Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vis Neurosci ; 39: E005, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36164752

RESUMEN

To study the macroglia and microglia and the immune role in long-time light exposure in rat eyes, we performed glial cell characterization along the time-course of retinal degeneration induced by chronic exposure to low-intensity light. Animals were exposed to light for periods of 2, 4, 6, or 8 days, and the retinal glial response was evaluated by immunohistochemistry, western blot and real-time reverse transcription polymerase chain reaction. Retinal cells presented an increased expression of the macroglia marker GFAP, as well as increased mRNA levels of microglia markers Iba1 and CD68 after 6 days. Also, at this time-point, we found a higher number of Iba1-positive cells in the outer nuclear layer area; moreover, these cells showed the characteristic activated-microglia morphology. The expression levels of immune mediators TNF, IL-6, and chemokines CX3CR1 and CCL2 were also significantly increased after 6 days. All the events of glial activation occurred after 5-6 days of constant light exposure, when the number of photoreceptor cells has already decreased significantly. Herein, we demonstrated that glial and immune activation are secondary to neurodegeneration; in this scenario, our results suggest that photoreceptor death is an early event that occurs independently of glial-derived immune responses.


Asunto(s)
Interleucina-6 , Neuroglía , Traumatismos por Radiación , Retina , Degeneración Retiniana , Animales , Quimiocinas/genética , Quimiocinas/metabolismo , Interleucina-6/metabolismo , Luz , Neuroglía/inmunología , ARN Mensajero/genética , Traumatismos por Radiación/etiología , Traumatismos por Radiación/inmunología , Ratas , Retina/inmunología , Retina/efectos de la radiación , Degeneración Retiniana/etiología , Degeneración Retiniana/inmunología
2.
J Clin Med ; 10(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34768320

RESUMEN

Cytokine- and chemokine-mediated signalling is involved in the neuroinflammatory process that leads to retinal ganglion cell (RGC) damage in glaucoma. Substances with anti-inflammatory properties could decrease these cytokines and chemokines and thus prevent RGC death. The authors of this study analysed the anti-inflammatory effect of a hydrophilic saffron extract standardized to 3% crocin content, focusing on the regulation of cytokine and chemokine production, in a mouse model of unilateral laser-induced ocular hypertension (OHT). We demonstrated that following saffron treatment, most of the concentration of proinflammatory cytokines (IL-1ß, IFN-γ, TNF-α, and IL-17), anti-inflammatory cytokines (IL-4 and IL-10), Brain-derived Neurotrophic Factor (BDNF), Vascular Endothelial Growth Factor (VEGF), and fractalkine were unaffected in response to laser-induced OHT in both the OHT eye and its contralateral eye. Only IL-6 levels were significantly increased in the OHT eye one day after laser induction compared with the control group. These results differed from those observed in animals subjected to unilateral OHT and not treated with saffron, where changes in cytokine levels occurred in both eyes. Therefore, saffron extract regulates the production of proinflammatory cytokines, VEGF, and fractalkine induced by increasing intraocular pressure (IOP), protecting the retina from inflammation. These results indicate that saffron could be beneficial in glaucoma by helping to reduce the inflammatory process.

3.
Front Med (Lausanne) ; 8: 717602, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540868

RESUMEN

Objective: Acrolein is a highly reactive aldehyde that covalently binds to cellular macromolecules and subsequently modulates cellular function. Our previous study demonstrated that acrolein induces glial cell migration, a pathological hallmark of diabetic retinopathy; however, the detailed cellular mechanism remains unclear. The purpose of this study was to investigate the role of acrolein in retinal glial cell migration by focusing on rho-associated coiled-coil-containing protein kinases (ROCKs). Methods: Immunofluorescence staining for ROCK isoforms was performed using sections of fibrovascular tissue obtained from the eyes of patients with proliferative diabetic retinopathy (PDR). Rat retinal Müller glial cell line, TR-MUL5, was stimulated with acrolein and the levels of ROCK1 were evaluated using real-time PCR and western blotting. Phosphorylation of the myosin-binding subunit of myosin light chain phosphatase [myosin phosphatase target subunit 1, (MYPT1)] and myosin light chain 2 (MLC2) was assessed. The cell migration rate of TR-MUL5 cells exposed to acrolein and/or ripasudil, a non-selective ROCK inhibitor, was measured using the Oris cell migration assay. Results: ROCK isoforms, ROCK1 and ROCK2, were positively stained in the cytosol of glial cells in fibrovascular tissues. In TR-MUL5 cells, the mRNA expression level of Rock1, but not Rock2, was increased following acrolein stimulation. In line with the PCR data, western blotting showed increase in ROCK1 and cleaved ROCK1 protein in TR-MUL5 cells stimulated with acrolein. N-acetylcysteine (NAC) suppressed acrolein-associated Rock1 upregulation in TR-MUL5 cells. Acrolein augmented the phosphorylation of MYPT1 and MLC2 and increased the cell migration rate of TR-MUL5 cells, both of which were abrogated by ripasudil. Conclusions: Our study demonstrated that ROCK1 mediates the migration of retinal glial cells promoted by the unsaturated aldehyde acrolein.

4.
Front Cell Neurosci ; 13: 527, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849614

RESUMEN

Dysfunction of retinal glial cells, particularly Müller cells, has been implicated in several retinal diseases. Despite their important contribution to retinal homeostasis, a specific way to differentiate retinal glial cells from human pluripotent stem cells has not yet been described. Here, we report a method to differentiate retinal glial cells from human embryonic stem cells (hESCs) through promoting the Notch signaling pathway. We first generated retinal progenitor cells (RPCs) from hESCs then promoted the Notch signaling pathway using Notch ligands, including Delta-like ligand 4 and Jagged-1. We validated glial cell differentiation with qRT-PCR, immunocytochemistry, western blots and fluorescence-activated cell sorting as we promoted Notch signaling in RPCs. We found that promoting Notch signaling in RPCs for 2 weeks led to upregulation of glial cell markers, including glial fibrillary acidic protein (GFAP), glutamine synthetase, vimentin and cellular retinaldehyde-binding protein (CRALBP). Of these markers, we found the greatest increase in expression of the pan glial cell marker, GFAP. Conversely, we also found that inhibition of Notch signaling in RPCs led to upregulation of retinal neuronal markers including cone-rod homeobox (CRX) and orthodenticle homeobox 2 (OTX2) but with little expression of GFAP. This retinal glial differentiation method will help advance the generation of stem cell disease models to study the pathogenesis of retinal diseases associated with glial dysfunction such as macular telangiectasia type 2. This method may also be useful for the development of future therapeutics such as drug screening and gene editing using patient-derived retinal glial cells.

5.
Exp Eye Res ; 178: 228-237, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29608906

RESUMEN

This study evaluated the effects of elevated homocysteine (Hcy) on the oxidative stress response in retinal Müller glial cells. Elevated Hcy has been implicated in retinal diseases including glaucoma and optic neuropathy, which are characterized by retinal ganglion cell (RGC) loss. To understand the mechanisms of Hcy-induced RGC loss, in vitro and in vivo models have been utilized. In vitro isolated RGCs are quite sensitive to elevated Hcy levels, while in vivo murine models of hyperhomocysteinemia (HHcy) demonstrate a more modest RGC loss (∼20%) over a period of many months. This differential response to Hcy between isolated cells and the intact retina suggests that the retinal milieu invokes mechanisms that buffer excess Hcy. Oxidative stress has been implicated as a mechanism of Hcy-induced neuron loss and NRF2 is a transcription factor that plays a major role in regulating cytoprotective responses to oxidative stress. In the present study we investigated whether HHcy upregulates NRF2-mediated stress responses in Müller cells, the chief retinal glial cell responsible for providing trophic support to retinal neurons. Primary Müller cells were exposed to L-Hcy-thiolactone [50µM-10mM] and assessed for viability, reactive oxygen species (ROS), and glutathione (GSH) levels. Gene/protein levels of Nrf2 and levels of NRF2-regulated antioxidants (NQO1, CAT, SOD2, HMOX1, GPX1) were assessed in Hcy-exposed Müller cells. Unlike isolated RGCs, isolated Müller cells are viable over a wide range of Hcy concentrations [50 µM - 1 mM]. Moreover, when exposed to elevated Hcy, Müller cells demonstrate decreased oxidative stress and decreased ROS levels. GSH levels increased by ∼20% within 24 h exposure to Hcy. Molecular analyses revealed 2-fold increase in Nrf2 expression. Expression of antioxidant genes Nqo1, Cat, Sod2, Hmox1, Gpx1 increased significantly. The consequences of Hcy exposure were evaluated also in Müller cells harvested from Nrf2-/- mice. In contrast to WT Müller cells, in which oxidative stress decreased upon exposure to Hcy, the Nrf2-/- Müller cells showed a significant increase in oxidative stress. Our data suggest that at least during early stages of Hhcy, a cytoprotective response may be in place, mediated in part by NRF2 in Müller cells.


Asunto(s)
Células Ependimogliales/efectos de los fármacos , Homocisteína/análogos & derivados , Factor 2 Relacionado con NF-E2/metabolismo , Protectores contra Radiación/farmacología , Animales , Elementos de Respuesta Antioxidante/fisiología , Supervivencia Celular , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Glutatión/metabolismo , Homocisteína/farmacología , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Regulación hacia Arriba
6.
J Mol Neurosci ; 64(2): 200-210, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29280053

RESUMEN

To explore the hypothesis that CD200Fc, a CD200R1 agonist with anti-inflammatory properties, will inhibit retinal glial cells hyperactivation and retinal ganglion cells (RGCs) apoptosis after optic nerve injury. CD200Fc was immediately administered after optic nerve crush (ONC) once by intravitreal injection. Rats were euthanized at 5 days after ONC. The density of RGCs was counted by immunostaining of retina flat mounts for Brn3a. TUNEL assay, immunoblotting analysis of ionized calcium-binding adapter molecule 1(iba1) (microglia marker) and glial fibrillary acidic protein (GFAP) (astrocytes and Müller cells marker), RT-PCR analysis of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin (IL)-8 and IL-10, ELISA measure protein levels of inflammatory cytokines and western blot analysis of CD200 and CD200R1 were evaluated. CD200Fc treatment suppressed ONC-induced RGCs loss through inhibition of RGCs apoptosis. Additionally, expression of glial cells activation markers GFAP and iba1 and production of pro-inflammatory cytokines (COX-2, iNOS, MCP-1, TNF-α, IL-8) were decreased in CD200Fc treated animals after ONC. Meanwhile, anti-inflammatory cytokine IL-10 was increased by CD200Fc treatment in ONC-induced rat retina. Finally, we found that CD200Fc significantly inhibited ONC-induced increased in expression of CD200 and raised the already high basal CD200R1 expression in the rat retina after ONC. Our results demonstrated that the anti-inflammatory effects of CD200Fc in ONC rats model through inhibited the activation of retinal glial cells via the interaction between CD200 and CD200R1, and the neuroprotective effects of CD200Fc on RGCs thought inhibited its apoptosis.


Asunto(s)
Antígenos CD/uso terapéutico , Apoptosis , Neuroglía/efectos de los fármacos , Traumatismos del Nervio Óptico/tratamiento farmacológico , Receptores Inmunológicos/metabolismo , Animales , Antígenos CD/administración & dosificación , Antígenos CD/farmacología , Quimiocina CCL2/metabolismo , Ciclooxigenasa 2/metabolismo , Interleucina-8/metabolismo , Inyecciones Intravítreas , Masculino , Neuroglía/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Unión Proteica , Proteínas RGS/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Inmunológicos/agonistas , Retina/citología , Retina/efectos de los fármacos , Retina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...