Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Oral Implantol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703004

RESUMEN

There were only a few studies investigating the effect of sagittal root position (SRP), sagittal root angle (SRA), and buccal bone thickness (BBT) on peri-implant tissues using the socket shield technique (SST). This retrospective case series aimed to evaluate the SRP, SRA, and BBT in socket shield cases and examine the effect of these anatomical factors on the peri-implant tissue phenotype and bone level. Data from 27 patients (14 women, 13 men) treated with SST in the maxillary esthetic region between July 2019 and September 2021 were included. Clinical indices (modified plaque and bleeding indices, probing depth, keratinized mucosa width, mucosal thickness) and periapical radiographic recordings (marginal bone level) taken immediately after permanent prosthesis placement and one year later were used. Cone beam computed tomography images were used to examine BBT, SRP, and SRA before implant placement and horizontal and vertical bone levels before implant placement and one year after prosthetic rehabilitation. The data were divided into groups based on BBT (<1 and ≥1 mm) and SRA values (<10° and ≥10°). There were no significant differences in 1-year clinical factors between the SRA <10° and SRA ≥10° groups. However, higher vertical bone loss was found in the SRA ≥10° group (p = 0.01, d = 0.53). There were no significant differences in clinical or radiographic factors between the BBT <1 mm and BBT ≥1 mm groups. In conclusion, BBT showed no significant effect on tissue phenotype and bone level, 19 but SRA affected bone level in socket shield cases.

2.
Trends Plant Sci ; 29(7): 814-822, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38402016

RESUMEN

The root angle plays a critical role in efficiently capturing nutrients and water from different soil layers. Steeper root angles enable access to mobile water and nitrogen from deeper soil layers, whereas shallow root angles facilitate the capture of immobile phosphorus from the topsoil. Thus, understanding the genetic regulation of the root angle is crucial for breeding crop varieties that can efficiently capture resources and enhance yield. Moreover, this understanding can contribute to developing varieties that effectively sequester carbon in deeper soil layers, supporting global carbon mitigation efforts. Here we review and consolidate significant recent discoveries regarding the molecular components controlling root angle in cereal crop species and outline the remaining research gaps in this field.


Asunto(s)
Grano Comestible , Raíces de Plantas , Raíces de Plantas/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas , Productos Agrícolas/genética , Suelo/química , Nitrógeno/metabolismo
3.
Front Plant Sci ; 15: 1358163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375084

RESUMEN

Introduction: Plant responses to drought stress are influenced by various factors, including the lateral root angle (LRA), stomatal regulation, canopy temperature, transpiration rate and yield. However, there is a lack of research that quantifies their interactions, especially among different cotton varieties. Methods: This experiment included two water treatments: well-watered (75 ± 5% soil relative water content) and drought stress (50 ± 5% soil relative water content) starting from the three-leaf growth stage. Results: The results revealed that different LRA varieties show genetic variation under drought stress. Among them, varieties with smaller root angles show greater drought tolerance. Varieties with smaller LRAs had significantly increased stomatal opening by 15% to 43%, transpiration rate by 61.24% and 62.00%, aboveground biomass by 54% to 64%, and increased seed cotton yield by 76% to 79%, and decreased canopy temperature by 9% to 12% under drought stress compared to the larger LRAs. Varieties with smaller LRAs had less yield loss under drought stress, which may be due to enhanced access to deeper soil water, compensating for heightened stomatal opening and elevated transpiration rates. The increase in transpiration rate promotes heat dissipation from leaves, thereby reducing leaf temperature and protecting leaves from damage. Discussion: Demonstrating the advantages conferred by the development of a smaller LRA under drought stress conditions holds value in enhancing cotton's resilience and promoting its sustainable adaptation to abiotic stressors.

4.
Cell Rep ; 43(2): 113763, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38358890

RESUMEN

The lateral root angle or gravitropic set-point angle (GSA) is an important trait for root system architecture (RSA) that determines the radial expansion of the root system. The GSA therefore plays a crucial role for the ability of plants to access nutrients and water in the soil. Only a few regulatory pathways and mechanisms that determine GSA are known. These mostly relate to auxin and cytokinin pathways. Here, we report the identification of a small molecule, mebendazole (MBZ), that modulates GSA in Arabidopsis thaliana roots and acts via the activation of ethylene signaling. MBZ directly acts on the serine/threonine protein kinase CTR1, which is a negative regulator of ethylene signaling. Our study not only shows that the ethylene signaling pathway is essential for GSA regulation but also identifies a small molecular modulator of RSA that acts downstream of ethylene receptors and that directly activates ethylene signaling.


Asunto(s)
Arabidopsis , Mebendazol , Citocininas , Etilenos , Ácidos Indolacéticos
5.
BMC Biol ; 22(1): 8, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233837

RESUMEN

BACKGROUND: Plants adjust their growth orientations primarily in response to light and gravity signals. Considering that the gravity vector is fixed and the angle of light incidence is constantly changing, plants must somehow integrate these signals to establish organ orientation, commonly referred to as gravitropic set-point angle (GSA). The IGT gene family contains known regulators of GSA, including the gene clades LAZY, DEEPER ROOTING (DRO), and TILLER ANGLE CONTROL (TAC). RESULTS: Here, we investigated the influence of light on different aspects of GSA phenotypes in LAZY and DRO mutants, as well as the influence of known light signaling pathways on IGT gene expression. Phenotypic analysis revealed that LAZY and DRO genes are collectively required for changes in the angle of shoot branch tip and root growth in response to light. Single lazy1 mutant branch tips turn upward in the absence of light and in low light, similar to wild-type, and mimic triple and quadruple IGT mutants in constant light and high-light conditions, while triple and quadruple IGT/LAZY mutants show little to no response to changing light regimes. Further, the expression of IGT/LAZY genes is differentially influenced by daylength, circadian clock, and light signaling. CONCLUSIONS: Collectively, the data show that differential expression of LAZY and DRO genes are required to enable plants to alter organ angles in response to light-mediated signals.


Asunto(s)
Gravitación , Plantas
6.
J Exp Bot ; 75(2): 631-641, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37688302

RESUMEN

Root system architecture (RSA) influences the acquisition of heterogeneously dispersed soil nutrients. Cytokinin and C-TERMINALLY ENCODED PEPTIDE (CEP) hormones affect RSA, in part by controlling the angle of lateral root (LR) growth. Both hormone pathways converge on CEP DOWNSTREAM 1 (CEPD1) and CEPD2 to control primary root growth; however, a role for CEPDs in controlling the growth angle of LRs is unknown. Using phenotyping combined with genetic and grafting approaches, we show that CEP hormone-mediated shallower LR growth requires cytokinin biosynthesis and perception in roots via ARABIDOPSIS HISTIDINE KINASE 2 (AHK2) and AHK3. Consistently, cytokinin biosynthesis and ahk2,3 mutants phenocopied the steeper root phenotype of cep receptor 1 (cepr1) mutants on agar plates, and CEPR1 was required for trans-Zeatin (tZ)-type cytokinin-mediated shallower LR growth. In addition, the cepd1,2 mutant was less sensitive to CEP and tZ, and showed basally steeper LRs on agar plates. Cytokinin and CEP pathway mutants were grown in rhizoboxes to define the role of these pathways in controlling RSA. Only cytokinin receptor mutants and cepd1,2 partially phenocopied the steeper-rooted phenotype of cepr1 mutants. These results show that CEP and cytokinin signaling intersect to promote shallower LR growth, but additional components contribute to the cepr1 phenotype in soil.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Agar/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Hormonas/metabolismo , Péptidos/genética , Péptidos/metabolismo , Suelo , Regulación de la Expresión Génica de las Plantas , Receptores de Péptidos/genética
7.
Acta Neurochir (Wien) ; 165(8): 2153-2163, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37407854

RESUMEN

BACKGROUND: Lumbar foraminal stenosis (LFS) is an important pathologic entity that causes lumbar radiculopathies. Unrecognized LFS may be associated with surgical failure, and LFS remains challenging to treat surgically. This retrospective cohort study aimed to evaluate the clinical outcomes and prognostic factors of decompressive foraminotomy performed using the biportal endoscopic paraspinal approach for LFS. METHODS: A total of 102 consecutive patients with single-level unilateral LFS who underwent biportal endoscopic paraspinal decompressive foraminotomy were included. We evaluated the Visual Analogue Scale (VAS) score and the Oswestry Disability Index (ODI) before and after surgery. Demographic, preoperative data, and radiologic parameters, including the coronal root angle (CRA), were investigated. The patients were divided into Group A (satisfaction group) and Group B (unsatisfaction group). Parameters were compared between these two groups to identify the factors influencing unsatisfactory outcomes. RESULTS: In Group A (78.8% of patients), VAS and ODI scores significantly improved after biportal endoscopic paraspinal decompressive foraminotomy (p < 0.001). However, Group B (21.2% of patients) showed higher incidences of stenosis at the lower lumbar level (p = 0.009), wide segmental lordosis (p = 0.021), and narrow ipsilateral CRA (p = 0.009). In the logistic regression analysis, lower lumbar level (OR = 13.82, 95% CI: 1.33-143.48, p = 0.028) and narrow ipsilateral CRA (OR = 0.92, 95% CI: 0.86-1.00, p = 0.047) were associated with unsatisfactory outcomes. CONCLUSIONS: Significant improvement in clinical outcomes was observed for a year after biportal endoscopic paraspinal decompressive foraminotomy. However, clinical outcomes were unsatisfactory in 21.2% of patients, and lower lumbar level and narrow ipsilateral CRA were independent risk factors for unsatisfactory outcomes.


Asunto(s)
Foraminotomía , Estenosis Espinal , Humanos , Descompresión Quirúrgica/efectos adversos , Estudios Retrospectivos , Constricción Patológica/cirugía , Resultado del Tratamiento , Estenosis Espinal/diagnóstico por imagen , Estenosis Espinal/cirugía , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Endoscopía/efectos adversos
8.
Nanomaterials (Basel) ; 13(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37177029

RESUMEN

Strategies to reduce the risk of drought damage are urgently needed as intensified climate change threatens agricultural production. One potential strategy was using nanomaterials (NMs) to enhance plant resistance by regulating various physiological and biochemical processes. In the present study, 10 mg kg-1 manganese ferrite (MnFe2O4) NMs had the optimal enhancement to elevate the levels of biomass, photosynthesis, nutrient elements, and polysaccharide in rice by 10.9-525.0%, respectively, under drought stress. The MnFe2O4 NMs were internalized by rice plants, which provided the possibility for rice to better cope with drought. Furthermore, as compared with drought control and equivalent ion control, the introduction of MnFe2O4 NMs into the roots significantly upregulated the drought-sensing gene CLE25 (29.4%) and the receptor gene NCED3 (59.9%). This activation stimulated downstream abscisic acid, proline, malondialdehyde, and wax biosynthesis by 23.3%, 38.9%, 7.2%, and 26.2%, respectively. In addition, 10 mg·kg-1 MnFe2O4 NMs significantly upregulated the relative expressions of OR1, AUX2, AUX3, PIN1a, and PIN2, and increased IAA content significantly, resulting in an enlarged root angle and a deeper and denser root to help the plant withstand drought stresses. The nutritional quality of rice grains was also improved. Our study provides crucial insight for developing nano-enabled strategies to improve crop productivity and resilience to climate change.

9.
Plant Methods ; 19(1): 11, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732764

RESUMEN

BACKGROUND: Crop breeding based on root system architecture (RSA) optimization is an essential factor for improving crop production in developing countries. Identification, evaluation, and selection of root traits of soil-grown crops require innovations that enable high-throughput and accurate quantification of three-dimensional (3D) RSA of crops over developmental time. RESULTS: We proposed an automated imaging system and 3D imaging data processing pipeline to quantify the 3D RSA of soil-grown individual plants across seedlings to the mature stage. A multi-view automated imaging system composed of a rotary table and an imaging arm with 12 cameras mounted with a combination of fan-shaped and vertical distribution was developed to obtain 3D image data of roots grown on a customized root support mesh. A 3D imaging data processing pipeline was developed to quantify the 3D RSA based on the point cloud generated from multi-view images. The global architecture of root systems can be quantified automatically. Detailed analysis of the reconstructed 3D root model also allowed us to investigate the Spatio-temporal distribution of roots. A method combining horizontal slicing and iterative erosion and dilation was developed to automatically segment different root types, and identify local root traits (e.g., length, diameter of the main root, and length, diameter, initial angle, and the number of nodal roots or lateral roots). One maize (Zea mays L.) cultivar and two rapeseed (Brassica napus L.) cultivars at different growth stages were selected to test the performance of the automated imaging system and 3D imaging data processing pipeline. CONCLUSIONS: The results demonstrated the capabilities of the proposed imaging and analytical system for high-throughput phenotyping of root traits for both monocotyledons and dicotyledons across growth stages. The proposed system offers a potential tool to further explore the 3D RSA for improving root traits and agronomic qualities of crops.

10.
Plants (Basel) ; 12(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36678988

RESUMEN

We aimed to assess the effect of water deprivation on root traits and to establish if the wheat cultivars Spica and Maringa would be useful as parental germplasm for a genetic analysis of root traits. Plants were grown in two markedly different soils under well-watered and water-limited treatments in controlled environment growth cabinets. The drought treatment was imposed as a gradual depletion of water over 28 days as seedlings grew from a defined starting moisture content. The root traits analyzed included length, nodal root number, thickness and nodal root angle. The relative differences in traits between genotypes generally proved to be robust in terms of water treatment and soil type. Maringa had a shallower nodal root angle than Spica, which was driven by the nodal roots. By contrast, the seminal roots of Maringa were found to be similar to or even steeper than those of Spica. We conclude that the differences in root traits between Spica and Maringa were robust to the drought treatment and soil types. Phenotyping on well-watered soil is relevant for identifying traits potentially involved in conferring water use efficiency. Furthermore, Spica and Maringa are suitable parental germplasm for developing populations to determine the genetics of key root traits.

11.
New Phytol ; 238(1): 142-154, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36636793

RESUMEN

Root lodging poses a major threat to maize production, resulting in reduced grain yield and quality, and increased harvest costs. Here, we combined expressional, genetic, and cytological studies to demonstrate a role of ZmYUC2 and ZmYUC4 in regulating gravitropic response of the brace root and lodging resistance in maize. We show that both ZmYUC2 and ZmYUC4 are preferentially expressed in root tips with partially overlapping expression patterns, and the protein products of ZmYUC2 and ZmYUC4 are localized in the cytoplasm and endoplasmic reticulum, respectively. The Zmyuc4 single mutant and Zmyuc2/4 double mutant exhibit enlarged brace root angle compared with the wild-type plants, with larger brace root angle being observed in the Zmyuc2/4 double mutant. Consistently, the brace root tips of the Zmyuc4 single mutant and Zmyuc2/4 double mutant accumulate less auxin and are defective in proper reallocation of auxin in response to gravi-stimuli. Furthermore, we show that the Zmyuc4 single mutant and the Zmyuc2/4 double mutant display obviously enhanced root lodging resistance. Our combined results demonstrate that ZmYUC2- and ZmYUC4-mediated local auxin biosynthesis is required for normal gravity response of the brace roots and provide effective targets for breeding root lodging resistant maize cultivars.


Asunto(s)
Gravitropismo , Zea mays , Zea mays/metabolismo , Gravitropismo/fisiología , Raíces de Plantas/metabolismo , Fitomejoramiento , Ácidos Indolacéticos/metabolismo
12.
Plants (Basel) ; 11(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36015385

RESUMEN

Rootstocks are fundamental for peach production, and their architectural root traits determine their performance. Root-system architecture (RSA) analysis is one of the key factors involved in rootstock selection. However, there are few RSA studies on Prunus spp., mostly due to the tedious and time-consuming labor of measuring below-ground roots. A root-phenotyping experiment was developed to analyze the RSA of seedlings from 'Okinawa' and 'Guardian'™ peach rootstocks. The seedlings were established in rhizoboxes and their root systems scanned and architecturally analyzed. The root-system depth:width ratio (D:W) throughout the experiment, as well as the root morphological parameters, the depth rooting parameters, and the root angular spread were estimated. The 'Okinawa' exhibited greater root morphological traits, as well as the other parameters, confirming the relevance of the spatial disposition and growth pattern of the root system.

13.
Proc Natl Acad Sci U S A ; 119(31): e2201350119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881796

RESUMEN

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus antigravitropic offset (AGO) mechanisms. Here we report a root angle regulatory gene termed ENHANCED GRAVITROPISM1 (EGT1) that encodes a putative AGO component, whose loss-of-function enhances root gravitropism. Mutations in barley and wheat EGT1 genes confer a striking root phenotype, where every root class adopts a steeper growth angle. EGT1 encodes an F-box and Tubby domain-containing protein that is highly conserved across plant species. Haplotype analysis found that natural allelic variation at the barley EGT1 locus impacts root angle. Gravitropic assays indicated that Hvegt1 roots bend more rapidly than wild-type. Transcript profiling revealed Hvegt1 roots deregulate reactive oxygen species (ROS) homeostasis and cell wall-loosening enzymes and cofactors. ROS imaging shows that Hvegt1 root basal meristem and elongation zone tissues have reduced levels. Atomic force microscopy measurements detected elongating Hvegt1 root cortical cell walls are significantly less stiff than wild-type. In situ analysis identified HvEGT1 is expressed in elongating cortical and stele tissues, which are distinct from known root gravitropic perception and response tissues in the columella and epidermis, respectively. We propose that EGT1 controls root angle by regulating cell wall stiffness in elongating root cortical tissue, counteracting the gravitropic machinery's known ability to bend the root via its outermost tissues. We conclude that root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism.


Asunto(s)
Productos Agrícolas , Gravitropismo , Hordeum , Proteínas de Plantas , Raíces de Plantas , Pared Celular/química , Productos Agrícolas/química , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Gravitropismo/genética , Hordeum/química , Hordeum/genética , Hordeum/crecimiento & desarrollo , Microscopía de Fuerza Atómica , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Raíces de Plantas/química , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética
14.
Diagnostics (Basel) ; 12(6)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35741316

RESUMEN

Background: The collum angle (CA) is an extremely significant for patients who are undergoing orthodontic, dental implant restoration, prosthodontic and periodontic treatments. Aim and Objectives: To determine and compare the mean CA for maxillary central incisor in different types of malocclusion utilizing 3D Cone Beam Computerized Tomography (CBCT) images. The additional objectives were to determine and compare the mean CA for maxillary central incisor based upon the demographic characteristics among Saudi, Jordan and Egypt subpopulation and to test for significant differences in the CA of maxillary central incisor with different molar malocclusions. Methodology: A total of 400 CBCT images were included from the radiology archive at the College of Dentistry, Jouf University (Sakaka, Saudi Arabia). The CBCT images were divided into four groups based upon molar classifications. The selected records were used for the measurement of CA of maxillary central incisor using the measurement tool built into 3D:OnDemand software. Statistical analysis was done using independent t test and ANOVA to examine the differences between gender and races. Results: The mean CA for Class II div 2 exhibited significantly higher crown-root variation as compared other groups (p < 0.0001). Males sample showed greater value of CA for each group as compared to the females and this difference was statistically significant for all the groups other than for Class I (p < 0.05). The post hoc pairwise comparisons between the races showed statistically insignificant findings (p > 0.05). Significant difference was found on pairwise comparisons among different malocclusion groups other than for group Class I/Class II div 1 (p < 0.05). Conclusion: The CA of Class II div 2 group was the greatest as compared to other malocclusion groups. Males sample showed greater value of CA for each group as compared to the females and this difference was statistically significant for all the groups other than for Class I. Statistically insignificant difference was noted for the mean CA among different races whereas significant difference was found on pairwise comparisons among different malocclusion groups other than for group Class I/Class II div 1.

15.
Plants (Basel) ; 11(6)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35336704

RESUMEN

Durum wheat (Triticum turgidum, 2n = 4x = AABB) includes several subspecies with differential characteristics in their root system architecture (RSA). Subspecies durum has longer and more vertical roots, while subspecies turgidum has smaller and shallower roots. The homeologous genes TtDro1A and TtDro1B of both subspecies have been identified and found to differ in their sizes, sequences and the proteins they encode. To determine whether there is a relationship between the level of expression of these two genes and the angle adopted by the roots of durum wheat seedlings, their expressions has been studied by RT-qPCR, both in the primary seminal root and in the other seminal roots. The results of the analyses showed that the TtDro1A gene is expressed 1.4 times more in the primary seminal root than in the other seminal roots. Furthermore, this gene is expressed 2.49 to 8.76 times more than TtDro1B depending on root type (primary or seminal) and subspecies. There are positive correlations between the expression ratio of both genes (TtDro1A/TtDro1B) and the mean of all root angles, the most vertical root angle and the most horizontal root angle of the seedlings. The higher the expression of TtDro1B gene, the lower the root growth angles.

16.
Data Brief ; 40: 107754, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35005145

RESUMEN

Ideotypic characteristics of durum wheat associated with higher yield under different water and temperature regimes were studied under Mediterranean conditions. The focus of this paper is to provide raw and supplemental data from the research article entitled "Durum wheat ideotypes in Mediterranean environments differing in water and temperature conditions" [1], which aims to define specific durum wheat ideotypes according to their responses to different agronomic conditions. In this context, six modern (i.e. post green revolution) genotypes with contrasting yield performance (i.e. high vs low yield) were grown during two consecutive years under different treatments: (i) winter planting under support-irrigation conditions, (ii) winter planting under rainfed conditions, (iii) late planting under support-irrigation. Trials were conducted at the INIA station of Colmenar de Oreja (Madrid). Different traits were assessed to inform about water status (canopy temperature at anthesis and stable carbon isotope composition (δ13C) of the flag leaf and mature grains), root performance (root traits and the oxygen isotope composition (δ18O) in the stem base water), phenology (days from sowing to heading), nitrogen status/photosynthetic capacity (nitrogen content and stable isotope composition (δ15N) of the flag leaf and mature grain together with the pigment contents and the nitrogen balance index (NBI) of the flag leaf), crop growth (plant height (PH) and the normalized difference vegetation index (NDVI) at anthesis), grain yield and agronomic yield components. For most of the parameters assessed, data analysis demonstrated significant differences among genotypes within each treatment. The level of significance was determined using the Tukey-b test on independent samples, and ideotypes were modelled from the results of principle component analysis. The present data shed light on traits that help to define specific ideotype characteristics that confer genotypic adaptation to a wide range of agronomic conditions produced by variations in planting date, water conditions and season.

17.
Plant Methods ; 18(1): 2, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012581

RESUMEN

BACKGROUND: The incorporation of root traits into elite germplasm is typically a slow process. Thus, innovative approaches are required to accelerate research and pre-breeding programs targeting root traits to improve yield stability in different environments and soil types. Marker-assisted selection (MAS) can help to speed up the process by selecting key genes or quantitative trait loci (QTL) associated with root traits. However, this approach is limited due to the complex genetic control of root traits and the limited number of well-characterised large effect QTL. Coupling MAS with phenotyping could increase the reliability of selection. Here we present a useful framework to rapidly modify root traits in elite germplasm. In this wheat exemplar, a single plant selection (SPS) approach combined three main elements: phenotypic selection (in this case for seminal root angle); MAS using KASP markers (targeting a root biomass QTL); and speed breeding to accelerate each cycle. RESULTS: To develop a SPS approach that integrates non-destructive screening for seminal root angle and root biomass, two initial experiments were conducted. Firstly, we demonstrated that transplanting wheat seedlings from clear pots (for seminal root angle assessment) into sand pots (for root biomass assessment) did not impact the ability to differentiate genotypes with high and low root biomass. Secondly, we demonstrated that visual scores for root biomass were correlated with root dry weight (r = 0.72), indicating that single plants could be evaluated for root biomass in a non-destructive manner. To highlight the potential of the approach, we applied SPS in a backcrossing program which integrated MAS and speed breeding for the purpose of rapidly modifying the root system of elite bread wheat line Borlaug100. Bi-directional selection for root angle in segregating generations successfully shifted the mean root angle by 30° in the subsequent generation (P ≤ 0.05). Within 18 months, BC2F4:F5 introgression lines were developed that displayed a full range of root configurations, while retaining similar above-ground traits to the recurrent parent. Notably, the seminal root angle displayed by introgression lines varied more than 30° compared to the recurrent parent, resulting in lines with both narrow and wide root angles, and high and low root biomass phenotypes. CONCLUSION: The SPS approach enables researchers and plant breeders to rapidly manipulate root traits of future crop varieties, which could help improve productivity in the face of increasing environmental fluctuations. The newly developed elite wheat lines with modified root traits provide valuable materials to study the value of different root systems to support yield in different environments and soil types.

18.
G3 (Bethesda) ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35099521

RESUMEN

In plants, the study of belowground traits is gaining momentum due to their importance on yield formation and the uptake of water and nutrients. In several cereal crops, seminal root number and seminal root angle are proxy traits of the root system architecture at the mature stages, which in turn contributes to modulating the uptake of water and nutrients. Along with seminal root number and seminal root angle, experimental evidence indicates that the transpiration rate response to evaporative demand or vapor pressure deficit is a key physiological trait that might be targeted to cope with drought tolerance as the reduction of the water flux to leaves for limiting transpiration rate at high levels of vapor pressure deficit allows to better manage soil moisture. In the present study, we examined the phenotypic diversity of seminal root number, seminal root angle, and transpiration rate at the seedling stage in a panel of 8-way Multiparent Advanced Generation Inter-Crosses lines of winter barley and correlated these traits with grain yield measured in different site-by-season combinations. Second, phenotypic and genotypic data of the Multiparent Advanced Generation Inter-Crosses population were combined to fit and cross-validate different genomic prediction models for these belowground and physiological traits. Genomic prediction models for seminal root number were fitted using threshold and log-normal models, considering these data as ordinal discrete variable and as count data, respectively, while for seminal root angle and transpiration rate, genomic prediction was implemented using models based on extended genomic best linear unbiased predictors. The results presented in this study show that genome-enabled prediction models of seminal root number, seminal root angle, and transpiration rate data have high predictive ability and that the best models investigated in the present study include first-order additive × additive epistatic interaction effects. Our analyses indicate that beyond grain yield, genomic prediction models might be used to predict belowground and physiological traits and pave the way to practical applications for barley improvement.


Asunto(s)
Hordeum , Genotipo , Hordeum/genética , Fenotipo , Sitios de Carácter Cuantitativo , Plantones/genética
19.
Plant Cell Environ ; 45(3): 854-870, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35099814

RESUMEN

The aus rice variety group originated in stress-prone regions and is a promising source for the development of new stress-tolerant rice cultivars. In this study, an aus panel (~220 genotypes) was evaluated in field trials under well-watered and drought conditions and in the greenhouse (basket, herbicide and lysimeter studies) to investigate relationships between grain yield and root architecture, and to identify component root traits behind the composite trait of deep root growth. In the field trials, high and stable grain yield was positively related to high and stable deep root growth (r = 0.16), which may indicate response to within-season soil moisture fluctuations (i.e., plasticity). When dissecting component traits related to deep root growth (including angle, elongation and branching), the number of nodal roots classified as 'large-diameter' was positively related to deep root growth (r = 0.24), and showed the highest number of colocated genome-wide association study (GWAS) peaks with grain yield under drought. The role of large-diameter nodal roots in deep root growth may be related to their branching potential. Two candidate loci that colocated for yield and root traits were identified that showed distinct haplotype distributions between contrasting yield/stability groups and could be good candidates to contribute to rice improvement.


Asunto(s)
Oryza , Mapeo Cromosómico , Sequías , Grano Comestible , Estudio de Asociación del Genoma Completo , Oryza/fisiología
20.
Plants (Basel) ; 10(10)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34685908

RESUMEN

Aerobic rice production (AP) provides potential solutions to the global water crisis by consuming less water than traditional permanent water culture. Narrow root cone angle (RCA), development of deeper rooting and associated genomic regions are key for AP adaptation. However, their usefulness depends on validation across genetic backgrounds and development of linked markers. Using three F2 populations derived from IRAT109, qRCA4 was shown to be effective in multiple backgrounds, explaining 9.3-17.3% of the genotypic variation and introgression of the favourable allele resulted in 11.7-15.1° narrower RCA. Novel kompetitive allele specific PCR (KASP) markers were developed targeting narrow RCA and revealed robust quality metrics. Candidate genes related with plant response to abiotic stress and root development were identified along with 178 potential donors across rice subpopulations. This study validated qRCA4's effect in multiple genetic backgrounds further strengthening its value in rice improvement for AP adaptation. Furthermore, the development of novel KASP markers ensured the opportunity for its seamless introgression across pertinent breeding programs. This work provides the tools and opportunity to accelerate development of genotypes with narrow RCA through marker assisted selection in breeding programs targeting AP, which may ultimately contribute to more sustainable rice production where water availability is limited.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...