Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.785
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124955, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173323

RESUMEN

Designing persistent dual-band afterglow materials with thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) contributed to solving the problems of homogenization and singularity in long afterglow materials. Here, six aryl acetonitrile (CBM) and aryl dicyanoaniline (AMBT) derivatives, used as host and guest materials respectively, were successfully designed and synthesized based on the isomerization effect. Among of them, 0.1 % m-CBM/p-AMBT showed the longest dual-band TADF (540 ms) and RTP lifetimes (721 ms), as well as persistent afterglow over 8 s, whose fluorescence (ΦFL), TADF (ΦT) and RTP (ΦP) quantum yields were 0.11, 0.06 and 0.22 in sequence. More interestingly, some doping systems constructed by CBM and AMBT series compounds showed persistent triple-band emissions composed of TADF, unimolecular and aggregated AMBT series compounds. What's more, ΦFL, ΦT and ΦP of 1 % o-AMBT@PMMA film were up to 0.17, 0.17, 0.23 in turn, with TADF, RTP and afterglow lifetimes of 606 ms, 727 ms, and 10 s respectively. TADF and RTP emission of CBM/AMBT series doping systems was attributed to host sensitized guest emission. Besides, the comparison displayed AMBT series compounds had bigger intensity ratios between TADF and RTP emission in PMMA films compared to in CBM series compounds. Finally, a series of data encryption were successfully constructed based on different afterglow lifetimes of the doping systems, and a dynamic anti-counterfeiting pattern was prepared by using different temperature responses of TADF and RTP emissions.

2.
Small ; : e2405615, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221681

RESUMEN

Developing pure organic room-temperature phosphorescent (RTP) hydrogels is important for expanding the practical applications of phosphorescent materials. However, most of the reported RTP hydrogels containing aromatic phosphors suffer from short phosphorescent lifetimes, unstable underwater RTP emissions, and complex preparation processes. Herein, novel nonaromatic RTP hydrogels are prepared by using two types of non-traditional luminescent polymers, sodium alginate and a polymeric carboxylate, which are not RTP emissive or very weakly emissive in aqueous environments. The prepared hydrogels exhibit the following features: I) color-tunable RTP emissions with ultra-long lifetimes up to 451.1 ms, II) excellent anti-swelling properties and stable persistent RTP emission even after being immersed in deionized water for months, III) efficient and large-scale preparation of hydrogel fibers by wet spinning technique. Experiment results and theoretical calculations show that the stable and long-lifetime RTP emissions of the hydrogels originate from the introduction of more nonconventional chromophores which are strongly crosslinked with ionic bonding between carboxylate groups and calcium ions and enhanced through-space interactions between them. This work provides a reliable strategy for designing nonaromatic hydrogels with stable and persistent RTP.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39226914

RESUMEN

This paper reports on the spin glass-like coexistence of competing magnetic orders in oxygen-deficient V2O5 nanoparticles with a broad size distribution. X-ray photoelectron spectroscopy yields the surface chemical stoichiometry of nearly V2O4.65 due to significant defect density. Temperature-dependent electrical conductivity and thermopower measurements demonstrate a polaronic conduction mechanism with a hopping energy of about 0.112 eV. The V2O5-δ sample exhibits strong field as well as temperature-dependent magnetic behaviour when measured with a SQUID magnetometer, showing positive magnetic susceptibility across the temperature range of 2-350 K. Field-cooled and zero-field-cooled data indicate hysteresis, suggesting glassy behaviour. The formation of small polarons due to oxygen vacancy defects, compensated by V4+ charge defects, results in Magneto-Electronic Phase Separation (MEPS) and various magnetic exchanges, as predicted by first-principle calculations. This is evidenced by the strong hybridisation of V orbitals in the vicinity of vacant oxygen site. An increase in V4+ defects shows an antiferromagnetic (AFM) component. The magnetic diversity in undoped V2O4.9 originates from defect density and their random distribution, leading to MEPS. This involves localised spins in polarons and ferromagnetic (FM) clusters on a paramagnetic (PM) background, while V4+ dimers induce AFM interactions. Electron paramagnetic resonance spectra measured at different temperatures indicate a dominant paramagnetic signal at a g-value of 1.97 due to oxygen defects, with a broad FM resonance-like hump. Both signals diminish with increasing temperature. Neutron diffraction data rules out long-range magnetic ordering, reflecting the composition as V2O4.886. Despite the FM hysteresis, no long-range order is observed in neutron diffraction data, consistent with the polaron cluster-like FM with MEPS nature. This detailed study shall advance the understanding of the diverse magnetic behaviour observed in undoped non-magnetic systems.

4.
Chem Asian J ; : e202400965, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253774

RESUMEN

Room temperature phosphorescent (RTP) probes have significant advantages in the field of cellular imaging, as their long lifetimes can prevent interference from the spontaneous fluorescence of organisms. Persulfurated arenes are a typical RTP molecular parent nucleus. However, most of the applied research on them is concentrated in anti-counterfeiting, and relatively few are applied in bioimaging. The molecular structure and structure-property relationship of them applied in bioimaging are still in the exploration stage. In this work, we have designed and synthesized a series of RTP probes with long alkyl chains, all of which can be targeted to mitochondria with good water solubility for mitochondria-targeted imaging. Further, we investigated the effect of alkyl chains on the luminescence properties of these probes, and found that the moderate length of alkyl chains can realize the enhancement of phosphorescence intensity. We believe this finding is of guiding significance for the design of molecular structures in the field of RTP probes.

5.
Small Methods ; : e2400813, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240014

RESUMEN

An advanced scanning probe microscopy system enhanced with artificial intelligence (AI-SPM) designed for self-driving atomic-scale measurements is presented. This system expertly identifies and manipulates atomic positions with high precision, autonomously performing tasks such as spectroscopic data acquisition and atomic adjustment. An outstanding feature of AI-SPM is its ability to detect and adapt to surface defects, targeting or avoiding them as necessary. It is also designed to overcome typical challenges such as positional drift and tip apex atomic variations due to the thermal effects, ensuring accurate, site-specific surface analysis. The tests under the demanding conditions of room temperature have demonstrated the robustness of the system, successfully navigating thermal drift and tip fluctuations. During these tests on the Si(111)-(7 × 7) surface, AI-SPM autonomously identified defect-free regions and performed a large number of current-voltage spectroscopy measurements at different adatom sites, while autonomously compensating for thermal drift and monitoring probe health. These experiments produce extensive data sets that are critical for reliable materials characterization and demonstrate the potential of AI-SPM to significantly improve data acquisition. The integration of AI into SPM technologies represents a step toward more effective, precise and reliable atomic-level surface analysis, revolutionizing materials characterization methods.

6.
J Colloid Interface Sci ; 678(Pt B): 1125-1134, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39278038

RESUMEN

Room temperature sodium-sulfur (RT Na-S) batteries are considered as advanced energy storage technology due to their low cost and high theoretical energy density. However, challenges such as the growth of sodium dendrite and dissolution of sodium polysulfides significantly hinder the electrochemical performance. Herein, we developed a propylene carbonate (PC)-based electrolyte with Methyl 2-Fluoroisobutyrate (MFB) as an additive. The ester group in the MFB additive is capable of participating in and reconfiguring the coordination of their Na+ solvated structures, thereby lowering the desolvation barrier and regulating the Na anode's interfacial reaction and nucleation behavior. The polar C-F bond at the other end helps to reduce the lowest unoccupied molecular orbital (LUMO) energy of the MFB additive, enabling the preferential decomposition of MFB to form the F-rich inorganic phase strong polar solid electrolyte interphase (SEI), contributing to the inhibition of Na dendrite growth, the accumulation of dead Na. In addition, NaF-riched cathode electrolyte interphase (CEI) was also observed on sulfur-based cathode, which can effectively inhibited the shuttle effect. Consequently, the developed RT Na-S battery exhibit excellent electrochemical performance.

7.
Chemistry ; : e202403326, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39343748

RESUMEN

As family members of polycyclic aromatic hydrocarbons, compound anthracene (Ant) and phenanthrene (Phe) as isomers are widely used in organic optical materials and electronic materials. But their photochemical and physical properties are very different. In this work, the room temperature phosphorescence (RTP) properties of PVA-B-Ant and PVA-B-Phe are discussed carefully which are prepared by B-O click reaction through polyvinyl alcohol (PVA) with 9-anthraceneboronic acid (B-Ant) and 9-phenanthrenylboronic acid (B-Phe), respectively. PVA-B-Phe 1% film exhibits excellent fluorescence (FL) emission at 374 nm and RTP emission at 523 nm with green afterglow and around 1.9 s phosphorescence lifetime. However, PVA-B-Ant 1% film only shows strong blue FL emission at 414 nm, and the emission intensity decreases seriously with the extension of irradiation time. Experimental and theoretical calculations results suggest that the photodimer of Ant which is formed in PVA matrix under the UV light irradiation would be competitive with the process of RTP emission. This work demonstrates that the RTP properties of organic molecules might be probably affected by the photostability of the organic phosphor under UV irradiation.

8.
ACS Sens ; 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39344131

RESUMEN

Detecting H2S in oxygen-deficient conditions is vital for identifying leaks in SF6-insulated electrical equipment. Current infrared-based detection methods are expensive and sensitive to environmental conditions, highlighting the necessity for cost-effective and stable gas sensors. Existing gas sensors based on semiconducting metal oxides (SMOXs) are limited by redox reactions with oxygen and require high operating temperatures. Here, we introduce a room-temperature (RT) H2S sensor for oxygen-deficient environments using the intrinsic conducting two-dimensional (2D) metal-organic framework (MOF), Co1.8Ni1.2(hexaiminotriphenylene)2 [Co1.8Ni1.2(HITP)2], overcoming the limitations of SMOX gas sensors. Remarkably, Co1.8Ni1.2(HITP)2 sensors exhibit exceptional selectivity for H2S with negligible cross-responses and a sensitivity drift of less than 4.13% in an SF6 atmosphere over 60 days. The Co1.8Ni1.2(HITP)2 gas sensor shows significant promise for real-time and stable monitoring of H2S gas in oxygen-deficient environments.

9.
ChemSusChem ; : e202400763, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344878

RESUMEN

Surfactant-free colloidal syntheses in aqueous media are attractive to develop nanomaterials relevant for various applications, e.g. catalysis or medicine. However, controlled green syntheses without surfactants of metal nanoparticles in aqueous media remain scarce. Here, room temperature syntheses of gold (Au) nanoparticles (NPs) that require only HAuCl4, alkaline water and an alcohol, i.e. relatively benign chemicals and mild reaction conditions, are developed. The findings of a comprehensive multi-parameters screening performed in small volumes (< 3 mL) over 1000+ experiments pave the way to greener high throughput screenings of large parametric spaces and lead to scalable (100 mL) synthetic strategies. A rational selection of the alcohol is proposed. The influence of lights with defined wavelengths (222-690 nm) is investigated. It is found that lights with lower wavelengths favor the formation of smaller 5 nm NPs. Different kinetics and formation pathways are observed for different alcohols and for lights with different wavelengths. The sensitivity to various experimental parameters increases in the order glycerol < ethylene glycol < ethanol < methanol. New strategies for a rational fine size control, and to some extend shape control, are identified. The results lead to more sustainable and reproducible surfactant-free colloidal syntheses of NPs.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125147, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39299065

RESUMEN

To investigate the effects of steric hindrance fluorene and heavy-atom bromine on the general optoelectronic properties of star-shaped organic emitters based on 9-(2-cyanophenyl) carbazole (OCzPhCN) frameworks, heavy element of bromine and steric hindrance fluorene were introduced into OCzPhCN to produce four derivatives of 2-(3-bromo-9H-carbazol-9-yl)benzonitrile (BrCzPhCN), 2-(3-bromo-6-(9-(4-ethoxyphenyl)-9H-fluoren-9-yl)-9H-carbazol-9-yl)benzonitrile (BrFCzPhCN), 2-(3-(9-(4-ethoxyphenyl)-9H-fluoren-9-yl)-9H-carbazol-9-yl)benzonitrile (FCzPhCN) and 2-(3,6-bis(9-(4-ethoxyphenyl)-9H-fluoren-9-yl)-9H-carbazol-9-yl)benzonitrile (2FCzPhCN). The fluorene units obviously improve the thermal stability of the obtained compounds, and 2FCzPhCN has the highest thermal stability with 5 % mass heat loss temperature reaching 447 °C. In different polar solvents, the absorption peaks wavelength of OCzPhCN, FCzPhCN and 2FCzPhCN are basically unchanged, and the redshifted emission peaks are positively correlated with solvent polarity. The photoluminescence quantum yields (PLQYs) of OCzPhCN, BrCzPhCN, FCzPhCN, BrFCzPhCN and 2FCzPhCN powders were 20.17 %, 5.43 %, 30.75 %, 3.27 % and 23.56 %. The fluorescence and phosphorescent quantum efficiencies of OCzPhCN, BrCzPhCN, FCzPhCN, BrFCzPhCN and 2FCzPhCN powders are 9.76 % and 10.41 %, 1.2 % and 3.23 %, 28.45 % and 2.3 %, 3.27 % and 0 %, 23.56 % and 0 %. OCzPhCN, BrCzPhCN and FCzPhCN powders show obvious room temperature phosphorescent emission, and the phosphorescent emission lifetime of OCzPhCN, BrCzPhCN and FCzPhCN powders at 561 nm, 576 nm and 568 nm are 193.17 ms, 18.65 ms and 7.25 ms. Compared with OCzPhCN, the introduction of bromine decreases the PLQY and the phosphorescent lifetime of BrCzPhCN powder, while the fluorescence quantum efficiency of the compound FCzPhCN powder has been improved. The corresponding single-triplet energy splitting (ΔEST) of OCzPhCN, FCzPhCN and 2FCzPhCN in solutions are 0.49 eV, 0.63 eV and 0.63 eV, and the corresponding ΔEST values of OCzPhCN, BrCzPhCN FCzPhCN powders are 1.19 eV, 0.74 eV and 0.55 eV. The steric hindrance fluorene units result in smaller and stabilized ΔEST in the solid powder states, and the same situation is opposite in the unimolecular solutions. The maximum external quantum efficiency of organic light-emitting diode based on 10,10'-(4,4'-sulfonylbis (4,1-phenylene)) bis (9,9-dimethyl-9,10-dihydroacridine) hosted by OCzPhCN reaches 12.7 %, and the external quantum efficiency at 100 cd/m2 rolls down to 11 %. OCzPhCN is the best emitters in terms of room temperature phosphorescent emission and host applications.

11.
Angew Chem Int Ed Engl ; : e202415250, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301990

RESUMEN

Organic phosphorescence glass has garnered considerable attention owing to the excellent shaping ability and photophysical behavior, but facile construction from single-component phosphors is still challenging. Herein, a rigid-soft coupling design is adopted in organic phosphors of ICO, CCO and PCO, thus preparing phosphorescence glasses through melting-quenching method to give excellent shaping ability and dynamic phosphorescence. RTP performance is significantly enhanced in the dense-structure glass, and intriguing high-temperature phosphorescence (HTP) is still observable even at 400 K. Direct patterning under UV irradiation is also achieved using photolithography technique, allowing for the creation of high-quality afterglow patterns that can be reversibly erased and rewritten. This rigid-soft conformation in organic phosphors elucidates a promising concept for achieving efficient RTP glass with wide application prospects.

12.
J Biotechnol ; 395: 71-79, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299520

RESUMEN

Macrolactins have attracted considerable attention due to their value and application in medicine and agriculture. However, poor yields severely hinder their broader application in these fields. This study aimed to improve macrolactins production in Bacillus siamensis using a combined atmospheric and room-temperature plasma mutagenesis and a microbial microdroplet culture system. After 25 days of treatment, a desirable strain with macrolactins production 3.0-fold higher than that of the parental strain was successfully selected. The addition of 30 mg/L ZnSO4 further increased macrolactins production to 503 ± 37.6 µg/mL, representing a 30.9 % improvement in production compared to controls. Based on transcriptome analysis, the synthesis pathways of amino acids, fengycin, and surfactin were found to be downregulated in IMD4036. Further fermentation experiments confirmed that inhibition of the comparative fengycin synthesis pathway was potentially driving the increased production of macrolactins. The strategies and possible mechanisms detailed in this study can provide insight into enhancing the production of other secondary metabolites toxic to the producer strains.

13.
Angew Chem Int Ed Engl ; : e202412182, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305201

RESUMEN

Limited by the energy gap law, purely organic materials with efficient near-infrared room temperature phosphorescence are rare and difficult to achieve. Additionally, the exciton transition process among different emitting species in host-guest phosphorescent materials remains elusive, presenting a significant academic challenge. Herein, using a modular nonbonding orbital-π bridge-nonbonding orbital (n-π-n) molecular design strategy, we develop a series of heavy atom-free phosphors. Systematic modification of the π-conjugated cores enables the construction of a library with tunable near-infrared phosphorescence from 655 to 710 nm. These phosphors exhibit excellent performance under ambient conditions when dispersed into a 4-bromobenzophenone host matrix, achieving an extended lifetime of 11.25 ms and a maximum phosphorescence efficiency of 4.2%. Notably, by eliminating the interference from host phosphorescence, the exciton transition process can be visualized in hybrid materials under various excitation conditions. Spectroscopic analysis reveals that the improved phosphorescent performance of the guest originates from the triplet-triplet energy transfer of abundant triplet excitons generated independently by the host, rather than from enhanced intersystem crossing efficiency between the guest singlet state and the host triplet state. The findings provide in-depth insights into constructing novel near-infrared phosphors and exploring emission mechanisms of host-guest materials.

14.
Data Brief ; 57: 110879, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39290431

RESUMEN

The data presented here is the characteristics of biopellets and its raw materials. The raw materials of lignocellulosic waste (coffee skin, corncob, patchouli waste) and shrubs (Leucaena leucocephala and Gliricidia sepium) were collected from certain districts in Indonesia which provided quite abundant stocks of these raw materials. The raw material preparation and pelletization at room temperature (25 °C) using a manual press machine were carried out at Hasanuddin University, Makassar, Indonesia. Meanwhile, pelletization at high temperatures (225 °C) was carried out at The Integrated Laboratory of Forest Research and Development, Bogor, Indonesia. The evaluation of density, moisture content, volatile matter content, ash content, and amount of fixed carbon were also carried out at the laboratory. Meanwhile, evaluation of mineral content (sulfur, Na2O, K2O, Cl) and calorivic value was carried out at the Livestock Research Institute, Bogor, Indonesia. The results show that pelletization at high temperature produces better quality biopellets compared to pelletization at room temperature. Pelletization of L. leucocephala at high temperature produces the best quality biopellets with the highest density (1.17 g/cm3) and calorific value (4726 kcal/kg) and the lowest moisture content (4.87 %) and mineral content (0.01 % of S, 0.0014 % of Na2O, 1.53 % of K2O, and 0.17 % of Cl) among the other raw materials tested. This dataset is expected to be a primary source in comparing and determining the proper type of raw material for biopellet production as an alternative renewable energy source, especially those originating from shrubs and similar lignocellulosic waste.

15.
Sci Total Environ ; : 176381, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39304149

RESUMEN

This study investigates the performance and microbial community dynamics in two partial denitrification/anammox (PD/A) reactors with different influent wastewater compositions (differ in the presence/absence of NO2-) subjected to a controlled temperature gradient reduction from mesophilic (30 °C) to room temperature (20.92 °C) over 76 days. Two lab-scale PD/A reactors (R1 and R2), both operated with a total inorganic nitrogen (TIN) concentrations of 70 mg N/L. R1 maintained a NH4+/NO2-/NO3- ratio of 3:3:1 and a COD/NO3- ratio of 2.0, while R2 had an NH4+/NO3- ratio of 3:4, and COD/NO3- ratios of 2.0 and 2.5. Our findings reveal distinct responses to the temperature transitions: the optimization of the NH4+/NO2-/NO3- ratio at 3:3:1 facilitated more stable nitrogen removal as temperatures decreased. This stability can be attributed to the enhanced synchronization between anammox bacteria and denitrifiers, promoting a balanced bioconversion process that is less susceptible to temperature-induced disruptions. Notably, the specific anammox activity (SAA) in both reactors declined linearly with the decrease in temperature, but the relative abundance of anammox bacteria (Ca. Brocadia) in R1 increased from 2.1 % to 9.7 %. Furthermore, the percentage of anammox-related key genes was higher in R1 than in R2, suggesting a microbial mechanism underlying the stable performance of R1. These results underscore the significant impact of influent nitrogen composition on PD/A performance amid temperature gradients and highlight the critical role of optimizing influent ratios for maintaining efficient nitrogen removal. This study offers valuable insights into enhancing the stability of PD/A systems under varying thermal conditions.

16.
Nano Lett ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320324

RESUMEN

We engineered a two-dimensional Pt/WSe2/Ni avalanche photodetector (APD) optimized for ultraweak signal detection at room temperature. By fine-tuning the work functions, we achieved an ultralow dark current of 10-14 A under small bias, with a noise equivalent power (NEP) of 8.09 fW/Hz1/2. This performance is driven by effective dark barrier blocking and a record-long electron mean free path (123 nm) in intrinsic WSe2, minimizing dark carrier replenishment and suppressing noise under an ultralow electric field. Our APD exhibits a high gain of 5 × 105 at a modulation frequency of 20 kHz, effectively balancing gain and bandwidth, a common challenge in traditional photovoltaic-based APDs. By addressing the typical challenges of high noise and low gain and minimizing dependence on high electric fields, this work highlights the potential of 2D materials in developing efficient, low-power, and ultrasensitive photodetections.

17.
ACS Sens ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291403

RESUMEN

Parkinson's disease is a prevalent neurological disorder, with dimethylamine (DMA) recognized as a crucial breath biomarker, particularly at the parts per billion (ppb) level. Detecting DMA gas at this level, especially at room temperature and high humidity, remains a formidable challenge. This study presents an ultrasensitive chemiresistor DMA gas sensor, leveraging the CeO2-coated Ti3C2Tx MXene/carbon nanofiber (CeO2/MXene/C NFs) heterostructure to enhance dimethylamine sensing. The high conductivity of MXene, combined with C-Ti-O bonds and a sp2 hybridized hexagonal carbon structure, increases surface active sites. The presence of Ce3+ promotes the formation of surface-active oxygen species, while the MXene-CeO2 heterojunction broadens the electron depletion layer. Theoretical calculations reveal that the highest adsorption energy for DMA gas is at the Ce top site, explaining the sensor's satisfactory sensitivity, rapid response and recovery process, low detection limit (5 ppb), and high selectivity at room temperature. The Ce3+/Ce4+ dynamic self-refresh mechanism, involving surface hydroxyl elimination, enhances the sensor's performance under high-humid conditions. Clinical breath tests demonstrate the sensor's ability to distinguish between healthy individuals and Parkinson's disease patients, paving the way for developing next-generation sensors for early diagnosis of neurological disorders.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39297885

RESUMEN

The development of room-temperature (RT) sodium-sulfur (Na-S) batteries is severely hindered due to the slow kinetics of the S cathode and the instability of the Na-metal anode. To overcome this, we introduced a dual-functional electrolyte cosolvent, trifluoromethanesulfonamide (TFMSA). Short-chain Na2Sx (1 ≤ x ≤ 2) can be effectively dissolved due to the strong H-S bond interaction between TFMSA and sulfides, which changes the S conversion process, thereby effectively enhancing the conversion kinetics of the cathode. Meanwhile, TFMSA can generate a stable solid electrolyte interphase on the Na-metal surface to protect it from soluble polysulfide attack. Therefore, the RT Na-S batteries using the ether electrolyte show a high initial discharge capacity of 896.6 mAh g-1 and a capacity retention rate of 73% after 150 cycles at 0.2C, and the pouch cell also demonstrates its practical performance. This work proposes a dual-functional electrolyte cosolvent selection principle to inspire the practical application of high-performance RT Na-S batteries.

19.
Angew Chem Int Ed Engl ; : e202416189, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325535

RESUMEN

Controlling multicolor persistent room-temperature phosphorescence (RTP) through photoirradiation holds fundamental significance but remains a significant challenge. In this study, we engineered a wavelength-selective photoresponsive system utilizing the Förster resonance energy transfer strategy. This system integrates a photoactivated long-lived luminescent material as the energy donor with a fluorescent photoswitch as the energy acceptor, facilitating programmable persistent luminescence switches. Distinct afterglow color states, such as initial nonemissive, green, yellow, and orange, were achieved through irradiation at 400 nm, 365 nm, and 254 nm, respectively. Based on this capability, we established an interacting network for multistate afterglow color switching among these four emissive states. In addition, we demonstrate the potential of this wavelength-selective photoresponsive system in the photo-controlled rewritable printing of multicolor afterglow images on a single thin film. This work represents a substantial step towards the fabrication of sophisticated wavelength-selective photoresponsive systems, potentially revolutionizing applications in optical data storage, security labeling, and smart displays by enabling precise control over photoresponsive behaviors under various photoirradiation wavelengths.

20.
Mater Today Bio ; 28: 101238, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39318377

RESUMEN

This study introduces the time-gated analysis of room-temperature phosphorescence (RTP) for the in-situ analysis of the visible and spectral information of photons. Time-gated analysis is performed using a microscopic system consisting of a spectrometer, which is advantageous for in-situ analysis since it facilitates the real-time measurement of luminescence signal changes. An RTP material hybridized with a DNA aptamer that targets a specific protein enhances the intensity and lifetime of phosphorescence after selective recognition with the target protein. In addition, time-gated analysis allows for the millisecond-scale imaging of phosphorescence signals, excluding autofluorescence, and improves the signal-to-background ratio (SBR) through the accumulation of signals. While collecting the time-gated images and spectra of RTP and autofluorescent materials simultaneously, we develop a method for obtaining phosphorescence signals by means of selective exclusion of autofluorescence signals in simulated or real cell conditions. It is confirmed that the accumulated time-gated analysis can provide ample information about luminescence signals for bioimaging and biosensing applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...