Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Sep Sci ; 46(20): e2300426, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37582650

RESUMEN

As acetonitrile is a widely used solvent for the chemical industry, the recovery of acetonitrile from acetonitrile wastewater is significant for both industrial cost reduction and environmental protection. In this article, a simple, low-energy, and low-cost strategy is proposed for the effective separation of acetonitrile from high-concentration acetonitrile wastewater. The approach is based on a sequential combination of two steps: salt-induced phase separation and hydrophobic filtration. The acetonitrile wastewater was first induced to split into two phases by salt, that is, the acetonitrile-rich phase and the water-rich phase, then the above two phases were poured into the hydrophobic filter paper funnel for the separation. It was shown that NaCl is a suitable salting-out reagent, and that hydrophobic filter papers-obtained from modification by butyltrichlorosilane and octyltrichlorosilane were the optimal choice for hydrophobic filtration. The salt-induced phase separation process is able to increase the volume fraction of acetonitrile in the acetonitrile-rich phase up to 92%. The acetonitrile-rich phase can pass through the hydrophobic filter paper, whereas the water-rich phase was intercepted. The hydrophobic filter paper retained strong hydrophobicity and high acetonitrile-separating capacity after 3 months storage, or upon immersion in acetonitrile-water mixtures for 12 h, or applied for 25 consecutive separations.

2.
J Chromatogr A ; 1676: 463254, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35738189

RESUMEN

A novel and efficient analytical method consisting of in-situ potassium triphosphate induced ethanol-water phase separation extraction and followed by gas chromatography-mass spectrometry (GC-MS) detection was developed for determination of eighteen phthalate esters (PAEs) in alcoholic liquid samples. Experimental parameters affecting the extraction efficiency were studied and optimized by univariate analysis. The effects of salt type and concentration, concentration of ethanol, redissolve solvent, vortex and standing time, solution pH on extraction efficiency were investigated. The developed method exhibited good linearity at a concentration range of 5-2500 µg·L-1 for diisononyl phthalate and 1-500 µg·L-1 for other PAEs. In addition, the coefficients of determination (R2) for all PAEs ranged from 0.9979 to 0.9999, the detection limits (LODs) and the limits of quantification (LOQs) were in the range of 0.014-0.530 µg·L-1 and 0.047-1.767 µg·L-1, respectively, the spiked recoveries were in the range of 92.2%-110.2% with the relative standard deviation (RSD) less than 8.6%. As ethanol within alcoholic liquid samples was used to separate PAEs with none solvent added at extraction processing, the proposed method could be considered simple and environmentally friendly.


Asunto(s)
Ésteres , Ácidos Ftálicos , Ésteres/análisis , Etanol/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Ácidos Ftálicos/análisis , Polifosfatos , Extracción en Fase Sólida/métodos , Solventes/química , Agua
3.
Materials (Basel) ; 9(5)2016 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28773508

RESUMEN

While mass spectrometry (MS) plays a key role in proteomics research, characterization of membrane proteins (MP) by MS has been a challenging task because of the presence of a host of interfering chemicals in the hydrophobic protein extraction process, and the low protease digestion efficiency. We report a sample preparation protocol, two-phase separation with Triton X-100, induced by NaCl, with coomassie blue added for visualizing the detergent-rich phase, which streamlines MP preparation for SDS-PAGE analysis of intact MP and shot-gun proteomic analyses. MP solubilized in the detergent-rich milieu were then sequentially extracted and fractionated by surface-oxidized nanodiamond (ND) at three pHs. The high MP affinity of ND enabled extensive washes for removal of salts, detergents, lipids, and other impurities to ensure uncompromised ensuing purposes, notably enhanced proteolytic digestion and down-stream mass spectrometric (MS) analyses. Starting with a typical membranous cellular lysate fraction harvested with centrifugation/ultracentrifugation, MP purities of 70%, based on number (not weight) of proteins identified by MS, was achieved; the weight-based purity can be expected to be much higher.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...