Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39275765

RESUMEN

This paper presents a design, model, and comparative analysis of two internal MEMS vibrating ring gyroscopes for harsh environmental conditions. The proposed design investigates the symmetric structure of the vibrating ring gyroscopes that operate at the identical shape of wine glass mode resonance frequencies for both driving and sensing purposes. This approach improves the gyroscope's sensitivity and precision in rotational motion. The analysis starts with an investigation of the dynamic behaviour of the vibrating ring gyroscope with the detailed derivation of motion equations. The design geometry, meshing technology, and simulation results were comprehensively evaluated on two internal vibrating ring gyroscopes. The two designs are distinguished by their support spring configurations and internal ring structures. Design I consists of eight semicircular support springs and Design II consists of sixteen semicircular support springs. These designs were modelled and analyzed using finite element analysis (FEA) in Ansys 2023 R1 software. This paper further evaluates static and dynamic performance, emphasizing mode matching and temperature stability. The results reveal that Design II, with additional support springs, offers better mode matching, higher resonance frequencies, and better thermal stability compared to Design I. Additionally, electrostatic, modal, and harmonic analyses highlight the gyroscope's behaviour under varying DC voltages and environmental conditions. Furthermore, this study investigates the impact of temperature fluctuations on performance, demonstrating the robustness of the designs within a temperature range from -100 °C to 100 °C. These research findings suggest that the internal vibrating ring gyroscopes are highly suitable for harsh conditions such as high temperature and space applications.

2.
Micromachines (Basel) ; 15(9)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39337766

RESUMEN

This paper presents the development of an analytical model of an internal vibrating ring gyroscope in a Microelectromechanical System (MEMS). The internal ring structure consists of eight semicircular beams that are attached to the externally placed anchors. This research work analyzes the vibrating ring gyroscope's in-plane displacement behavior and the resulting elliptical vibrational modes. The elliptical vibrational modes appear as pairs with the same resonance frequency due to the symmetric structure of the design. The analysis commences by conceptualizing the ring as a geometric structure with a circular shape possessing specific dimensions such as thickness, height, and radius. We construct a linear model that characterizes the vibrational dynamics of the internal vibrating ring. The analysis develops a comprehensive mathematical formulation for the radial and tangential displacements in local polar coordinates by considering the inextensional displacement of the ring structure. By utilizing the derived motion equations, we highlight the underlying relationships driving the vibrational characteristics of the MEMS' vibrating ring gyroscope. These dynamic vibrational relationships are essential in enabling the vibrating ring gyroscope's future utilization in accurate navigation and motion sensing technologies.

3.
Heliyon ; 10(14): e34439, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114055

RESUMEN

A highly sensitive sensor based on two metal-insulator-metal waveguides coupled to an asymmetric hexagonal nano-ring resonator detecting cancerous cells is proposed. This novel design is utilized to facilitate the sensing of human cells. The sensing mechanism of the presented optical structure can act as a refractive index measurement in biological, chemical, biomedical diagnosis, and bacteria detection, which leads to achieving high sensitivity in the structure. The main goal is to achieve the highest sensitivity concerning the optimum design. As a result, the sensitivity of the designed topology reaches a maximum value of about 1800 nm/RIU (nm/refractive index unit) by controlling the angle of the resonator. It is evident that the sensitivity parameter is improved, and the reason for the increase in sensitivity is due to the asymmetry of the resonator, which has an 81 % increase in sensitivity compared to the symmetrical resonator, especially for blood cancer cells. The maximum quality factor obtains 131.65 with a FOM of 90.4 (RIU-1). The sensing performance of this proposed structure is numerically investigated using the finite difference time domain (FDTD) method with the perfectly matched layer (PML). Accordingly, the suggested high sensitivity sensor makes this structure a promising therapeutic candidate for sensing applications that can be used in on-chip optical devices to produce highly complex integrated circuits.

4.
Nanomaterials (Basel) ; 14(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39195360

RESUMEN

This paper proposes a unique configuration for an all-optical D Flip Flop (D-FF) utilizing a quasi-square ring resonator (RR) and T-Splitter, as well as NOT and OR logic gates within a 2-dimensional square lattice photonic crystal (PC) structure. The components realizing the all-optical D-FF comprise of optical waveguides in a 2D square lattice PC of 45 × 23 silicon (Si) rods in a silica (SiO2) substrate. The utilization of these specific materials has facilitated the fabrication process of the design, diverging from alternative approaches that employ an air substrate, a method inherently unattainable in fabrication. The configuration underwent examination and simulation utilizing both plane-wave expansion (PWE) and finite-difference time-domain (FDTD) methodologies. The simulation outcomes demonstrate that the designed waveguides and RR effectively execute the operational principles of the D-FF by guiding light as intended. The suggested configuration holds promise as a logic block within all-optical arithmetic logic units (ALUs) designed for digital computing optical circuits. The design underwent optimization for operation within the C-band spectrum, particularly at 1550 nm. The outcomes reveal a distinct differentiation between logic states '1' and '0', enhancing robust decision-making on the receiver side and minimizing logic errors in the photonic decision circuit. The D-FF displays a contrast ratio (CR) of 4.77 dB, a stabilization time of 0.66 psec, and a footprint of 21 µm × 12 µm.

5.
Sensors (Basel) ; 24(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065896

RESUMEN

In this paper, we present a compressive study on the design and development of a MEMS ring resonator and its dynamic behavior under electrostatic force when supported by twin circular curve beams. Finite element analysis (FEA)-based modeling techniques are used to simulate and refine the resonator geometry and transduction. In proper FEA or analytical modeling, the explicit description and accurate values of the effective mass and stiffness of the resonator structure are needed. Therefore, here we outlined an analytical model approach to calculate those values using the first principles of kinetic and potential energy analyses. The natural frequencies of the structure were then calculated using those parameters and compared with those that were simulated using the FEA tool ANSYS. Dynamic analysis was performed to calculate the pull-in voltage, shift of resonance frequency, and harmonic analyses of the ring to understand how the ring resonator is affected by the applied voltage. Additional analysis was performed for different orientations of silicon and assessing the frequency response and frequency shifts. The prototype was fabricated using the standard silicon-on-insulator (SOI)-based MEMS fabrication process and the experimental results for resonances showed good agreement with the developed model approach. The model approach presented in this paper can be used to provide valuable insights for the optimization of MEMS resonators for various operating conditions.

6.
Adv Sci (Weinh) ; 11(34): e2405378, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38976553

RESUMEN

A 3D bulk metamaterial (MM) containing amorphous multilayered split-ring resonators is proposed, fabricated, and evaluated. Experimentally, the effective refractive index is engineered via the 3D bulk MM, with a contrast of 0.118 across the frequency span from 0.315 to 0.366 THz and the index changing at a slope of 2.314 per THz within this frequency range. Additionally, the 3D bulk MM exhibits optical isotropy with respect to polarization. Moreover, the peak transmission and optical dispersion are tailored by adjusting the density of the split-ring resonators. Compared to reported conventional approaches for constructing bulk MMs, this approach offers advantages in terms of the potential for large-scale manufacturing, the ability to adopt any shape, optical isotropy, and rapid optical dispersion. These features hold promise for dispersive optical devices operating at THz frequencies, such as high-dispersive prisms for high-resolution spectroscopy.

7.
Micromachines (Basel) ; 15(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38930728

RESUMEN

In this paper, a sensor using a complementary split ring resonator (CSRR) is proposed for non-destructive testing of blood glucose. By depicting the complementary split ring structure on the ground, the electromagnetic field strength between the split rings can be enhanced effectively. The structure size of the sensor by CSRR is determined by simulation, so that the insertion loss curve of the device has a resonance point at the frequency of 3.419 GHz. With a special holder created by three-dimensional (3D) printing technology, the test platform was established when the concentration of the solution varied from 0 mg/mL to 20 mg/mL. The experimental results indicate that there is an obvious linear relationship between the insertion loss S21 and the glucose concentration at the resonant frequency. Similarly, the measured real part and imaginary part of the S21 both vary with glucose concentration linearly. Based on the above experimental results, the feasibility of the sensor using a CSRR proposed in this paper for non-destructive detection of blood glucose is preliminarily verified.

8.
Nanomaterials (Basel) ; 14(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38869544

RESUMEN

We propose a controllable topological add-drop filter based on magnetic-optical photonic crystals. This add-drop filter is composed of two straight waveguides and a hexagonal photonic crystal ring resonator. The waveguide and ring resonator are constructed by three different honeycomb magnetic-optical photonic crystals. The expanded lattice is applied with an external magnetic field so that it breaks time-reversal symmetry and the analogous quantum spin Hall effect simultaneously. While the standard one and the compressed one are not magnetized and trivial, the straight waveguide supports pseudospin-down (or pseudospin-up) one-way states when the expanded lattice is applied with an external magnetic field of +H (or -H). The ring resonator possesses multiple resonant modes which can be divided into travelling modes and standing modes. By using the travelling modes, we have demonstrated the function of the add-drop filter and realized the output port control by changing the direction of the magnetic field. Moreover, a large tunable power ratio from near 0 to 52.6 is achieved by adjusting the strength of the external magnetic field. The structure has strong robustness against defects due to the topological protection property. These results have potential in wavelength division multiplexing systems and integrated topological optical devices.

9.
Sci Rep ; 14(1): 11483, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769178

RESUMEN

Recently, plasmonic-based sensors operating in the terahertz frequency range have emerged as perspective tools for rapid and efficient label-free biosensing applications. In this work, we present a fully electronic approach allowing us to achieve state-of-the-art sensitivity by utilizing a near-field-coupled electronic sensor. We demonstrate that the proposed concept enables the efficient implementation and probing of a so-called ultra-strongly coupled sub-wavelength meta-atom as well as a single resonant circuit, allowing to limit the volume of material under test down to a few picoliter range. The sensor has been monolithically integrated into a cost-efficient silicon-based CMOS technology. Our findings are supported by both numerical and analytical models and validated through experiments. They lay the groundwork for near-future developments, outlining the perspectives for a terahertz microfluidic lab-on-chip dielectric spectroscopy sensor.

10.
J Hazard Mater ; 472: 134553, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735191

RESUMEN

Microwave resonators combined with polymer absorption layers are widely used in volatile organic compound (VOC) detection based on their variable resonant frequencies. However, the response time is limited due to the polymer's slow volumetric absorption of VOC molecules. By constructing a porous structure in Polydimethylsiloxane (PDMS), resulting in reduced the response time to as short as 71.1%. To mitigate the sensitivity decline caused by the porous PDMS, a trenched-substrate complementary split-ring resonator (CSRR) is proposed for enhancing the interaction between the electromagnetic fields (EMFs) and the porous PDMS with VOCs. The removal of the substrate beneath CSRR's sensing region enhances the effective EMF, increasing frequency and amplitude sensitivities up to 175.5% and 137.8%, respectively. Responses to four common VOCs by the sensor show a maximum sensitivity of 217 Hz/ppm and a minimum limit of detection of 295 ppm. Additionally, resonant parameters and extracted lumped parameters are utilized to establish two decision-tree-based VOC classification models, achieving high accuracies of 98.71% and 99.59%, respectively. And the latter one fully utilizing responses throughout the swept band, proves superior in identifying similar substances. This sensor technology helps promote the sensitive detection and accurate classification of diverse VOCs.

11.
Micromachines (Basel) ; 15(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38793183

RESUMEN

In this study, a comprehensive numerical analysis is conducted on a hybrid plasmonic waveguide (HPWG)-based racetrack ring resonator (RTRR) structure, tailored specifically for refractive index sensing applications. The sensor design optimization yields remarkable results, achieving a sensitivity of 275.7 nm/RIU. Subsequently, the boundaries of sensor performance are pushed even further by integrating a subwavelength grating (SWG) structure into the racetrack configuration, thereby augmenting the light-matter interaction. Of particular note is the pivotal role played by the length of the SWG segment in enhancing device sensitivity. It is observed that a significant sensitivity enhancement can be obtained, with values escalating from 377.1 nm/RIU to 477.7 nm/RIU as the SWG segment length increases from 5 µm to 10 µm, respectively. This investigation underscores the immense potential of HPWG in tandem with SWG for notably enhancing the sensitivity of photonic sensors. These findings not only advance the understanding of these structures but also pave the way for the development of highly efficient sensing devices with unprecedented performance capabilities.

12.
Sensors (Basel) ; 24(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38544102

RESUMEN

This paper presents high-sensitivity sensors based on an open complementary square split-ring resonator and a modified open complementary split-ring resonator operating at 4.5 GHz and 3.4 GHz, respectively. The sensors are designed for the detection of multiple liquid materials, including distilled water, methanol, and ethanol. The liquid under test is filled in a glass container loaded using a pipette. Compared to the conventional OCSSRR, the modified OCSSRR with multiple rings exhibits a higher frequency shift of 1200 MHz, 1270 MHz, and 1520 MHz for ethanol, methanol, and distilled water, respectively. The modified sensor also demonstrates a high sensitivity of 308 MHz/RIU for ethanol concentration which is the highest among the existing microwave sensors. The sensors in this manuscript are suitable for multiple liquid-material-sensing applications.

13.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38475224

RESUMEN

This work focuses on demonstrating the working principle of inkjet-printed Au nanoparticle (NP) two-layer Gigahertz (2.6 GHz) microwave split-ring resonators (SRRs) as a novel platform for the detection of analytes on flexible substrates. In contrast to the standard fabrication of split-ring resonator biosensors using printed circuit board technology, which results in a seven-layer system, the resonators in this work were fabricated using a two-layer system. A ground plane is embedded in the SRR measurement setup. In this method, a microwave electromagnetic wave is coupled into the Au SRR via an inkjet-printed Cu-NP stripline that is photonically sintered. This coupling mechanism facilitates the detection of analytes by inducing resonance shifts in the SRR. In this study, the functionality of the printed sensors was demonstrated using two different Au functionalization processes, firstly, with HS-PEG7500-COOH, and, secondly, with protein G with an N-terminal cysteine residue. The sensing capabilities of the printed structures are shown by the attachment of biomolecules to the SRR and the measurement of the resulting resonance shift. The experiments show a clear shift of the resonance frequency in the range of 20-30 MHz for both approaches. These results demonstrate the functionality of the simplified printed two-layer microwave split-ring resonator for use as a biosensor.

14.
ACS Sens ; 9(4): 1799-1808, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38549498

RESUMEN

Photonic technologies promise to deliver quantitative, multiplex, and inexpensive medical diagnostic platforms by leveraging the highly scalable processes developed for the fabrication of semiconductor microchips. However, in practice, the affordability of these platforms is limited by complex and expensive sample handling and optical alignment. We previously reported the development of a disposable photonic assay that incorporates inexpensive plastic micropillar microfluidic cards for sample delivery. That system as developed was limited to singleplex assays due to its optical configuration. To enable multiplexing, we report a new approach addressing multiplex light I/O, in which the outputs of individual grating couplers on a photonic chip are mapped to fibers in a fiber bundle. As demonstrated in the context of detecting antibody responses to influenza and SARS-CoV-2 antigens in human serum and saliva, this enables multiplexing in an inexpensive, disposable, and compact format.


Asunto(s)
Técnicas Biosensibles , COVID-19 , SARS-CoV-2 , Humanos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , SARS-CoV-2/inmunología , COVID-19/diagnóstico , COVID-19/inmunología , Saliva/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Óptica y Fotónica , Dispositivos Laboratorio en un Chip
15.
Sensors (Basel) ; 24(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339739

RESUMEN

This study explores the viability of using the avoided mode crossing phenomenon in the microwave regime to design microwave differential sensors. While the design concept can be applied to any type of planar electrically small resonators, here, it is implemented on split-ring resonators (SRRs). We use two coupled synchronous SRRs loaded onto a two-port microstrip line system to demonstrate the avoided mode crossing by varying the distance between the split of the resonators to control the coupling strength. As the coupling becomes stronger, the split in the resonance frequencies of the system increases. Alternatively, by controlling the strength of the coupling by materials under test (MUTs), we utilize the system as a microwave differential sensor. First, the avoided mode crossing is theoretically investigated using the classical microwave coupled resonator techniques. Then, the system is designed and simulated using a 3D full-wave numerical simulation. To validate the concept, a two-port microstrip line, which is magnetically coupled to two synchronous SRRs, is utilized as a sensor, where the inter-resonator coupling is chosen to be electric coupling controlled by the dielectric constant of MUTs. For the experimental validation, the sensor was fabricated using printed circuit board technology. Two solid slabs with dielectric constants of 2.33 and 9.2 were employed to demonstrate the potential of the system as a novel differential microwave sensor.

16.
Heliyon ; 10(4): e26186, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38390064

RESUMEN

This study proposes a simulation-based design for a Silicon-On-Insulator (SOI) ring resonator with a Figure of Merit (FOM) of 56.15 and a high sensitivity of up to 730 nm/RIU. The Finite-Difference Time-Domain (FDTD) technique was used to assess and evaluate the design quantitatively. Our design demonstrates higher sensitivity compared to many recent studies conducted on SOI-based sensors. The device structure follows a conventional ring resonator arrangement with a single waveguide, incorporating a 2D graphene layer on top of the SiO2 wafer and a gold nano-disc positioned at the center of the ring. Our findings highlight the device's susceptibility to refractive index variations, making it a desirable choice for various sensing applications. We have investigated the sensor's capabilities for sensing different concentrations of milkmilk. Graphene and gold materials enhance the device's response to light and provide comparatively higher sensitivity. The suggested design can serve as a blueprint for device fabrication, considering the practicality of implementing an SOI-based device using standard techniques for silicon processing.

17.
Heliyon ; 10(1): e23851, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38192815

RESUMEN

This study introduces a compact double negative metamaterial (DNM) composed of three split rings connected slab resonator (TSRCSR) based double-layer design with a high 13.9 EMR (effective medium ratio) value. A double-layer patch is introduced to achieve the novel double negative properties, including negative behaviours of effective medium parameters, including refractive index, permittivity, and permeability with a high effective medium ratio for the miniaturised size of the introduced unconventional material that is highly suitable for microwave S and C band covering applications. The popular low-loss Rogers RT5880 (thickness 1.575 mm) substrate and copper resonator materials are utilized to develop the metamaterial unit cell that offers triple resonance between frequencies from 1 to 8 GHz. Therefore, the proposed metamaterial exhibits resonance peaks at 2.75, 5.2, and 6.3 GHz, suitable for radar, communication satellite, and long-distance telecommunication applications, respectively. The commercially available simulator known as Computer Simulation Technology (CST) is adopted to develop and simulate the 8 × 8 mm2 metamaterial design. The simulation results of the introduced TSRCSR design structure were verified by adopting the Ansys High-Frequency Structure Simulator (HFSS). Furthermore, it was then proved with the help of equivalent circuit model findings gained from the Advanced Design Structure (ADS) software. On the other hand, the analytical results were further validated by measuring the TSRCSR design utilizing a Vector Network Analyzer (VNA). These analyses become one of the novelties of this work, where the compact TSRCSR metamaterial successfully gained small discrepancies in transmission coefficient values when compared to both analytical and measurement results. The proposed metamaterial is highly suggested for communication devices for its extensive effective characteristics and compactness.

18.
Sensors (Basel) ; 23(23)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38067795

RESUMEN

A micro-ring resonator structure was fabricated via the two-photon polymerization technique directly on a single-mode fiber tip and tested for refractive index sensing application. The micro-ring structure was used to excite whispering-gallery modes, and observations of the changes in the resonance spectrum introduced by changes in the refractive index of the environment served as the sensing principle. The proposed structure has the advantages of a very simple design, allowing for measurements in reflection mode, relatively easy and fast fabrication and integration with a single tip of a standard single-mode fiber, which allowed for quick and convenient measurements in the optical setup. The performance of the structure was characterized, and the resonant spectrum giving high potential for refractive index sensing was measured. Future perspectives of the research are addressed.

19.
Micromachines (Basel) ; 14(12)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38138332

RESUMEN

Carbon-based materials, such as graphene, exhibit interesting physical properties and have been recently investigated in sensing applications. In this paper, a novel technique for glucose concentration correlation with the resonant frequency of a microwave resonator is performed. The resonator exploits the variation of the electrical properties of graphene at radio frequency (RF). The described approach is based on the variation in transmission coefficient resonating frequency of a microstrip ring resonator modified with a graphene film. The graphene film is doctor-bladed on the ring resonator and functionalised in order to detect glucose. When a drop with a given concentration is deposited on the graphene film, the resonance peak is shifted. The graphene film is modelled with a lumped element analysis. Several prototypes are realised on Rogers Kappa substrate and their transmission coefficient measured for different concentrations of glucose. Results show a good correlation between the frequency shift and the concentration applied on the film.

20.
Sensors (Basel) ; 23(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38139580

RESUMEN

In this article, a miniature eight-port multiple-input multiple-output (MIMO) antenna array is proposed for fifth-generation (5G) sub-6 GHz handset applications. The individual antenna element comprises a radiator shaped like the Chinese character "" (phonetically represented as "Wang") and three split-ring resonators (SRR) on the metal frame. The size of the individual antenna element is only 6.8 × 7 × 1 mm3 (47.6 mm3). The proposed antenna element has a -10 dB impedance bandwidth of 1.7 GHz (from 3.3 GHz to 5 GHz) that can cover 5G New Radio (NR) sub-6 GHz bands N77 (3.3-4.2 GHz), N78 (3.3-3.8 GHz), and N79 (4.4-5 GHz). The evolution design, the current distribution, the effects of single-handed holding, and the analysis of the parameters are deduced to study the approach used to design the featured antenna. The measured total efficiencies are from 40% to 80%, the isolation is better than 12 dB, the calculated envelope correlation coefficient (ECC) is less than 0.12, and the calculated channel capacity (CC) ranges from 35 to 38 bps/Hz. The presented antenna array is a good alternative to 5G mobile handsets with wideband operation, a metal frame, and minimized spacing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...