Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.681
Filtrar
1.
Ultrason Sonochem ; 111: 107076, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39357212

RESUMEN

This comprehensive review explores the interplay between inorganic salts and ultrasound-assisted degradation of various contaminants. The addition of salt to aqueous matrices has been attributed to increasing contaminant degradation via the salting-out effect. However, research investigating the impact of salt on degradation has yielded inconsistent results. This review incorporated degradation information from 44 studies organizing data according to compound class and ionic strength to analyze the impact of inorganic salts on cavitation bubble dynamics, contaminant behavior, radical species generation, and contaminant degradation. Frequency and salt type were assessed for potential roles in contaminant degradation. The analysis showed that high intensity ultrasound was most beneficial to degradation in salt solutions. Unexpectedly, hydrophilic compounds showed marked enhancement with increasing ionic strength while many hydrophobic compounds did not benefit as greatly. Based on the collected data and analysis, enhanced degradation in the presence of salt appears to be primarily radical-mediated rather than due to the salting-out effect. Finally, the analysis provides guidance for designing sonolytic reactors for contaminant degradation.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125155, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39357252

RESUMEN

A new sensor based on Ethylbenzothiazolium-2-hydroxynaphthaldehyde conjugate-based fluorescent sensor, (E)-3-ethyl-2-(2-(2-hydroxynaphthalen-1-yl) vinyl) benzo[d]thiazol-3-ium iodide (SU-1) was designed and synthesized. The structure of SU-1 was confirmed by 1H NMR, 13C NMR, HRMS, and single crystal XRD spectral analysis. SU-1 displayed a colorimetric and fluorometric response in a DMSO:H2O (1:1,v/v) matrix, changing color from pale yellow to colorless visible to the naked eye, accompanied by a âˆ¼ 120 nm red-shift in the absorption spectra upon CN- addition. This shift, due to formation of deprotonation followed by the nucleophilic attack on the benzothiazolium ring's double bond, disrupts π-conjugation, blocking intramolecular charge transfer within SU-1. However, competitive anions showed negligible interference while detecting CN-. The Limit of detection for CN- was determined to be 0.27 nM, significantly below the WHO's permissible CN- concentration in drinking water (1.9 µM). Job's plot analysis shows that the binding stoichiometry of SU-1 to CN- is a 1:1, with a stability constant (Ka) of 1.58 x 104 M-1. The sensor demonstrated practical applications in environmental water samples and fluorescence imaging of intracellular CN- in CAD cell line.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39365562

RESUMEN

2,4,6-Triaminopyrimidine is an interesting and challenging molecule due to the presence of multiple hydrogen-bond donors and acceptors. Its noncovalent interactions with a variety of carboxylic acids provide several supramolecular aggregates with frequently occurring molecular synthons. The present work focuses on the supramolecular interactions of 2,4,6-triaminopyrimidinium 3-(indol-3-yl)propionate-3-(indol-3-yl)propionic acid (1/1), C4H8N5+·C11H10NO2-·C11H11NO2, (I), 2,4,6-triaminopyrimidinium 2-(indol-3-yl)acetate, C4H8N5+·C10H8NO2-, (II), 2,4,6-triaminopyrimidinium 5-bromothiophene-2-carboxylate, C4H8N5+·C5H2BrO2S-, (III), and 2,4,6-triaminopyrimidinium 5-chlorothiophene-2-carboxylate, C4H8N5+·C5H2ClO2S-, (IV). All four salts exhibit robust homomeric and heteromeric R22(8) ring motifs. Salts (I) and (II) develop sextuple [in (I)] and quadruple [in (I) and (II)] hydrogen-bonded arrays through fused-ring motifs. Salt (II) exhibits a rosette-like architecture. Salt (IV) is isostructural and isomorphous with salt (III), exhibiting an identical crystal structure with a different composition and an identical supramolecular architecture. In salts (III) and (IV), a linear hetero-tetrameric motif is formed and, in addition, both salts exhibit halogen-π interactions which enhance the crystal stability. All four salts develop a supramolecular hydrogen-bonded pattern facilitated by several N-H...O and N-H...N hydrogen bonds with multiple furcated donors and acceptors.

4.
J Agric Food Chem ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352105

RESUMEN

Amino acids are necessary for life, and many must be consumed because they cannot be endogenously synthesized. Typically, we eat them as proteins and peptides, which have little taste. However, we also directly ingest free amino acids, several of which are aversive because they elicit bitterness. This bitterness often prevents many patient populations from taking formulas and supplements containing free amino acids. Here, we characterize which amino acids are the most bitter, their concentration-intensity functions, and individual differences in bitterness perception, and we explore how sodium salts suppress the bitterness of amino acids. We found that the essential amino acids comprise the most bitter stimuli, with six of them conveying the most bitterness. Clustering and correlating amino acids by individual differences in bitterness perception show that there are approximately four groupings of amino acids and suggest that within these clusters, amino acids may be activating the same or overlapping TAS2Rs. We also show that bitterness can be largely suppressed by sodium salts for 5 of the 6 most bitter amino acids. These results hold promise for managing the bitter taste of nutritional supplements that contain amino acids and improving compliance.

5.
Chemistry ; : e202403365, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352264

RESUMEN

A one pot room temperature synthesis of thionyl tetrafluoride (SOF4) from elemental fluorine (F2) and thionyl fluoride (SOF2) is reported. The selective decagram scale process (100 mmol) allows a quantitative preparation of SOF4 with high purity. The solid-state structure has also been elucidated and compared with the reported gas-phase one. The use of this reagent for the formation of the emerging pentafluorooxosulfate [cat][OSF5] anions led to the preparation of multiple ion-pairs (cat = Ag, NEt3Me, PPN, PPh4) in different organic solvents. The SuFEx reservoir ability of this anion was studied and by tuning the solvent system, the reactivity of pure thionyl tetrafluoride was observed using Ag[OSF5] in THF and acetone.

6.
Chemistry ; : e202402870, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324515

RESUMEN

A visible-light-promoted reduction of nitrobenzenes using formate salts as the reductant was developed. A wide range of nitrobenzenes can be converted into aniline products in a transition metal free fashion. Mechanistic studies revealed that radical species (carbon dioxide radical anion and thiol radical) are key intermediates for the transformation. We anticipate that this method will provide a valuable and green strategy for the reduction of nitrobenzenes.

7.
J Mol Model ; 30(10): 339, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287820

RESUMEN

CONTEXT: Ammonium Tutton salts have been widely studied in recent years due to their thermostructural properties, which make them promising compounds for application in thermochemical energy storage devices. In this work, a detailed experimental study of the Tutton salt with the formula (NH4)2Zn(SO4)2(H2O)6 is carried out. Its structural, vibrational, and thermal properties are analyzed and discussed. Powder X-ray diffraction (PXRD) studies confirm that the compound crystallizes in a structure of a Tutton salt, with monoclinic symmetry and P21/a space group. The Hirshfeld surface analysis results indicate that the main contacts stabilizing the material crystal lattice are H···O/O···H, H···H, and O···O. In addition, a typical behavior of an insulating material is confirmed based on the electronic bandgap calculated from the band structure and experimental absorption coefficient. The Raman and infrared spectra calculated using DFT are in a good agreement with the respective experimental spectroscopic results. Thermal analysis in the range from 300 to 773 K reveals one exothermic and several endothermic events that are investigated using PXRD measurements as a function of temperature. With increasing temperature, two new structural phases are identified, one of which is resolved using the Le Bail method. Our findings suggest that the salt (NH4)2Zn(SO4)2(H2O)6 is a promising thermochemical material suitable for the development of heat storage systems, due to its low dehydration temperature (≈ 330 K), high enthalpy of dehydration (122.43 kJ/mol of H2O), and hydration after 24 h. METHODS: Computational studies using Hirshfeld surfaces and void analysis are conducted to identify and quantify the intermolecular contacts occurring in the crystal structure. Furthermore, geometry optimization calculations are performed based on density functional theory (DFT) using the PBE functional and norm-conserving pseudopotentials implemented in the Cambridge Serial Total Energy Package (CASTEP). The primitive unit cell optimization was conducted using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The electronic properties of band structure and density of states, and vibrational modes of the optimized crystal lattice are calculated and analyzed.

8.
Heliyon ; 10(17): e37397, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296202

RESUMEN

Three different ammonium salts, namely diammonium hydrogen phosphate, ammonium bicarbonate, and ammonium carbonate, were added into bread samples as an additive to analyze their effects on bread. The color, texture, deoxyfructosazine of the functional substance, and pyrazine flavor substance, which were closely related to the quality of the bread, were analyzed. The addition of ammonium salts during the preparation of bread led to the darkening and hardening of the bread. Meanwhile, compared with the control group, the Maillard reaction between the ammonium salt and reducing sugar in bread produced functional deoxyfructosazine and pyrazine flavor substances. Among the three ammonium salts, the addition of diammonium hydrogen phosphate at different concentrations had the most substantial effect on the quality of baked bread, including the production of more deoxyfructosazine, and more types of pyrazine flavor substances. Through an analysis of the value of odor activity, it was found that the addition of diammonium hydrogen phosphate had a more remarkable contribution to the flavor of the bread. The maximum total content of deoxyfructosazine reached 1292.23 µg/g, and the value of odor activity reached 39.86 in this study. These results are extremely useful in the production of bread with superior flavor and functional characteristics. Also, they provide a guideline for the selection of ammonium salt as an additive in baked goods.

9.
Adv Sci (Weinh) ; : e2406842, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301890

RESUMEN

Prussian blue (PB) is regarded as a promising cathode for sodium-ion batteries because of its sustainable precursor elements (e.g., Mn, Fe), easy preparation, and unique framework structure. However, the unstable structure and inherent crystal H2O restrain its practical application. For this purpose, a self-constructed trace Mg2+/K+ co-doped PB prepared via a sea-water-mediated method is proposed to address this problem. The Mg2+/K+ co-doping in the Na sites of PB is permitted by both thermodynamics and kinetics factors when synthesized in sea water. The results reveal that the introduced Mg2+ and K+ are immovable in the PB lattices and can form stronger K‒N and Mg‒N Coulombic attraction to relieve phase transition and element dissolution. Besides, the Mg2+/K+ co-doping can reduce defect and H2O contents. As a result, the PB prepared in sea water exhibits an extremely long cycle life (80.1% retention after 2400 cycles) and superior rate capability (90.4% capacity retention at 20 C relative to that at 0.1 C). To address its practical applications, a sodium salts recycling strategy is proposed to greatly reduce the PB production cost. This work provides a self-constructed Mg2+/K+ co-doped high-performance PB at a low preparation cost for sustainable, large-scale energy storage.

10.
Food Chem ; 463(Pt 3): 141381, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39332372

RESUMEN

Benzo[a]pyrene (BaP), known for its carcinogenic and mutagenic properties, is a marker of polycyclic aromatic hydrocarbons (PAHs). This study aimed to investigate the effect of partially replacing sodium chloride with different calcium salts (calcium chloride, calcium gluconate, calcium citrate, and calcium lactate) on BaP formation in barbecued pork sausages. The results revealed that all four calcium salts inhibited BaP formation in barbecued pork sausages (P < 0.05). Specifically, calcium gluconate showed the most significant effect on BaP inhibition, with an inhibition rate of 61.82 %. Furthermore, calcium salts were found to inhibit lipid oxidation in barbecued pork sausages while promoting the Maillard reaction. Further validation experiments used resveratrol and sodium sulfite as lipid oxidation and Maillard reaction inhibitors, respectively. These results indicated that lipid oxidation is the primary pathway for BaP production in barbecued pork sausage and that the addition of calcium salts can effectively block this process.

11.
J Environ Manage ; 369: 122316, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232322

RESUMEN

Following soil disturbances, establishing healthy roadside vegetation can reduce surface water runoff, improve soil quality, decrease erosion, and enhance landscape aesthetics. This study explores the use of organic soil amendments (OAs) as alternatives to conventional vegetation growth approaches, aiming to provide optimal compost mixing ratios for poor soils, and clarify guidelines for OAs' use in roadside projects. Three sandy loam soils and one loam soil were chosen for the study. Organic amendments included yard waste (Y), food waste (F), turkey litter and green waste-based (T) composts, and wood-derived biochar (B). Treatment applications targeted specific increases in the organic matter (OM) percentage of the soils. A selection of seven native species (grasses and forbs) in a total of 156 pots (4 control soils + 4 soils x 4 OAs x 3 application rates, all prepared in triplicates) was used for the pot study experiment. A significant correlation between electrical conductivity (soluble salts) in soil-OA blends and corresponding percent green coverage (%GC) was found. High salts from the T compost either delayed or curtailed growth. Notably, 3 out of the 4 soils amended with biochar exhibited rapid vegetation coverage during initial growth stages compared to other soil-OA blends but reduced the nitrogen (N) uptake and leaf area in black-eyed Susan (BES) plants. In contrast, N uptake was higher in the BES plants emerging from composts T, F, and Y compared to biochar. It is recommended to minimize concentrated manure-based (e.g., turkey litter) composts for roadside projects as an OM source, and alternatively, enriching wood-based biochar with nutrients when used as a soil amendment. Within the current study, composts such as F and Y were well-suited to establish healthy and long-lasting vegetation.


Asunto(s)
Suelo , Suelo/química , Nitrógeno/análisis , Compostaje/métodos , Carbón Orgánico/química
12.
ACS Appl Mater Interfaces ; 16(38): 50534-50549, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39255361

RESUMEN

The storage of renewable energy through the conversion of CO2 to CO provides a viable solution for the intermittent nature of these energy sources. The immobilization of rhenium(I) tricarbonyl molecular complexes is presented through the reductive coupling of bis(diazonium) aryl substituents. The heterogenized complex was characterized through ultra-visible, attenuated total reflectance, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy to probe the electronic structure of the immobilized complex. In addition, studies of cyclic voltammetry, controlled potential electrolysis, and electrochemical impedance spectroscopy were conducted to examine the CO2 reduction activity. The structure and CO2 reduction performance were compared with a previously reported immobilized rhenium(I) tricarbonyl molecular complex to probe the effect of varying the tethering of the aryl substituent from the 5,5'-position to the 4,4'-position of the 2,2'-bipyridine backbone. The immobilized complex on carbon cloth at the 4,4'-position provided excellent selectivity (FECO > 99%) and maximum TONCO and TOFCO values of 3359 and 0.9 s-1, respectively, without the addition of a BroÌ·nsted acid source. A nonaqueous flow cell demonstrated the stability of this complex during a 5 h electrolysis. Tethering at the 4,4'-position, compared to the 5,5'-position, yielded lower overall activity for CO2 reduction and was attributed to the difference in growth morphology and formation of aggregations, due to Re-Re dimer formation and π-π stacking interactions within the metallopolymer matrix. For carbon cloth substrates, an optimized catalyst loading was determined to be 44.6 ± 11 nmol/cm2.

13.
Chimia (Aarau) ; 78(7-8): 476-482, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39221843

RESUMEN

Summarized here are some aspects of my research activities in Ciba-Geigy Central Research Laboratories (1985-1996), in Novartis and Syngenta Crop Protection Research (1997-2020). I have followed the chronological order of these research activities covering only published data.


Asunto(s)
Agricultura , Farmacología , Humanos , Agricultura/historia , Agricultura/métodos , Farmacología/historia , Farmacología/métodos , Investigación
14.
Chemistry ; : e202402649, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315518

RESUMEN

The catalytic conversion of biomass into high-value chemicals is an increasing field of research. This study uniquely investigates the use of various Keggin-type heteropoly salts (HPS) for the chemical conversion of sugars into lactic acid under mild conditions of 160°C and 20 bar N2. In the first phase, Nb- and V-substituted HPSs were employed to synthesize lactic acid from dihydroxyacetone, an intermediate in the conversion of sugars to lactic acid. Results indicated that increasing the Nb content within the Keggin structure enhances the yield of lactic acid while reducing the formation of the byproduct acetaldehyde. A correlation was established between the redox activity of the HPS and the catalytic performance. The most active catalyst, Na5[PNb2Mo10O40], (NaNb2) achieved a lactic acid yield of 20.9% after 1 h of reaction. In the second phase of the study, NaNb2 was applied for the conversion of different sugars including glucose, fructose, mannose, sucrose, xylose, and cellobiose. It was demonstrated that the catalyst remains active for complex hexoses, achieving lactic acid yields of up to 12%. Post-mortem analysis using infrared (IR) and Raman spectroscopy, nuclear magnetic resonance (NMR), and inductively coupled plasma optical emission spectrometry (ICP-OES) confirmed the stability of NaNb2.

15.
Chemistry ; : e202402768, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282878

RESUMEN

The use of sulfonium salts in organic synthesis has experienced a dramatic increase during the last years that can arguably be attributed to three main factors; the development of more direct and efficient synthetic methods that make easily available sulfonium reagents of a wide structural variety, their intrinsic thermal stability, which facilitates their structural modification, handling and purification even on large scale, and the recognition that their reactivity resembles that of hypervalent iodine compounds and therefore, they can be used as replacement of such reagents for most of their uses. This renewed interest has led to the improvement of already existing reactions, as well as to the discovery of unprecedented transformations; in particular, by the implementation of photocatalytic protocols. This review aims to summarize the most recent advancements on the area focusing on the work published during and after 2020. The scope of the methods developed will be highlighted and their limitations critically evaluated.

16.
Chem Asian J ; : e202400866, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288314

RESUMEN

N,N'-Diarylimidazolium salts containing haloalkyl functional groups that are reactive with various nucleophiles are considered to be promising reagents for the preparation of functionalized N-heterocyclic carbene (NHC) ligands, which are in demand in catalysis, materials science, and biomedical research. Recently, 4-chloromethyl-functionalized N,N'-diarylimidazolium salts became readily available via the condensation of N,N'-diaryl-2-methyl-1,4-diaza-1,3-butadienes with ethyl orthoformate and Me3SiCl, but these compounds were found to have insufficient reactivity in reactions with many nucleophiles. These chloromethyl salts were studied as precursors in the synthesis of bromo- and iodomethyl-functionalized imidazolium salts by halide anion exchange. The 4-ICH2-functionalized products were found to be unstable, whereas a series of novel 4-bromomethyl functionalized N,N'-diarylimidazolium salts were obtained in good yields. These bromomethyl-functionalized imidazolium salts were found to be significantly more reactive towards various N, O and S nucleophiles than the chloromethyl counterparts and enabled the preparation of previously inaccessible heteroatom-functionalized imidazolium salts, some of which were successfully used as NHC proligands in the preparation of Pd/NHC and Au/NHC complexes.

17.
ACS Appl Mater Interfaces ; 16(37): 49790-49800, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39231029

RESUMEN

Today's extensive use of inorganic fertilizers in agricultural techniques has increased the concentration of nitrate in drinking water beyond safety limits, causing serious health problems in humans such as thyroidism and methemoglobinemia. Therefore, the present work describes the synthesis of a benzimidazolium salt-based fluorescent chemosensor (KG3) via a multistep synthesis which detects nitrate ions in aqueous medium. This was validated using various analytical techniques such as fluorescence spectroscopy, UV-visible spectroscopy, and electrochemical studies with a detection limit of 0.032 µM without any interference from other active water pollutants. Subsequently, KG3 is further modified with the help of iron oxide nanoparticles (Fe3O4 NPs) and silica to obtain the SiO2@Fe3O4-KG3 nanocomposite, which was immobilized over a polyether sulfone membrane and evaluated for removal of nitrate ions from groundwater with a removal efficiency of 96%. Moreover, the engineered composite membrane can serve as a solid-state fluorescence sensor to detect NO3- ions, which was demonstrated through a portable mobile-based prototype employing a hue, saturation, and value parameter model.

18.
Small ; : e2403423, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254289

RESUMEN

Determining molecular structures is foundational in chemistry and biology. The notion of discerning molecular structures simply from the visual appearance of a material remained almost unthinkable until the advent of machine learning. This paper introduces a pioneering approach bridging the visual appearance of materials (both at the micro- and nanostructural levels) with traditional chemical structure analysis methods. Quaternary phosphonium salts are opted as the model compounds, given their significant roles in diverse chemical and medicinal fields and their ability to form homologs with only minute intermolecular variances. This research results in the successful creation of a neural network model capable of recognizing molecular structures from visual electron microscopy images of the material. The performance of the model is evaluated and related to the chemical nature of the studied chemicals. Additionally, unsupervised domain transfer is tested as a method to use the resulting model on optical microscopy images, as well as test models trained on optical images directly. The robustness of the method is further tested using a complex system of phosphonium salt mixtures. To the best of the authors' knowledge, this study offers the first evidence of the feasibility of discerning nearly indistinguishable molecular structures.

19.
Chem Biol Interact ; 403: 111216, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218371

RESUMEN

Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania and is responsible for more than 1 million new cases and 70,000 deaths annually worldwide. Treatment has high costs, toxicity, complex and long administration time, several adverse effects, and drug-resistant strains, therefore new therapies are urgently needed. Synthetic compounds have been highlighted in the medicinal chemistry field as a strong option for drug development against different diseases. Organic salts (OS) have multiple biological activities, including activity against protozoa such as Leishmania spp. This study aimed to investigate the in vitro leishmanicidal activity and death mechanisms of a thiohydantoin salt derived from l-arginine (ThS) against Leishmania amazonensis. We observed that ThS treatment inhibited promastigote proliferation, increased ROS production, phosphatidylserine exposure and plasma membrane permeabilization, loss of mitochondrial membrane potential, lipid body accumulation, autophagic vacuole formation, cell cycle alteration, and morphological and ultrastructural changes, showing parasites death. Additionally, ThS presents low cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), and sheep erythrocytes. ThS in vitro cell treatment reduced the percentage of infected macrophages and the number of amastigotes per macrophage by increasing ROS production and reducing TNF-α levels. These results highlight the potential of ThS among thiohydantoins, mainly related to the arginine portion, as a leishmanicidal drug for future drug strategies for leishmaniasis treatment. Notably, in silico investigation of key targets from L. amazonensis, revealed that a ThS compound from the l-arginine amino acid strongly interacts with arginase (ARG) and TNF-α converting enzyme (TACE), suggesting its potential as a Leishmania inhibitor.

20.
Int J Pharm ; : 124669, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244070

RESUMEN

The aim of this study was to prepare sodium glycocholate liposomes (SGC-Lip) encapsulating semaglutide (Sml) to improve oral bioavailability and better exert hypoglycemic effect. In this paper, SGC-Lip was prepared by reverse-phase evaporation method with particle size around 140 nm, potential around -27 mV, rounded morphology and better stability. The hypoglycemic and intestinal uptake effects of SGC-Lip and cholesterol-containing liposomes (CH-Lip) were comparatively investigated in rats, and the oral safety of SGC-Lip was examined by cytotoxicity assay. The results indicate that SGC-Lip can achieve a hypoglycemic effect of 40% of the initial value within 12 hours, and the AAC0-12h is approximately six times that of CH-Lip without sodium glycocholate. The results of the cytotoxicity tests indicate that SGC-Lip has good oral safety. SGC-Lip enhances the absorption of semaglutide in the small intestinal villi via an apical sodium-dependent bile acid transporter (ASBT)-mediated pathway with the highest penetration at the ileal site. In summary, the oral bioavailability of semaglutide can be improved by encapsulating semaglutide in SGC-Lip and utilizing the stabilizing and permeation-promoting effects of SGC on liposomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...