledge, this work is the first study of the evolutionary history of bacterial ribosomal S1 proteins. The collected and structured data can be useful to computer biologists as a resource for determining percent identity, amino acid composition and logo motifs, as well as dN/dS ratio in bacterial S1 protein. The obtained research data indicate that the evolutionary development of bacterial ribosomal S1 proteins evolved from multiple assemblies to single repeat. The presented data are integrated into the server, which can be accessed at http://oka.protres.ru:4200.


Asunto(s)
Algoritmos , Bacterias/genética , Evolución Biológica , Genoma Bacteriano , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Bacterias/clasificación , Bacterias/metabolismo , Conjuntos de Datos como Asunto , Expresión Génica , Metagenoma , Filogenia , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Programas Informáticos
8.
J Clin Med ; 9(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121037

RESUMEN

The influence of quasispecies dynamics on long-term virus diversification in nature is a largely unexplored question. Specifically, whether intra-host nucleotide and amino acid variation in quasispecies fit the variation observed in consensus sequences or data bank alignments is unknown. Genome conservation and dynamics simulations are used for the computational design of universal vaccines, therapeutic antibodies and pan-genomic antiviral agents. The expectation is that selection of escape mutants will be limited when mutations at conserved residues are required. This strategy assumes long-term (epidemiologically relevant) conservation but, critically, does not consider short-term (quasispecies-dictated) residue conservation. We calculated mutant frequencies of individual loci from mutant spectra of hepatitis C virus (HCV) populations passaged in cell culture and from infected patients. Nucleotide or amino acid conservation in consensus sequences of the same populations, or in the Los Alamos HCV data bank did not match residue conservation in mutant spectra. The results relativize the concept of sequence conservation in viral genetics and suggest that residue invariance in data banks is an insufficient basis for the design of universal viral ligands for clinical purposes. Our calculations suggest relaxed mutational restrictions during quasispecies dynamics, which may contribute to higher calculated short-term than long-term viral evolutionary rates.

9.
Int J Biol Macromol ; 140: 323-329, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31421176

RESUMEN

Ribosomes are the translational machineries having two unequal subunits, small subunit (SSU) and large subunit (LSU) across all the domains of life. Origin and evolution of ribosome are encoded in its structure, and the core of the ribosome is highly conserved. Here, we have used Shannon entropy to analyze the evolution of ribosomal proteins (r-proteins) across the three domains of life. Moreover, we have analyzed the residue conservation at protein-protein (PP) and protein-RNA (PR) interfaces in SSU and LSU. Furthermore, we have studied the evolution of early, intermediate and late binding r-proteins. We show that the r-proteins of Thermus thermophilus are better conserved during the evolution. Furthermore, we find the late binders are better conserved than the early and the intermediate binders. The residues at the interior of the r-proteins are the most conserved followed by those at the interface and the solvent accessible surface. Additionally, we show that the residues at the PP interfaces are better conserved than those at the PR interfaces. However, between PR and PP interfaces, the multi-interface residues at the former are better conserved than those at the latter ones. Our findings may provide insights into the evolution of r-proteins in ribosomal assembly and function.


Asunto(s)
Archaea/genética , Bacterias/genética , Eucariontes/genética , Proteínas Ribosómicas/genética , Secuencia de Aminoácidos , Archaea/metabolismo , Bacterias/metabolismo , Secuencia Conservada , Conjuntos de Datos como Asunto , Eucariontes/metabolismo , Evolución Molecular , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Alineación de Secuencia
10.
J Biol Chem ; 293(26): 9945-9957, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29743237

RESUMEN

The isozymes of photosynthetic phosphoenolpyruvate carboxylase from C4 plants (PEPC-C4) play a critical role in their atmospheric CO2 assimilation and productivity. They are allosterically activated by phosphorylated trioses or hexoses, such as d-glucose 6-phosphate, and inhibited by l-malate or l-aspartate. Additionally, PEPC-C4 isozymes from grasses are activated by glycine, serine, or alanine, but the allosteric site for these compounds remains unknown. Here, we report a new crystal structure of the isozyme from Zea mays (ZmPEPC-C4) with glycine bound at the monomer-monomer interfaces of the two dimers of the tetramer, making interactions with residues of both monomers. This binding site is close to, but different from, the one proposed to bind glucose 6-phosphate. Docking experiments indicated that d/l-serine or d/l-alanine could also bind to this site, which does not exist in the PEPC-C4 isozyme from the eudicot plant Flaveria, mainly because of a lysyl residue at the equivalent position of Ser-100 in ZmPEPC-C4 Accordingly, the ZmPEPC-C4 S100K mutant is not activated by glycine, serine, or alanine. Amino acid sequence alignments showed that PEPC-C4 isozymes from the monocot family Poaceae have either serine or glycine at this position, whereas those from Cyperaceae and eudicot families have lysine. The size and charge of the residue equivalent to Ser-100 are not only crucial for the activation of PEPC-C4 isozymes by neutral amino acids but also affect their affinity for the substrate phosphoenolpyruvate and their allosteric regulation by glucose 6-phosphate and malate, accounting for the reported kinetic differences between PEPC-C4 isozymes from monocot and eudicot plants.


Asunto(s)
Sitio Alostérico , Aminoácidos Neutros/metabolismo , Fosfoenolpiruvato Carboxilasa/química , Fosfoenolpiruvato Carboxilasa/metabolismo , Serina/metabolismo , Zea mays/enzimología , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
11.
BMC Bioinformatics ; 19(1): 14, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29334889

RESUMEN

BACKGROUND: Hot spots are interface residues that contribute most binding affinity to protein-protein interaction. A compact and relevant feature subset is important for building machine learning methods to predict hot spots on protein-protein interfaces. Although different methods have been used to detect the relevant feature subset from a variety of features related to interface residues, it is still a challenge to detect the optimal feature subset for building the final model. RESULTS: In this study, three different feature selection methods were compared to propose a new hybrid feature selection strategy. This new strategy was proved to effectively reduce the feature space when we were building the prediction models for identifying hotspot residues. It was tested on eighty-two features, both conventional and newly proposed. According to the strategy, combining the feature subsets selected by decision tree and mRMR (maximum Relevance Minimum Redundancy) individually, we were able to build a model with 6 features by using a PSFS (Pseudo Sequential Forward Selection) process. Compared with other state-of-art methods for the independent test set, our model had shown better or comparable predictive performances (with F-measure 0.622 and recall 0.821). Analysis of the 6 features confirmed that our newly proposed feature CNSV_REL1 was important for our model. The analysis also showed that the complementarity between features should be considered as an important aspect when conducting the feature selection. CONCLUSION: In this study, most important of all, a new strategy for feature selection was proposed and proved to be effective in selecting the optimal feature subset for building prediction models, which can be used to predict hot spot residues on protein-protein interfaces. Moreover, two aspects, the generalization of the single feature and the complementarity between features, were proved to be of great importance and should be considered in feature selection methods. Finally, our newly proposed feature CNSV_REL1 had been proved an alternative and effective feature in predicting hot spots by our study. Our model is available for users through a webserver: http://zhulab.ahu.edu.cn/iPPHOT/ .


Asunto(s)
Algoritmos , Biología Computacional/métodos , Proteínas/química , Bases de Datos de Proteínas , Humanos , Máquina de Vectores de Soporte
12.
Proteins ; 85(9): 1713-1723, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28597979

RESUMEN

Residues that are crucial to protein function or structure are usually evolutionarily conserved. To identify the important residues in protein, sequence conservation is estimated, and current methods rely upon the unbiased collection of homologous sequences. Surprisingly, our previous studies have shown that the sequence conservation is closely correlated with the weighted contact number (WCN), a measure of packing density for residue's structural environment, calculated only based on the Cα positions of a protein structure. Moreover, studies have shown that sequence conservation is correlated with environment-related structural properties calculated based on different protein substructures, such as a protein's all atoms, backbone atoms, side-chain atoms, or side-chain centroid. To know whether the Cα atomic positions are adequate to show the relationship between residue environment and sequence conservation or not, here we compared Cα atoms with other substructures in their contributions to the sequence conservation. Our results show that Cα positions are substantially equivalent to the other substructures in calculations of various measures of residue environment. As a result, the overlapping contributions between Cα atoms and the other substructures are high, yielding similar structure-conservation relationship. Take the WCN as an example, the average overlapping contribution to sequence conservation is 87% between Cα and all-atom substructures. These results indicate that only Cα atoms of a protein structure could reflect sequence conservation at the residue level.


Asunto(s)
Secuencia de Aminoácidos/genética , Secuencia Conservada/genética , Conformación Proteica , Proteínas/química , Modelos Moleculares , Proteínas/genética
13.
Chem Biol Interact ; 276: 52-64, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28216341

RESUMEN

The catalytic mechanism of the NAD(P)+-dependent aldehyde dehydrogenases (ALDHs) involves the nucleophilic attack of the essential cysteine (Cys302, mature HsALDH2 numbering) on the aldehyde substrate. Although oxidation of Cys302 will inactivate these enzymes, it is not yet well understood how this oxidation is prevented. In this work we explore possible mechanisms of protection by systematically analyzing the reported three-dimensional structures and amino acid sequences of the enzymes of the ALDH superfamily. Specifically, we considered the Cys302 conformational space, the structure and residues conservation of the catalytic loop where Cys302 is located, the observed oxidation states of Cys302, the ability of physiological reductants to revert its oxidation, and the presence of vicinal Cys in the catalytic loop. Our analyses suggested that: 1) In the apo-enzyme, the thiol group of Cys302 is quite resistant to oxidation by ambient O2 or mild oxidative conditions, because the protein environment promotes its high pKa. 2) NAD(P)+ bound in the "hydride transfer" conformation afforded total protection against Cys302 oxidation by an unknown mechanism. 3) If formed, the Cys302-sulfenic acid is protected against irreversible oxidation. 4) Of the physiological reductant agents, the dithiol lipoic acid could reduce a sulfenic or a disulfide bond in the ALDHs active site; glutathione cannot because its thiol group cannot reach Cys302, and other physiological monothiols may be ineffective in those ALDHs where their active site cannot sterically accommodate two molecules of the monothiols. 5) Formation of the disulfides Cys301-Cys302, Cys302-Cys304, Cys302-Cys305 and Cys-302-Cys306 in those ALDHs that have these Cys residues is not probable, because of the permitted Cys conformers as well as the conserved structure and low flexibility of the catalytic loop. 6) Only in some ALDH2, ALDH9, ALDH16 and ALDH23 enzymes, Cys303, alone or in conjunction with Cys301, allows disulfide formation. Interestingly, several of these enzymes are mitochondrial.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Cisteína/metabolismo , Aldehído Deshidrogenasa/química , Aldehído Deshidrogenasa/clasificación , Secuencias de Aminoácidos , Animales , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/química , Disulfuros/química , Humanos , Isoenzimas/química , Isoenzimas/clasificación , Isoenzimas/metabolismo , Ratones , Mycobacterium/enzimología , NAD/química , Oxidación-Reducción , Filogenia , Pseudomonas aeruginosa/enzimología , Ácidos Sulfénicos/química
14.
J Biomol Struct Dyn ; 34(3): 508-16, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25990569

RESUMEN

Conformation switching in protein-protein complexes is considered important for the molecular recognition process. Overall analysis of 123 protein-protein complexes in a benchmark data-set showed that 6.8% of residues switched over their secondary structure conformation upon complex formation. Amino acid residue-wise preference for conformation change has been analyzed in binding and non-binding site residues separately. In this analysis, residues such as Ser, Leu, Glu, and Lys had higher frequency of secondary structural conformation change. The change of helix to coil and sheet to coil conformation and vice versa has been observed frequently, whereas the conformation change of helix to extended sheet occurred rarely in the studied complexes. Influence of conformation change toward the N and C terminal on either side of the binding site residues has been analyzed. Further, analysis on φ and ψ angle variation, conservation, stability, and solvent accessibility have been performed on binding site residues. Knowledge obtained from the present study could be effectively employed in the protein-protein modeling and docking studies.


Asunto(s)
Modelos Moleculares , Complejos Multiproteicos/química , Estructura Secundaria de Proteína , Proteínas/química , Aminoácidos/química , Sitios de Unión , Secuencia Conservada , Conjuntos de Datos como Asunto , Complejos Multiproteicos/metabolismo , Mutación , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Proteínas/genética , Proteínas/metabolismo , Solventes/química
15.
Bioinform Biol Insights ; 9: 141-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26448684

RESUMEN

BACKGROUND: Modeling protein-protein interactions (PPIs) using docking algorithms is useful for understanding biomolecular interactions and mechanisms. Typically, a docking algorithm generates a large number of docking poses, and it is often challenging to select the best native-like pose. A further challenge is to recognize key residues, termed as hotspots, at protein-protein interfaces, which contribute more in stabilizing a protein-protein interface. RESULTS: We had earlier developed a computer algorithm, called PPCheck, which ascribes pseudoenergies to measure the strength of PPIs. Native-like poses could be successfully identified in 27 out of 30 test cases, when applied on a separate set of decoys that were generated using FRODOCK. PPCheck, along with conservation and accessibility scores, was able to differentiate 'native-like and non-native-like poses from 1883 decoys of Critical Assessment of Prediction of Interactions (CAPRI) targets with an accuracy of 60%. PPCheck was trained on a 10-fold mixed dataset and tested on a 10-fold mixed test set for hotspot prediction. We obtain an accuracy of 72%, which is in par with other methods, and a sensitivity of 59%, which is better than most existing methods available for hotspot prediction that uses similar datasets. Other relevant tests suggest that PPCheck can also be reliably used to identify conserved residues in a protein and to perform computational alanine scanning. CONCLUSIONS: PPCheck webserver can be successfully used to differentiate native-like and non-native-like docking poses, as generated by docking algorithms. The webserver can also be a convenient platform for calculating residue conservation, for performing computational alanine scanning, and for predicting protein-protein interface hotspots. While PPCheck can differentiate the generated decoys into native-like and non-native-like decoys with a fairly good accuracy, the results improve dramatically when features like conservation and accessibility are included. The method can be successfully used in ranking/scoring the decoys, as obtained from docking algorithms.

16.
Proteins ; 82(7): 1219-34, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24375512

RESUMEN

With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions.


Asunto(s)
Biología Computacional/métodos , Proteínas/química , Proteínas/metabolismo , Teorema de Bayes , Evolución Molecular , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Curva ROC
17.
ARBS annu. rev. biomed. sci ; 11(n.esp): T51-T85, 20090000. ilus
Artículo en Inglés | LILACS | ID: lil-560451

RESUMEN

Family A G-protein coupled receptors (AGPCRs) form the largest group of correlate receptors whose structure, a bundle of seven-trans-membrane (7 TM) helices, may be activated thus becoming able to transduce a signal from the extracellular medium to the cytosol. This activation may be constitutional, for instance due to permanent structural modifications, or be physiologically triggered by agonist binding at an external and accessible specific site. Based on thestructures of agonists, AGPCRs may be divided according to pharmacological assays into many classes of receptors, each one comprising many types or sub-types of proteins, as differentiated by specific binding of inhibitors, all of them performing a multitude of functions. It is noteworthy that AGPCRs have been more recently cloned and their sequences of amino acids determined in a large scale, a condition that has allowed these receptors to be sorted by a new criterium. Sequence analyses have consistently matched functional assays for classification of AGPCRs except for a certain number of functionally unknown receptors which have been cataloged as orphan receptors. A colossal number of AGPCRs, more than 10,000 sequences belonging to more than 1,000 different types of receptors, may nowadays be multiply-aligned what has been enabling the determination of parameters of residue conservation and characterization of special motifs along the structure of these proteins. There are at the present time, high-resolution 3D structures for the following AGPCRs: inactive rhodopsin, retinal-free opsin, Beta adrenoceptor and adenosine receptors. Among them, hodopsin structures are reliable enough to be used as prototypes for analyses of residue conservation and mechanisms of activation of receptors, specially at the level of the more conserved structure in the cytosolic half of their 7TM bundle.


Asunto(s)
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/clasificación , Receptores Acoplados a Proteínas G/fisiología , Adenosina , Receptores Adrenérgicos , Rodopsina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...